`
zcy860511
  • 浏览: 20692 次
  • 性别: Icon_minigender_1
  • 来自: 重庆
社区版块
存档分类
最新评论

自己写了一个JsonLib

阅读更多
自己写了一个Json的编码器和解码器
下面的地址是对比用的json-lib项目
http://json-lib.sourceforge.net/
下面是部分测试比较
/*
 * Copyright 2010 Sandy Zhang
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
 * use this file except in compliance with the License. You may obtain a copy of
 * the License at
 * 
 * http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations under
 * the License.
 */

/**
 * 
 */
package org.javazone.jroi.framework.coder;

import net.sf.json.JSONObject;

import org.javazone.jroi.framework.coder.json.JsonValue;
import org.javazone.jroi.framework.coder.json.encode.DefaultJsonEncoder;

/**
 * @author Sandy Zhang
 */
public class JsonTest
{
	public static void main(String[] args)
	{

		TestBean tb = null;
		DefaultJsonEncoder encoder = new DefaultJsonEncoder();
		for (int i = 0; i < 100; i++)
		{
			tb = new TestBean();
			JSONObject.fromObject(tb);
			encoder.encodeBean(tb).toJsonString();
		}
		int count = 10000;
		tb = tb.init();
		// 以上代码为预热代码

		double a = System.currentTimeMillis();
		for (int i = 0; i < count; i++)
		{
			JSONObject.fromObject(tb);
		}
		double c1 = System.currentTimeMillis() - a;
		// 以上为JSON_LIB编码。。。先不论其编码架构怎么样
		a = System.currentTimeMillis();
		for (int i = 0; i < count; i++)
		{
			new DefaultJsonEncoder().encodeBean(tb).toJsonString();
		}
		double c2 = System.currentTimeMillis() - a;
		// 以上为我自己写的Json_encoder
		System.out.println("test count = " + count);
		System.out.println("JSON ENCODER use time : " + c1 + " ms");
		System.out.println("JROI_JSON ENCODER use time : " + c2 + " ms");
		System.out.println("(JROI_JSON is faster than JSON_LIB)rate : "
				+ ((c1 / c2) - 1) * 100 + "%");
		System.out.println();
		// 下面是一次调用的微毫秒级别的比较
		a = System.nanoTime();
		JSONObject o1 = JSONObject.fromObject(tb);
		double c = System.nanoTime() - a;
		System.out.println("JSON_LIB run once use time " + c + " ns");
		a = System.nanoTime();
		JsonValue o2 = new DefaultJsonEncoder().encodeBean(tb);
		c = System.nanoTime() - a;
		System.out.println("JROI_JSON run once use time " + c + " ns");
	}
}

下面是测试结果
test count = 10
JSON ENCODER use time : 46.0 ms
JROI_JSON ENCODER use time : 16.0 ms
(JROI_JSON is faster than JSON_LIB)rate : 187.5%

JSON_LIB run once use time 2517448.0 ns
JROI_JSON run once use time 977297.0 ns

test count = 100
JSON ENCODER use time : 199.0 ms
JROI_JSON ENCODER use time : 93.0 ms
(JROI_JSON is faster than JSON_LIB)rate : 113.9784946236559%

JSON_LIB run once use time 731587.0 ns
JROI_JSON run once use time 517284.0 ns

test count = 1000
JSON ENCODER use time : 664.0 ms
JROI_JSON ENCODER use time : 663.0 ms
(JROI_JSON is faster than JSON_LIB)rate : 0.15082956259426794%

JSON_LIB run once use time 392889.0 ns
JROI_JSON run once use time 405821.0 ns

test count = 10000
JSON ENCODER use time : 4335.0 ms
JROI_JSON ENCODER use time : 6089.0 ms
(JROI_JSON is faster than JSON_LIB)rate : -28.806043685334203%

JSON_LIB run once use time 452007.0 ns
JROI_JSON run once use time 406438.0 ns

test count = 100000
JSON ENCODER use time : 42517.0 ms
JROI_JSON ENCODER use time : 71011.0 ms
(JROI_JSON is faster than JSON_LIB)rate : -40.126177634451%

