`
sillycat
  • 浏览: 2563961 次
  • 性别: Icon_minigender_1
  • 来自: 成都
社区版块
存档分类
最新评论

DiveIntoPython(十五)

阅读更多
DiveIntoPython(十五)

英文书地址:
http://diveintopython.org/toc/index.html

Chapter 16.Functional Progamming

16.1.Diving in
The following is a complete Python program that acts as a cheap and simple regression testing framework. It takes unit tests that you've written for individual modules, collects them all into one big test suite, and runs them all at once.

example 16.1.regression.py
import sys, os, re, unittest

def regressionTest():
    path = os.path.abspath(os.path.dirname(sys.argv[0]))  
    files = os.listdir(path)                              
    test = re.compile("test\.py$", re.IGNORECASE)         
    files = filter(test.search, files)                    
    filenameToModuleName = lambda f: os.path.splitext(f)[0]
    moduleNames = map(filenameToModuleName, files)        
    modules = map(__import__, moduleNames)                
    load = unittest.defaultTestLoader.loadTestsFromModule 
    return unittest.TestSuite(map(load, modules))         

if __name__ == "__main__":                  
    unittest.main(defaultTest="regressionTest")

example 16.2.Sample output of regression.py
E:\book\opensource\python\diveintopython-5.4\py>python regression.py -v
info should fail with no object ... ok
info should return known result for apihelper ... ok
info should honor collapse argument ... ok
info should honor spacing argument ... ok

...snip...

fromRoman(toRoman(n))==n for all n ... ok
toRoman should fail with non-integer input ... ok
toRoman should fail with negative input ... ok
toRoman should fail with large input ... ok
toRoman should fail with 0 input ... ok
soundex should give known result with known input ... ok

----------------------------------------------------------------------
Ran 81 tests in 0.593s

OK

16.2.Finding the path
When running Python scripts from the command line, it is sometimes useful to know where the currently running script is located on disk.
The key to it is sys.argv. As you saw in Chapter 9, XML Processing, this is a list that holds the list of command-line arguments. However, it also holds the name of the running script, exactly as it was called from the command line, and this is enough information to determine its location.

example 16.3.fullpath.py
import sys, os

print 'sys.argv[0] =', sys.argv[0]
pathname = os.path.dirname(sys.argv[0])
print 'path =', pathname
print 'full path =', os.path.abspath(pathname)

Regardless of how you run a script, sys.argv[0] will always contain the name of the script, exactly as it appears on the command line. This may or may not include any path information, as you'll see shortly.

os.path.dirname takes a filename as a string and returns the directory path portion. If the given filename does not include any path information, os.path.dirname returns an empty string.

os.path.abspath is the key here. It takes a pathname, which can be partial or even blank, and returns a fully qualified pathname.

example 16.4.Further explanation of os.path.abspath
>>> import os
>>> os.getcwd()
'E:\\book\\opensource\\python\\diveintopython-5.4\\py'
>>> os.path.abspath('')
'E:\\book\\opensource\\python\\diveintopython-5.4\\py'
>>> os.path.abspath('.ssh')
'E:\\book\\opensource\\python\\diveintopython-5.4\\py\\.ssh'
>>> os.path.abspath('E:\\book\\opensource\\python\\diveintopython-5.4\\py\\.ssh')
'E:\\book\\opensource\\python\\diveintopython-5.4\\py\\.ssh'
>>> os.path.abspath('.ssh/../foo/')
'E:\\book\\opensource\\python\\diveintopython-5.4\\py\\foo'

os.getcwd() returns the current working directory.

Calling os.path.abspath with an empty string returns the current working directory, same as os.getcwd().

