`

排序复习

阅读更多
package algorithms;

/**
* @author
*
*/
public abstract class Sorter<E extends Comparable<E>> {
   
    public abstract void sort(E[] array,int from ,int len);
   
    public final void sort(E[] array)
    {
        sort(array,0,array.length);
    }
    protected final void swap(E[] array,int from ,int to)
    {
        E tmp=array[from];
        array[from]=array[to];
        array[to]=tmp;
    }

}
一 插入排序
该算法在数据规模小的时候十分高效,该算法每次插入第K+1到前K个有序数组中一个合适位置,K从0开始到N-1,从而完成排序:
package algorithms;
/**
* @author yovn
*/
public class InsertSorter<E extends Comparable<E>> extends Sorter<E> {

    /* (non-Javadoc)
     * @see algorithms.Sorter#sort(E[], int, int)
     */
    public void sort(E[] array, int from, int len) {
         E tmp=null;
          for(int i=from+1;i<from+len;i++)
          {
              tmp=array[i];
              int j=i;
              for(;j>from;j--)
              {
                  if(tmp.compareTo(array[j-1])<0)
                  {
                      array[j]=array[j-1];
                  }
                  else break;
              }
              array[j]=tmp;
          }
    }
       
   

}

二 冒泡排序
这可能是最简单的排序算法了,算法思想是每次从数组末端开始比较相邻两元素,把第i小的冒泡到数组的第i个位置。i从0一直到N-1从而完成排序。(当然也可以从数组开始端开始比较相邻两元素,把第i大的冒泡到数组的第N-i个位置。i从0一直到N-1从而完成排序。)

package algorithms;

/**
* @author yovn
*
*/
public class BubbleSorter<E extends Comparable<E>> extends Sorter<E> {

    private static  boolean DWON=true;
   
    public final void bubble_down(E[] array, int from, int len)
    {
        for(int i=from;i<from+len;i++)
        {
            for(int j=from+len-1;j>i;j--)
            {
                if(array[j].compareTo(array[j-1])<0)
                {
                    swap(array,j-1,j);
                }
            }
        }
    }
   
    public final void bubble_up(E[] array, int from, int len)
    {
        for(int i=from+len-1;i>=from;i--)
        {
            for(int j=from;j<i;j++)
            {
                if(array[j].compareTo(array[j+1])>0)
                {
                    swap(array,j,j+1);
                }
            }
        }
    }
    @Override
    public void sort(E[] array, int from, int len) {
       
        if(DWON)
        {
            bubble_down(array,from,len);
        }
        else
        {
            bubble_up(array,from,len);
        }
    }
   
}

三,选择排序
选择排序相对于冒泡来说,它不是每次发现逆序都交换,而是在找到全局第i小的时候记下该元素位置,最后跟第i个元素交换,从而保证数组最终的有序。
相对与插入排序来说,选择排序每次选出的都是全局第i小的,不会调整前i个元素了。
package algorithms;
/**
* @author yovn
*
*/
public class SelectSorter<E extends Comparable<E>> extends Sorter<E> {

    /* (non-Javadoc)
     * @see algorithms.Sorter#sort(E[], int, int)
     */
    @Override
    public void sort(E[] array, int from, int len) {
        for(int i=0;i<len;i++)
        {
            int smallest=i;
            int j=i+from;
            for(;j<from+len;j++)
            {
                if(array[j].compareTo(array[smallest])<0)
                {
                    smallest=j;
                }
            }
            swap(array,i,smallest);
                  
        }

    }

}
四 Shell排序
Shell排序可以理解为插入排序的变种,它充分利用了插入排序的两个特点:
1)当数据规模小的时候非常高效
2)当给定数据已经有序时的时间代价为O(N)
所以,Shell排序每次把数据分成若个小块,来使用插入排序,而且之后在这若个小块排好序的情况下把它们合成大一点的小块,继续使用插入排序,不停的合并小块,知道最后成一个块,并使用插入排序。

这里每次分成若干小块是通过“增量” 来控制的,开始时增量交大,接近N/2,从而使得分割出来接近N/2个小块,逐渐的减小“增量“最终到减小到1。

一直较好的增量序列是2^k-1,2^(k-1)-1,.....7,3,1,这样可使Shell排序时间复杂度达到O(N^1.5)
所以我在实现Shell排序的时候采用该增量序列
package algorithms;

/**
* @author yovn
*/
public class ShellSorter<E extends Comparable<E>> extends Sorter<E>  {

    /* (non-Javadoc)
     * Our delta value choose 2^k-1,2^(k-1)-1,.7,3,1.
     * complexity is O(n^1.5)
     * @see algorithms.Sorter#sort(E[], int, int)
     */
    @Override
    public void sort(E[] array, int from, int len) {
       
        //1.calculate  the first delta value;
        int value=1;
        while((value+1)*2<len)
        {
            value=(value+1)*2-1;
       
        }
   
        for(int delta=value;delta>=1;delta=(delta+1)/2-1)
        {
            for(int i=0;i<delta;i++)
            {
                modify_insert_sort(array,from+i,len-i,delta);
            }
        }

    }
   
    private final  void modify_insert_sort(E[] array, int from, int len,int delta) {
          if(len<=1)return;
          E tmp=null;
          for(int i=from+delta;i<from+len;i+=delta)
          {
              tmp=array[i];
              int j=i;
              for(;j>from;j-=delta)
              {
                  if(tmp.compareTo(array[j-delta])<0)
                  {
                      array[j]=array[j-delta];
                  }
                  else break;
              }
              array[j]=tmp;
          }

    }
}

五 快速排序
快速排序是目前使用可能最广泛的排序算法了。
一般分如下步骤:
1)选择一个枢纽元素(有很对选法,我的实现里采用去中间元素的简单方法)
2)使用该枢纽元素分割数组,使得比该元素小的元素在它的左边,比它大的在右边。并把枢纽元素放在合适的位置。
3)根据枢纽元素最后确定的位置,把数组分成三部分,左边的,右边的,枢纽元素自己,对左边的,右边的分别递归调用快速排序算法即可。
快速排序的核心在于分割算法,也可以说是最有技巧的部分。
package algorithms;

/**
* @author yovn
*
*/
public class QuickSorter<E extends Comparable<E>> extends Sorter<E> {

    /* (non-Javadoc)
     * @see algorithms.Sorter#sort(E[], int, int)
     */
    @Override
    public void sort(E[] array, int from, int len) {
        q_sort(array,from,from+len-1);
    }

   
    private final void q_sort(E[] array, int from, int to) {
        if(to-from<1)return;
        int pivot=selectPivot(array,from,to);

       
       
        pivot=partion(array,from,to,pivot);
       
        q_sort(array,from,pivot-1);
        q_sort(array,pivot+1,to);
       
    }


    private int partion(E[] array, int from, int to, int pivot) {
        E tmp=array[pivot];
        array[pivot]=array[to];//now to's position is available
       
        while(from!=to)
        {
            while(from<to&&array[from].compareTo(tmp)<=0)from++;
            if(from<to)
            {
                array[to]=array[from];//now from's position is available
                to--;
            }
            while(from<to&&array[to].compareTo(tmp)>=0)to--;
            if(from<to)
            {
                array[from]=array[to];//now to's position is available now
                from++;
            }
        }
        array[from]=tmp;
        return from;
    }


    private int selectPivot(E[] array, int from, int to) {
   
        return (from+to)/2;
    }

}
分享到:
评论

相关推荐

Global site tag (gtag.js) - Google Analytics