JSON_LIB run once use time 389195.0 ns
JROI_JSON run once use time 516668.0 ns

首先,预热是相同的,应该不存在误差

因为我使用了许多对象,所以在大量创建对象的情况下,我的效率将被降低,因为JVM的垃圾回收机制
但是在一万次一下的比较中,我的编码程序占据优势,我相信很少情况有大于一千个对象被编码为Json字符串

比较客观的比较应该在100次比较的位置,我也尝试过编写简单的Bean进行测试,我的编码器同样占据速度上的优势,OK,我们看解码

我的结果是生成Map,然后通过接口传递到Handler中进行下一步处理,这样可以将算法与处理进行分离

/*
 * Copyright 2010 Sandy Zhang
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
 * use this file except in compliance with the License. You may obtain a copy of
 * the License at
 * 
 * http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations under
 * the License.
 */

/**
 * 
 */
package org.javazone.jroi.framework.coder;

import java.util.Map;

import net.sf.json.JSONObject;

import org.javazone.jroi.framework.coder.json.JsonObject;
import org.javazone.jroi.framework.coder.json.decode.analyze.AnalyzeEvent;
import org.javazone.jroi.framework.coder.json.decode.analyze.AnalyzeHandler;
import org.javazone.jroi.framework.coder.json.decode.analyze.JsonAnalyzer;

/**
 * @author Sandy Zhang
 */
public class DecodeTest
{
	public static class TestAnalyzeHandler
		implements AnalyzeHandler
	{

		@Override
		public void endAnalyze(AnalyzeEvent e)
		{
			// Map<String, Object> map = (Map<String, Object>) e.getResult();
			// System.out.println(map.get("name"));
			// Object[] objs = (Object[]) map.get("subBeans");
			// System.out.println(objs.length);
			// for (Object object : objs)
			// {
			// System.out.println(object);
			// }
		}

		@Override
		public void startAnalyze(AnalyzeEvent e)
		{
			// System.out.println("start");
		}
	}

	public static void main(String[] args)
	{
		for (int i = 0; i < 5; i++)
		{

			JsonAnalyzer analyzer = new JsonAnalyzer();
			analyzer.addAnalyzeHandler(new TestAnalyzeHandler());
			JsonEncoder encoder = Coder.newJsonEncoder();
			JsonObject jsonObj =
					(JsonObject) encoder.encodeBean(new TestBean().init());

			String jsonStr = jsonObj.toJsonString();
			JSONObject.fromObject(jsonStr);
			// System.out.println(jsonStr);
			analyzer.analyze(jsonStr);
		}
		// 预热代码
		int count = 10;

		JsonEncoder encoder = Coder.newJsonEncoder();
		JsonObject jsonObj =
				(JsonObject) encoder.encodeBean(new TestBean().init());

		String jsonStr = jsonObj.toJsonString();
		// 产生
		long a = System.currentTimeMillis();
		for (int i = 0; i < count; i++)
		{
			JsonAnalyzer analyzer = new JsonAnalyzer();
			analyzer.addAnalyzeHandler(new TestAnalyzeHandler());
			analyzer.analyze(jsonStr);
		}
		long b = System.currentTimeMillis();
		System.out.println(b - a);
		// 以上为我自己写的解码器

		a = System.currentTimeMillis();
		for (int i = 0; i < count; i++)
		{
			JSONObject.fromObject(jsonStr);
		}
		b = System.currentTimeMillis();
		System.out.println(b - a);
		// 以上为Json lib 解码方法
	}
}

这是10次的结果
21
102

这是100次的结果
139
467

这是1000次的结果
484
3450

这是10000次的结果
4217
39873

10万次,我不愿意比较了。。。。。。这个已经能够说明问题了。。

当然,不要指望net.sf.json.JSONObject工具会帮助你解码的很完善,fromObject出来的一样是map甚至是他自己创建的结构,并且不支持单一对象的编解码。
例如简单的字符串,比如我不发送对象,只是一个字符串,那么它就做不到,只会给你抛出一个异常。
不知道有人用这个工具包没有,至少我发现这个工具包很差,所以不得已自己写工具包

其次。。。也就是他的toBean方法,在处理泛型的时候不可能转换为确定的类型。

例如:TestBean里有一个List,装载的是SubBean,那么它不会很智能的给你转换为SubBean而是转换为了他自己的Bean,当你使用这个TestBean里的List的时候就等着java.lang.ClassCastException吧Orz.....