It normalizes the path by making it as simple as possible. If you just want to normalize a pathname like this without turning it into a full pathname, use os.path.normpath instead.

example 16.5.Sample output from fullpath.py
E:\book\opensource\python\diveintopython-5.4\py>python fullpath.py
sys.argv[0] = fullpath.py
path =
full path = E:\book\opensource\python\diveintopython-5.4\py

E:\>python E:\book\opensource\python\diveintopython-5.4\py\fullpath.py
sys.argv[0] = E:\book\opensource\python\diveintopython-5.4\py\fullpath.py
path = E:\book\opensource\python\diveintopython-5.4\py
full path = E:\book\opensource\python\diveintopython-5.4\py

If the script is run from the current directory without giving any path, os.path.dirname will simply return an empty string. Given an empty string, os.path.abspath returns the current directory, which is what you want, since the script was run from the current directory.

sys.argv[0] includes the full path of the script. You can then use the os.path.dirname function to strip off the script name and return the full directory name, and os.path.abspath simply returns what you give it.

example 16.6.Running scripts in the current directory
import sys, os, re, unittest

def regressionTest():
    path = os.getcwd()      
    sys.path.append(path)   
    files = os.listdir(path)

Instead of setting path to the directory where the currently running script is located, you set it to the current working directory instead. This will be whatever directory you were in before you ran the script, which is not necessarily the same as the directory the script is in.

Append this directory to the Python library search path, so that when you dynamically import the unit test modules later, Python can find them. You didn't need to do this when path was the directory of the currently running script, because Python always looks in that directory.

The rest of the function is the same.

This technique will allow you to re-use this regression.py script on multiple projects. Just put the script in a common directory, then change to the project's directory before running it. All of that project's unit tests will be found and tested, instead of the unit tests in the common directory where regression.py is located.

16.3.Filtering lists revisited
Python has a built-in filter function which takes two arguments, a function and a list, and returns a list.

The function passed as the first argument to filter must itself take one argument, and the list that filter returns will contain all the elements from the list passed to filter for which the function passed to filter returns true.

example 16.7.Introducing filter
>>> def odd(n):
... return n % 2
...
>>> li = [1,2,3,5,9,10,256,-3]
>>> filter(odd,li)
[1, 3, 5, 9, -3]
>>> [e for e in li if odd(e)]
[1, 3, 5, 9, -3]
>>> filteredList = []
>>> for n in li:
... if odd(n):
... filteredList.append(n)
...
>>> filteredList
[1, 3, 5, 9, -3]

odd uses the built-in mod function “%” to return True if n is odd and False if n is even.

filter takes two arguments, a function (odd) and a list (li). It loops through the list and calls odd with each element. If odd returns a true value (remember, any non-zero value is true in Python), then the element is included in the returned list, otherwise it is filtered out. The result is a list of only the odd numbers from the original list, in the same order as they appeared in the original.

example 16.8.filter in regression.py
files = os.listdir(path)                               
test = re.compile("test\.py$", re.IGNORECASE)          
files = filter(test.search, files) 

Either way, files will end up with the names of the files in the same directory as this script you're running.

If the regular expression matches, the method will return a Match object, which Python considers to be true, so the element will be included in the list returned by filter. If the regular expression does not match, the search method will return None, which Python considers to be false, so the element will not be included.

example 16.9.Filtering using list comprehensions instead
files = os.listdir(path)                              
test = re.compile("test\.py$", re.IGNORECASE)         
files = [f for f in files if test.search(f)]

>>> files = os.listdir("")
>>> test = re.compile("test\.py$", re.IGNORECASE)
>>> files = [f for f in files if test.search(f)]
>>> files
['apihelpertest.py', 'kgptest.py', 'odbchelpertest.py', 'pluraltest.py', 'romantest.py', 'soundextest.py']

16.4.Mapping lists revisited
You're already familiar with using list comprehensions to map one list into another. There is another way to accomplish the same thing, using the built-in map function. It works much the same way as the filter function.

example 16.10.Introducing map
>>> def double(n):
... return n*2
...
>>> li = [1,2,3,5,9,10,256,-3]
>>> map(double,li)
[2, 4, 6, 10, 18, 20, 512, -6]
>>> [double(n) for n in li]
[2, 4, 6, 10, 18, 20, 512, -6]
>>> newList = []
>>> for n in li:
... newList.append(double(n))
...
>>> newList
[2, 4, 6, 10, 18, 20, 512, -6]

map takes a function and a list[8] and returns a new list by calling the function with each element of the list in order. In this case, the function simply multiplies each element by 2.