下面我把源码包发上来
----------------------------------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------------------------------
v1是最新版本

看来编程是白学了。。。居然有个BUG,大家如果愿意用的话帮我找找,看还有BUG没有,我已经审查了算法很多遍了。。。

下面是一个例子,怎么用的例子
package org.javazone.jroi.framework.coder;

import java.util.ArrayList;
import java.util.Collection;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

public class TestBean
{

	private Collection<TestSubBean> beans = new ArrayList<TestSubBean>();

	public Collection<TestSubBean> getBeans()
	{
		return beans;
	}

	public void setBeans(Collection<TestSubBean> beans)
	{
		this.beans = beans;
	}

	public Set<TestSubBean> getTestSet()
	{
		return testSet;
	}

	public void setTestSet(Set<TestSubBean> testSet)
	{
		this.testSet = testSet;
	}

	public TestSubBean getTestSubBean()
	{
		return testSubBean;
	}

	public void setTestSubBean(TestSubBean testSubBean)
	{
		this.testSubBean = testSubBean;
	}

	public List<TestSubBean> getList()
	{
		return list;
	}

	public void setList(List<TestSubBean> list)
	{
		this.list = list;
	}

	private Set<TestSubBean> testSet = new HashSet<TestSubBean>();

	private TestSubBean testSubBean = new TestSubBean();

	private List<TestSubBean> list = new ArrayList<TestSubBean>();

	public TestBean init()
	{
		beans.add(new TestSubBean());
		testSet.add(new TestSubBean());
		list.add(new TestSubBean());
		return this;
	}

}

/*
 * Copyright 2010 Sandy Zhang
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
 * use this file except in compliance with the License. You may obtain a copy of
 * the License at
 * 
 * http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations under
 * the License.
 */

/**
 * 
 */
package org.javazone.jroi.framework.coder;

public class TestSubBean
{
	private static int currentid = 0;

	private String testString =
			"this is my sub bean : id = " + Integer.toString(++currentid);

	private String testNull = null;

	private Integer intTest = Integer.MAX_VALUE;

	private Long longTest = Long.MAX_VALUE;

	private Double doubleObjectTest = Double.MAX_VALUE;

	private Float floatObjectTest = Float.MAX_VALUE;

	public void setTestNull(String testNull)
	{
		this.testNull = testNull;
	}

	public String getTestNull()
	{
		return testNull;
	}

	public void setIntTest(Integer intTest)
	{
		this.intTest = intTest;
	}

	public Integer getIntTest()
	{
		return intTest;
	}

	public void setLongTest(Long longTest)
	{
		this.longTest = longTest;
	}

	public Long getLongTest()
	{
		return longTest;
	}

	public void setDoubleObjectTest(Double doubleObjectTest)
	{
		this.doubleObjectTest = doubleObjectTest;
	}

	public Double getDoubleObjectTest()
	{
		return doubleObjectTest;
	}

	public void setFloatObjectTest(Float floatObjectTest)
	{
		this.floatObjectTest = floatObjectTest;
	}

	public Float getFloatObjectTest()
	{
		return floatObjectTest;
	}

	public void setTestString(String testString)
	{
		this.testString = testString;
	}

	public String getTestString()
	{
		return testString;
	}

}

/*
 * Copyright 2010 Sandy Zhang
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
 * use this file except in compliance with the License. You may obtain a copy of
 * the License at
 * 
 * http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations under
 * the License.
 */

/**
 * 
 */
package org.javazone.jroi.framework.coder;

import java.util.Arrays;

/**
 * @author Sandy Zhang
 */
public class JsonTest
{
	public static void main(String[] args)
	{
		JsonEncoder encoder = Coder.newJsonEncoder();
		String jsonString = encoder.encodeBean(new TestBean().init()).toJsonString();
		System.out.println(jsonString);
		JsonDecoder decoder = Coder.newJsonDecoder();
		TestBean bean =
				(TestBean) decoder.decodeBean(jsonString, TestBean.class);
		System.out.println(bean.getTestSubBean().getTestNull());
		System.out.println(bean.getTestSubBean().getTestString());
		System.out.println(bean.getTestSubBean().getDoubleObjectTest());
		System.out.println(bean.getTestSubBean().getFloatObjectTest());
		System.out.println(bean.getTestSubBean().getIntTest());
		System.out.println(bean.getTestSubBean().getLongTest());
		System.out.println(Arrays.toString(bean.getList().toArray()));
		System.out.println(Arrays.toString(bean.getTestSet().toArray()));
		System.out.println(Arrays.toString(bean.getList().toArray()));

	}
}

{"beans":[{"longTest":9223372036854775807,"floatObjectTest":3.4028235E38,"intTest":2147483647,"testString":"this is my sub bean : id = 2","doubleObjectTest":1.7976931348623157E308,"testNull":null}],"testSubBean":{"longTest":9223372036854775807,"floatObjectTest":3.4028235E38,"intTest":2147483647,"testString":"this is my sub bean : id = 1","doubleObjectTest":1.7976931348623157E308,"testNull":null},"list":[{"longTest":9223372036854775807,"floatObjectTest":3.4028235E38,"intTest":2147483647,"testString":"this is my sub bean : id = 4","doubleObjectTest":1.7976931348623157E308,"testNull":null}],"testSet":[{"longTest":9223372036854775807,"floatObjectTest":3.4028235E38,"intTest":2147483647,"testString":"this is my sub bean : id = 3","doubleObjectTest":1.7976931348623157E308,"testNull":null}]}
null
this is my sub bean : id = 1
1.7976931348623157E308
3.4028235E38
2147483647
9223372036854775807
[org.javazone.jroi.framework.coder.TestSubBean@52fe85]
[org.javazone.jroi.framework.coder.TestSubBean@1e0cf70]
[org.javazone.jroi.framework.coder.TestSubBean@52fe85]


如果有大大愿意给小弟讲下架构就太好了。。。因为我最后发现最开始版本的Handler没用,我也考虑使用Builder模式在算法过程中使用Builder进行对象数组创建,但是都失败了,因为这个问题是个递归问题,递归在栈上不好做文章,确实要考虑就真的只有换非递归算法才能更好的使用设计模式里的算法分离了。。。。哎

至于效率,我也没测试了,看了jackson的实现后,我深深的自卑了
分享到:
评论
21 楼 lbfhappy 2010-02-08  
其实没有必要自己发明一个轮子啊,原来的功能不是挺好用的吗
20 楼 liu0013 2010-02-07  
最近做一个东西也用到了json,最后选择了jackson json性能确实比较好,但还没来得及看源码,请详细说下其性能好的原因么?
19 楼 gstarwd 2010-02-06  
zcy860511 写道
yefeng 写道
楼主,你的JSON,还是基于JAVA的反射写的吗,我觉得JSON快慢的瓶颈应该在反射这快,JAVA的反射很慢的

有更好的提议么?似乎动态性只能用反射吧?
我的慢应该是递归的问题。。。
算法木学好


用动态规划 试试
18 楼 johnson.lee 2010-02-06  
zcy860511 写道
修改了两个BUG。。。。
看来我2年多白学了。。。。。。

上面的文件是最新的

效率,我也不敢保证了,至少没发现一个很好的方法去判断一个的Class类是否属于一个Collection的子类或子接口,所以使用了递归的方式。。。确实效率没保证啊。。。哎

至于那个反射的速度问题。。。我也不好说什么。。反射本来就慢,这点毫无疑问


判断一个Class是否属于一个Collection的或子接口,用instanceof不就行了?
例如:
List list = new ArrayList();
if (list instanceof Collection) {
    //todo something
}


还有一种方式,
List list = new ArrayList();
if (Collection.class.isAssignableFrom(list.getClass()) {
    //todo something
}

17 楼 hjg1988 2010-02-06  
关于json-lib和jackson的比较,我这里有个简单的测试,楼主也可以看一下。。。
http://www.iteye.com/topic/561368
jackson效率确实很高,而且很好用,不像json-lib反序列化的还是自己的结构。
可以去研究研究jackson的源码
15 楼 zcy860511 2010-02-05  
yefeng 写道
楼主,你的JSON,还是基于JAVA的反射写的吗,我觉得JSON快慢的瓶颈应该在反射这快,JAVA的反射很慢的

有更好的提议么?似乎动态性只能用反射吧?
我的慢应该是递归的问题。。。
算法木学好
14 楼 zcy860511 2010-02-05  
修改了两个BUG。。。。
看来我2年多白学了。。。。。。