example 16.11.map with lists of mixed datatypes
>>> li = [5,'a',(2,'b')]
>>> map(double,li)
[10, 'aa', (2, 'b', 2, 'b')]

As a side note, I'd like to point out that map works just as well with lists of mixed datatypes, as long as the function you're using correctly handles each type.

example 16.12.map in regression.py
filenameToModuleName = lambda f: os.path.splitext(f)[0]
moduleNames = map(filenameToModuleName, files)

And as you saw in Example 6.17, “Splitting Pathnames”, os.path.splitext takes a filename and returns a tuple (name, extension). So filenameToModuleName is a function which will take a filename and strip off the file extension, and return just the name.

Calling map takes each filename listed in files, passes it to the function filenameToModuleName, and returns a list of the return values of each of those function calls. In other words, you strip the file extension off of each filename, and store the list of all those stripped filenames in moduleNames.

16.5.Data-centric programming

16.6.Dynamically importing modules

example 16.13.Importing multiple modules at once
import sys,os,re,unittest

This imports four modules at once: sys (for system functions and access to the command line parameters), os (for operating system functions like directory listings), re (for regular expressions), and unittest (for unit testing).

example 16.14.Importing modules dynamically
>>> sys = __import__('sys')
>>> os = __import__('os')
>>> re = __import__('re')
>>> unittest = __import__('unittest')
>>> sys
<module 'sys' (built-in)>
>>> os
<module 'os' from 'C:\Python26\lib\os.pyc'>

The built-in __import__ function accomplishes the same goal as using the import statement, but it's an actual function, and it takes a string as an argument.

example 16.15.Importing a list of modules dynamically
>>> moduleNames
['sys', 'os', 're', 'unittest']
>>> modules = map(__import__,moduleNames)
>>> modules
[<module 'sys' (built-in)>, <module 'os' from 'C:\Python26\lib\os.pyc'>, <module 're' from 'C:\Python26\lib\re.pyc'>, <module 'unittest' from 'C:\Python26\lib\unittest.pyc'>]
>>> modules[0].version
'2.6.4 (r264:75706, Jan 22 2010, 16:41:54) [MSC v.1500 32 bit (Intel)]'
>>> import sys
>>> sys.version
'2.6.4 (r264:75706, Jan 22 2010, 16:41:54) [MSC v.1500 32 bit (Intel)]'

Surprise, you wanted to import them, and you did, by mapping the __import__ function onto the list. Remember, this takes each element of the list (moduleNames) and calls the function (__import__) over and over, once with each element of the list, builds a list of the return values, and returns the result.

16.7.Putting it all together

example 16.16.The regressionTest function
def regressionTest():
    path = os.path.abspath(os.path.dirname(sys.argv[0]))  
    files = os.listdir(path)                              
    test = re.compile("test\.py$", re.IGNORECASE)         
    files = filter(test.search, files)                    
    filenameToModuleName = lambda f: os.path.splitext(f)[0]
    moduleNames = map(filenameToModuleName, files)        
    modules = map(__import__, moduleNames)                
load = unittest.defaultTestLoader.loadTestsFromModule 
return unittest.TestSuite(map(load, modules)) 

example 16.7.Step 1:Get all the files
>>> import sys,os,re,unittest
>>> path = r'E:\book\opensource\python\diveintopython-5.4\py'
>>> files = os.listdir(path)
>>> files
['apihelper.py', 'apihelper.pyc', 'apihelpertest.py', 'apihelpertest.pyc', 'argecho.py', 'autosize.py', 'BaseHTMLProcessor.py', 'BaseHTMLProcessor.pyc', 'builddialectexamples.py', 'colorize.py', 'dialect.py', 'fibonacci.py', 'fileinfo.py', 'fileinfo.pyc', 'fileinfo_fromdict.py', 'fullpath.py', 'kgp', 'kgptest.py', 'kgptest.pyc', 'LICENSE.txt', 'makerealworddoc.py', 'odbchelper.py', 'odbchelper.pyc', 'odbchelpertest.py', 'odbchelpertest.pyc', 'openanything.py', 'openanything.pyc', 'parsephone.py', 'piglatin.py', 'plural', 'plural-rules.en', 'plural.py', 'plural.pyc', 'pluraltest.py', 'pluraltest.pyc', 'pyfontify.py', 'regression.py', 'roman', 'roman.py', 'roman.pyc', 'romantest.py', 'romantest.pyc', 'search.py', 'soundex', 'soundex.py', 'soundex.pyc', 'soundextest.py', 'soundextest.pyc', 'statsout.py', 'statsout.pyc', 'temp.py', 'unicode2koi8r.py', 'urllister.py', 'urllister.pyc']

files is a list of all the files and directories in the script's directory.