上面的文件是最新的

效率,我也不敢保证了,至少没发现一个很好的方法去判断一个的Class类是否属于一个Collection的子类或子接口,所以使用了递归的方式。。。确实效率没保证啊。。。哎

至于那个反射的速度问题。。。我也不好说什么。。反射本来就慢,这点毫无疑问
13 楼 RednaxelaFX 2010-02-04  
纯粹出于好奇:请问楼主能否把顶楼里第一个测时的代码的顺序换一下,就是说先跑DefaultJsonEncoder再跑JSONObject,也拿来比较一下?想看看这样在楼主的环境里得到的输出如何。

另外还想看看楼主的测试环境中使用-server之后的性能比较。最近我写了个东西,觉得对性能不满意,然后做了一点“改进”,结果在client模式上性能显著提升,但在server模式上性能却显著下降,让我郁闷得不行。到现在都还没分析清楚到底是怎么回事……
12 楼 andot 2010-02-04  
kjj 写道
我一直用gson1.4楼主测了吗


gson 是最慢的。下面是它跟其他几种序列化的效率比较:

                           Object create       Serialize     Same Object     Deserialize      Total Time Serialized Size
hprose                         201.41821      7205.74650      6612.54050     11117.96050     18323.70700        533
hessian                        202.71568      8752.81950      7708.42500     14302.63700     23055.45650        526
php                            200.86843     34505.29950     33871.77200     19037.86800     53543.16750        755
java                           200.71633     12600.34350     11281.97850     55721.38500     68321.72850        919
json/google-gson               203.92885    279103.18900    279887.89850    327122.74450    606225.93350        470


其中上表中各个版本如下:
hprose 是 1.0 版本
hessian 是 4.0.1 版本
php 是 phprpc 3.0 版本
java 是 6.0 内置序列化
json/google-gson 是 gson 1.4 版本。

gson 慢的不是一个数量级的问题。
11 楼 yefeng 2010-02-04  
楼主,你的JSON,还是基于JAVA的反射写的吗,我觉得JSON快慢的瓶颈应该在反射这快,JAVA的反射很慢的
10 楼 wendal 2010-02-04  
其实是有办法获取泛型信息的.
9 楼 zcy860511 2010-02-04  
kjj 写道
我一直用gson1.4楼主测了吗

没有测试过。。。你可以自己下载代码测测
8 楼 kjj 2010-02-04  
我一直用gson1.4楼主测了吗
7 楼 zcy860511 2010-02-04  
johnson.lee 写道
我自己也写了一个JSON LIB

源码:http://johnson-lee.iteye.com/blog/586686

看了楼主的Code,觉得用Handler这个接口,体现了设计模式的思想,不过个人觉得在使用的时候没有把这种思想发挥到极至。不知道楼主写JSON LIB的思想源于哪里?想和楼主探讨一下。

先说我一下我的思想,我是根据编译原理的思想来实现我的JSON LIB,分为Lexer和Parser,Parser驱动Lexer进行词法分析,然后对Lexer读取到的Token根据上下文进行语法检查。

还有一个C#实现
http://johnson-lee.iteye.com/blog/586715
基本上和Java实现差不多,只不过加了C#的索引器和属性,使得用起来更像JSON

其实我也在设计这一块是个菜鸟,很多时候都会犯00原则错误,但是在编码过程中也渐渐体会到了应该怎么写,只是复用性上还比较差所以也在继续学习,写框架的目的就是为了更好的学习架构,学习如何写好代码。
例如:看到别人用DAO我就用DAO,这样的方式不好
第一是不知道为什么用DAO,用DAO有什么好处,毕竟还在学习阶段不是高效出产品的时候。
第二是老学别人的,我们自己的思考方式就被僵化了,所以我也很少考虑怎么套用设计模式而是自己设计接口自己设计类间关系,这样才可以提升自己

呵呵,鄙人有个不大不小的梦想就是某天当一个架构师,至于能不能实现就不奢望了,个人觉得不后悔就好
6 楼 zcy860511 2010-02-04  
大概看了一下jackson,他的效率高主要高在树状生成,而没有使用对象的方式生成字符串,读取的过程也没有analyze这个过程,而是直接生成了目标对象,没有了编译原理上的二次处理,所以他快,最初我也考虑过这种写法,但是我本来就不是搞算法的,想学习学习架构,所以就这样设计了这个解析器
5 楼 zcy860511 2010-02-04  
jackson
gof95 写道
和jackson相比呢?这个是目前最快的

jackson,这个序列化已经进行了比较,他的效率的确很高,我去研究研究
4 楼 zcy860511 2010-02-04  
jackson
johnson.lee 写道
我自己也写了一个JSON LIB

源码:http://johnson-lee.iteye.com/blog/586686

看了楼主的Code,觉得用Handler这个接口,体现了设计模式的思想,不过个人觉得在使用的时候没有把这种思想发挥到极至。不知道楼主写JSON LIB的思想源于哪里?想和楼主探讨一下。

先说我一下我的思想,我是根据编译原理的思想来实现我的JSON LIB,分为Lexer和Parser,Parser驱动Lexer进行词法分析,然后对Lexer读取到的Token根据上下文进行语法检查。

还有一个C#实现
http://johnson-lee.iteye.com/blog/586715
基本上和Java实现差不多,只不过加了C#的索引器和属性,使得用起来更像JSON

想要写这个是因为发现dwr的一些不足之后要自己动手做一个JROI(javascript remote object invoker),但是在写JROI的过程中序列化的时候出现了问题

至于编译原理的思想我考虑过,还是复用性,毕竟编译也会有变化,所以才这样设计
3 楼 gof95 2010-02-04  
和jackson相比呢?这个是目前最快的
2 楼 johnson.lee 2010-02-04  
我自己也写了一个JSON LIB

源码:http://johnson-lee.iteye.com/blog/586686

看了楼主的Code,觉得用Handler这个接口,体现了设计模式的思想,不过个人觉得在使用的时候没有把这种思想发挥到极至。不知道楼主写JSON LIB的思想源于哪里?想和楼主探讨一下。

先说我一下我的思想,我是根据编译原理的思想来实现我的JSON LIB,分为Lexer和Parser,Parser驱动Lexer进行词法分析,然后对Lexer读取到的Token根据上下文进行语法检查。

还有一个C#实现
http://johnson-lee.iteye.com/blog/586715
基本上和Java实现差不多,只不过加了C#的索引器和属性,使得用起来更像JSON

相关推荐

    19考试真题最近的t44.txt

    19考试真题最近的t44.txt

    清华大学第三弹:普通人如何抓住DeepSeek红利.pdf

    清华大学第三弹:普通人如何抓住DeepSeek红利

    Python环境下的滚动轴承故障诊断优化算法:基于改进WDCNN的一维卷积神经网络与LSTM融合的时序信号处理研究,Python环境中基于改进WDCNN与LSTM融合的滚动轴承故障诊断方法研究-优化

    Python环境下的滚动轴承故障诊断优化算法:基于改进WDCNN的一维卷积神经网络与LSTM融合的时序信号处理研究,Python环境中基于改进WDCNN与LSTM融合的滚动轴承故障诊断方法研究——优化卷积核大小,提升诊断准确率并加速收敛速度的应用,Python环境下一种基于WDCNN的滚动轴承故障诊断方法 算法采用pytorch深度学习模块,对WDCNN进行改进,搭建了卷积核大小逐层递减的一维卷积神经网络,并减少了卷积层数量,达到了98%以上的诊断准确率,同时有着较快的收敛速度。 另外,针对时序信号的特点,将长短时记忆网络(LSTM)与搭建的一维卷积神经网络结合,提高分类准确率至99%以上,但收敛速度较单一的卷积神经网络较慢。 算法可迁移至金融时间序列,地震信号,语音信号,声信号,生理信号(ECG,EEG,EMG)等一维时间序列信号。 ,基于WDCNN的故障诊断方法; 卷积神经网络; 算法改进; 高诊断准确率; 收敛速度快; LSTM结合; 一维时间序列信号; 金融、地震、语音、生理信号诊断,Python下改进WDCNN的滚动轴承故障诊断法:深度学习提升诊断准确率与收敛速度

    基于遗传算法优化的机器学习模型分类预测与回归分析技术概览:SVM、LSTM等算法应用,遗传算法优化机器学习模型在分类、回归与时序预测中的应用(支持SVM、RF等)matlab代码实践,遗传算法优化用于