example 16.18.Step 2:Filter to find the files you care about
>>> test = re.compile("test\.py$",re.IGNORECASE)
>>> files = filter(test.search,files)
>>> files
['apihelpertest.py', 'kgptest.py', 'odbchelpertest.py', 'pluraltest.py', 'romantest.py', 'soundextest.py']

This regular expression will match any string that ends with test.py. Note that you need to escape the period, since a period in a regular expression usually means “match any single character”, but you actually want to match a literal period instead.

example 16.19.Step 3:Map filenames to module names
>>> filenameToModuleName = lambda f:os.path.splitext(f)[0]
>>> filenameToModuleName('romantest.py')
'romantest'
>>> moduleNames = map(filenameToModuleName,files)
>>> moduleNames
['apihelpertest', 'kgptest', 'odbchelpertest', 'pluraltest', 'romantest', 'soundextest']

example 16.20.Step 4:Mapping module names to modules
>>> sys.path.append(r"E:\book\opensource\python\diveintopython-5.4\py")
>>> sys.path.append(r"E:\book\opensource\python\diveintopython-5.4\py\kgp")
>>> moduleNames
['apihelpertest', 'kgptest', 'odbchelpertest', 'pluraltest', 'romantest', 'soundextest']
>>> modules = map(__import__,moduleNames)
>>> modules
[<module 'apihelpertest' from 'E:\book\opensource\python\diveintopython-5.4\py\apihelpertest.pyc'>, <module 'kgptest' from 'E:\book\opensource\python\diveintopython-5.4\py\kgptest.pyc'>, <module 'odbchelpertest' from 'E:\book\opensource\python\diveintopython-5.4\py\odbchelpertest.pyc'>, <module 'pluraltest' from 'E:\book\opensource\python\diveintopython-5.4\py\pluraltest.pyc'>, <module 'romantest' from 'E:\book\opensource\python\diveintopython-5.4\py\romantest.pyc'>, <module 'soundextest' from 'E:\book\opensource\python\diveintopython-5.4\py\soundextest.pyc'>]
>>> modules[-1]
<module 'soundextest' from 'E:\book\opensource\python\diveintopython-5.4\py\soundextest.pyc'>

example 16.21.Step 5:Loading the modules into a test suite
>>> load = unittest.defaultTestLoader.loadTestsFromModule
>>> map(load,modules)
[<unittest.TestSuite tests=[<unittest.TestSuite tests=[<apihelpertest.BadInput testMethod=testNoObject>]>, <unittest.TestSuite tests=[<apihelpertest.KnownValues testMethod=testApiHelper>]>, <unittest.TestSuite tests=[<apihelpertest.ParamChecks testMethod=testCollapse>, <apihelpertest.ParamChecks testMethod=testSpacing>]>, <unittest.TestSuite tests=[]>]>, <unittest.TestSuite tests=[<unittest.TestSuite
...snip...
>>> unittest.TestSuite(map(load,modules))

That's what the loadTestsFromModule method does: it introspects into each module and returns a unittest.TestSuite object for each module. Each TestSuite object actually contains a list of TestSuite objects, one for each TestCase class in your module, and each of those TestSuite objects contains a list of tests, one for each test method in your module.

Finally, you wrap the list of TestSuite objects into one big test suite. The unittest module has no problem traversing this tree of nested test suites within test suites; eventually it gets down to an individual test method and executes it, verifies that it passes or fails, and moves on to the next one.

example 16.22.Step 6:Telling unittest to use your test suite
if __name__ == "__main__":                  
    unittest.main(defaultTest="regressionTest")
分享到:
评论

相关推荐

    dive into python

    7.4.1. 校验十位数和个位数 7.5. 松散正则表达式 7.6. 个案研究:解析电话号码 7.7. 小结 8. HTML 处理 8.1. 概览 8.2. sgmllib.py 介绍 8.3. 从 HTML 文档中提取数据 8.4. BaseHTMLProcessor.py 介绍 8.5. ...

    Dive into Deep Learning中文版1

    深度学习的发展有着悠久的历史,从20世纪五六十年代开始,到现在已经成为人工智能领域的核心技术之一。 深度学习的特点 深度学习有很多特点,例如: * 能够 Learn complex and abstract representations of data ...

    实时监控体系:基于Prometheus的API性能指标可视化方案.pdf

    在日常的工作和学习中,你是否常常为处理复杂的数据、生成高质量的文本或者进行精准的图像识别而烦恼?DeepSeek 或许就是你一直在寻找的解决方案!它以其高效、智能的特点,在各个行业都展现出了巨大的应用价值。然而,想要充分发挥 DeepSeek 的优势,掌握从入门到精通的知识和技能至关重要。本文将从实际应用的角度出发,为你详细介绍 DeepSeek 的基本原理、操作方法以及高级技巧。通过系统的学习,你将能够轻松地运用 DeepSeek 解决实际问题,提升工作效率和质量,让自己在职场和学术领域脱颖而出。现在,就让我们一起开启这场实用又高效的学习之旅吧!

    5个提升DeepSeekAPI生成质量的调参技巧,开发者必看!.pdf

    在日常的工作和学习中,你是否常常为处理复杂的数据、生成高质量的文本或者进行精准的图像识别而烦恼?DeepSeek 或许就是你一直在寻找的解决方案!它以其高效、智能的特点,在各个行业都展现出了巨大的应用价值。然而,想要充分发挥 DeepSeek 的优势,掌握从入门到精通的知识和技能至关重要。本文将从实际应用的角度出发,为你详细介绍 DeepSeek 的基本原理、操作方法以及高级技巧。通过系统的学习,你将能够轻松地运用 DeepSeek 解决实际问题,提升工作效率和质量,让自己在职场和学术领域脱颖而出。现在,就让我们一起开启这场实用又高效的学习之旅吧!

    ACM动态规划模板-区间修改线段树问题模板

    ACM动态规划模板-区间修改线段树问题模板

    深度解析C语言调试技巧:VSCode+GDB实战排错指南.pdf

    # 踏入C语言的奇妙编程世界 在编程的广阔宇宙中,C语言宛如一颗璀璨恒星,以其独特魅力与强大功能,始终占据着不可替代的地位。无论你是编程小白,还是有一定基础想进一步提升的开发者,C语言都值得深入探索。 C语言的高效性与可移植性令人瞩目。它能直接操控硬件,执行速度快,是系统软件、嵌入式开发的首选。同时,代码可在不同操作系统和硬件平台间轻松移植,极大节省开发成本。 学习C语言,能让你深入理解计算机底层原理,培养逻辑思维和问题解决能力。掌握C语言后,再学习其他编程语言也会事半功倍。 现在,让我们一起开启C语言学习之旅。这里有丰富教程、实用案例、详细代码解析,助你逐步掌握C语言核心知识和编程技巧。别再犹豫,加入我们,在C语言的海洋中尽情遨游,挖掘无限可能,为未来的编程之路打下坚实基础!

    10个高效调用DeepSeekAPI的技巧:从请求优化到缓存策略.pdf

    在日常的工作和学习中,你是否常常为处理复杂的数据、生成高质量的文本或者进行精准的图像识别而烦恼?DeepSeek 或许就是你一直在寻找的解决方案!它以其高效、智能的特点,在各个行业都展现出了巨大的应用价值。然而,想要充分发挥 DeepSeek 的优势,掌握从入门到精通的知识和技能至关重要。本文将从实际应用的角度出发,为你详细介绍 DeepSeek 的基本原理、操作方法以及高级技巧。通过系统的学习,你将能够轻松地运用 DeepSeek 解决实际问题,提升工作效率和质量,让自己在职场和学术领域脱颖而出。现在,就让我们一起开启这场实用又高效的学习之旅吧!

    基于Python语言的PersonRelationKnowledgeGraph设计源码

    本项目为Python语言开发的PersonRelationKnowledgeGraph设计源码,总计包含49个文件,涵盖19个.pyc字节码文件、12个.py源代码文件、8个.txt文本文件、3个.xml配置文件、3个.png图片文件、2个.md标记文件、1个.iml项目配置文件、1个.cfg配置文件。该源码库旨在构建一个用于表示和查询人物关系的知识图谱系统。

    成本优化指南:通过Token计算模型将API费用降低57%的秘诀.pdf

    在日常的工作和学习中,你是否常常为处理复杂的数据、生成高质量的文本或者进行精准的图像识别而烦恼?DeepSeek 或许就是你一直在寻找的解决方案!它以其高效、智能的特点,在各个行业都展现出了巨大的应用价值。然而,想要充分发挥 DeepSeek 的优势,掌握从入门到精通的知识和技能至关重要。本文将从实际应用的角度出发,为你详细介绍 DeepSeek 的基本原理、操作方法以及高级技巧。通过系统的学习,你将能够轻松地运用 DeepSeek 解决实际问题,提升工作效率和质量,让自己在职场和学术领域脱颖而出。现在,就让我们一起开启这场实用又高效的学习之旅吧!

    大华智能物联平台,的对接其他接口的API,可以获得视频拉流的flv/hls/rstp 的拉流地址,demo项目为springBoot项目,可以通过摄像头的视频通道,获取到实时拉流的uRl

    rtsp实时预览接口URL:/evo-apigw/admin/API/MTS/Video/StartVideo HLS、FLV、RTMP实时预览接口方式 :接口URL/evo-apigw/admin/API/video/stream/realtime 参数名 必选 类型 说明 data true string Json串 +channelId true string 视频通道编码 +streamType true string 码流类型:1=主码流, 2=辅码流,3=辅码流2 +type true string 协议类型:hls,hlss,flv,flvs,ws_flv,wss_flv,rtmp hls:http协议,m3u8格式,端口7086; hlss:https协议,m3u8格式,端口是7096; flv:http协议,flv格式,端口7886; flvs:https协议,flv格式,端口是7896; ws_flv:ws协议,flv格式,端口是7886; wss_flv:wss协议,flv格式,端口是7896; rtmp:rtmp协议,端口是1975;

    Simulink永磁风机飞轮储能系统二次调频技术研究:频率特性分析与参数优化,Simulink永磁风机飞轮储能二次调频技术:系统频率特性详解及参数优化研究参考详实文献及两区域系统应用,simulink

    Simulink永磁风机飞轮储能系统二次调频技术研究:频率特性分析与参数优化,Simulink永磁风机飞轮储能二次调频技术:系统频率特性详解及参数优化研究参考详实文献及两区域系统应用,simulink永磁风机飞轮储能二次调频,系统频率特性如下,可改变调频参数改善频率。 参考文献详细,两区域系统二次调频。 ,核心关键词: 1. Simulink 2. 永磁风机 3. 飞轮储能 4. 二次调频 5. 系统频率特性 6. 调频参数 7. 改善频率 8. 参考文献 9. 两区域系统 以上关键词用分号(;)分隔,结果为:Simulink;永磁风机;飞轮储能;二次调频;系统频率特性;调频参数;改善频率;参考文献;两区域系统。,基于Simulink的永磁风机与飞轮储能系统二次调频研究:频率特性及调频参数优化

    MATLAB驱动的ASR防滑转模型:PID与对照控制算法对比,冰雪路面条件下滑移率与车速轮速对照展示,MATLAB驱动的ASR防滑转模型:PID与对照控制算法对比,冰雪路面条件下滑移率与车速轮速对照图

    MATLAB驱动的ASR防滑转模型:PID与对照控制算法对比,冰雪路面条件下滑移率与车速轮速对照展示,MATLAB驱动的ASR防滑转模型:PID与对照控制算法对比,冰雪路面条件下滑移率与车速轮速对照图展示,MATLAB驱动防滑转模型ASR模型 ASR模型驱动防滑转模型 ?牵引力控制系统模型 选择PID控制算法以及对照控制算法,共两种控制算法,可进行选择。 选择冰路面以及雪路面,共两种路面条件,可进行选择。 控制目标为滑移率0.2,出图显示车速以及轮速对照,出图显示车辆轮胎滑移率。 模型简单,仅供参考。 ,MATLAB; ASR模型; 防滑转模型; 牵引力控制系统模型; PID控制算法; 对照控制算法; 冰路面; 雪路面; 控制目标; 滑移率; 车速; 轮速。,MATLAB驱动的ASR模型:PID与对照算法在冰雪路面的滑移率控制研究

    芯片失效分析方法介绍 -深入解析芯片故障原因及预防措施.pptx

    芯片失效分析方法介绍 -深入解析芯片故障原因及预防措施.pptx

    4131_127989170.html

    4131_127989170.html

    PostgreSQL自动化部署与优化脚本:智能化安装、安全加固与监控集成

    内容概要:本文提供了一个全面的PostgreSQL自动化部署解决方案,涵盖智能环境适应、多平台支持、内存与性能优化以及安全性加强等重要方面。首先介绍了脚本的功能及其调用方法,随后详细阐述了操作系统和依赖软件包的准备过程、配置项的自动生成机制,还包括对实例的安全性和监控功能的强化措施。部署指南给出了具体的命令操作指导,便于新手理解和执行。最后强调了该工具对于不同硬件条件和服务需求的有效应对能力,特别是针对云计算环境下应用的支持特点。 适合人群:对PostgreSQL集群运维有一定基础并渴望提高效率和安全性的数据库管理员及工程师。 使用场景及目标:本脚本能够帮助企业在大规模部署时减少人工介入时间,确保系统的稳定性与高性能,适用于各类需要稳定可靠的数据库解决方案的企业或机构,特别是在大数据量和高并发事务处理场合。 其他说明:文中还提及了一些高级功能如自动备份、流复制等设置步骤,使得该方案不仅可以快速上线而且能满足后续维护和发展阶段的要求。同时提到的技术性能数据也为用户评估其能否满足业务需求提供了直观参考。

    房地产开发合同[示范文本].doc

    房地产开发合同[示范文本].doc

    成本优化实战:DeepSeekAPI的Tokens计算与计费策略拆解.pdf

    在日常的工作和学习中,你是否常常为处理复杂的数据、生成高质量的文本或者进行精准的图像识别而烦恼?DeepSeek 或许就是你一直在寻找的解决方案!它以其高效、智能的特点,在各个行业都展现出了巨大的应用价值。然而,想要充分发挥 DeepSeek 的优势,掌握从入门到精通的知识和技能至关重要。本文将从实际应用的角度出发,为你详细介绍 DeepSeek 的基本原理、操作方法以及高级技巧。通过系统的学习,你将能够轻松地运用 DeepSeek 解决实际问题,提升工作效率和质量,让自己在职场和学术领域脱颖而出。现在,就让我们一起开启这场实用又高效的学习之旅吧!

    安全必读:DeepSeek接口调用中的数据加密与合规实践.pdf

    在日常的工作和学习中,你是否常常为处理复杂的数据、生成高质量的文本或者进行精准的图像识别而烦恼?DeepSeek 或许就是你一直在寻找的解决方案!它以其高效、智能的特点,在各个行业都展现出了巨大的应用价值。然而,想要充分发挥 DeepSeek 的优势,掌握从入门到精通的知识和技能至关重要。本文将从实际应用的角度出发,为你详细介绍 DeepSeek 的基本原理、操作方法以及高级技巧。通过系统的学习,你将能够轻松地运用 DeepSeek 解决实际问题,提升工作效率和质量,让自己在职场和学术领域脱颖而出。现在,就让我们一起开启这场实用又高效的学习之旅吧!

    工程技术承包合同[示范文本].doc

    工程技术承包合同[示范文本].doc

Global site tag (gtag.js) - Google Analytics