    基于遗传算法优化的机器学习模型分类预测与回归分析技术概览:SVM、LSTM等算法应用,遗传算法优化机器学习模型在分类、回归与时序预测中的应用(支持SVM、RF等)matlab代码实践,遗传算法优化用于分类 回归 时序预测 遗传算法优化支持向量机SVM,最小二乘支持向量机LSSVM,随机森林RF,极限学习机ELM,核极限学习机KELM,深度极限学习机DELM,BP神经网络,长短时记忆网络 LSTM,Bilstm,GRU,深度置信网络 DBN,概率神经网络PNN,广义神经网络GRNN..... 以上有分类预测回归预测时序预测 matlab代码,可直接替数据使用,简单操作易上手。 ,遗传算法优化; 分类预测; 回归预测; 时序预测; 支持向量机SVM; 最小二乘支持向量机LSSVM; 随机森林RF; 极限学习机ELM; 深度极限学习机DELM; 神经网络操作; Matlab代码,遗传算法优化多种机器学习模型在分类、回归与时序预测中的应用

    《多元系列污水处理及石油化工设备三维模型库:可编辑装配体与零部件模型集》,优质专业设备模型集萃:90套管道设备、石油化工与污水处理设备三维模型,可编辑修改尺寸,装配体模型与零部件一应俱全,共90套左右

    《多元系列污水处理及石油化工设备三维模型库:可编辑装配体与零部件模型集》,优质专业设备模型集萃:90套管道设备、石油化工与污水处理设备三维模型,可编辑修改尺寸,装配体模型与零部件一应俱全,共90套左右各类污水处理设备三维模型,管道设备三维模型,石油化工设备三维模型。 sw打开,大部分是可以编辑修改尺寸的。 有装配体模型,有零部件模型。 ,污水处理设备模型; 管道设备模型; 石油化工设备模型; 可编辑修改尺寸; 装配体模型; 零部件模型。,90套污水处理与石油化工设备三维模型库:可编辑装配体与零部件模型大全

    2023-04-06-项目笔记 - 第四百一十八阶段 - 4.4.2.416全局变量的作用域-416 -2025.02.23

    2023-04-06-项目笔记-第四百一十八阶段-课前小分享_小分享1.坚持提交gitee 小分享2.作业中提交代码 小分享3.写代码注意代码风格 4.3.1变量的使用 4.4变量的作用域与生命周期 4.4.1局部变量的作用域 4.4.2全局变量的作用域 4.4.2.1全局变量的作用域_1 4.4.2.416局变量的作用域_416- 2025-02-23

    **基于主从博弈算法的电热综合能源系统动态定价与能量管理:深度创新与高效求解的MATLAB代码实现**,MATLAB代码:基于主从博弈算法的电热综合能源系统智能动态定价与高效能量管理策略研究,MATL

    **基于主从博弈算法的电热综合能源系统动态定价与能量管理:深度创新与高效求解的MATLAB代码实现**,MATLAB代码:基于主从博弈算法的电热综合能源系统智能动态定价与高效能量管理策略研究,MATLAB代码:基于主从博弈的电热综合能源系统动态定价与能量管理 关键词:主从博弈 电热综合能源 动态定价 能量管理 参考文档:自编文档,完全复现 仿真平台:MATLAB 平台 优势:代码具有一定的深度和创新性,注释清晰,非烂大街的代码,非常精品 主要内容:代码主要做的是电热综合能源系统的动态定价问题,采用是主从博弈方法,上领导者问题上,以综合能源系统整体的收益作为目标函数,考虑电价以及热价等相关约束,在下层跟随者模型上,以用户用能满意度最高为目标函数,构建了领导者-跟随者Stackelberg博弈模型,同时还考虑了系统的功率平衡条件以及热能平衡条件等约束,模型的上层求解采用粒子群算法,下层求解采用CPLEX求解器,考虑该代码具有一定的创新性,适合新手学习以及在此基础上进行拓展,代码质量非常高 ,主从博弈; 电热综合能源; 动态定价; 能量管理; Stackelberg博弈模型; 粒子群算

    群辉引导7.2.2 最新 vmware workstation 已经帮忙转换好为vmdk文件 直接使用就可以

    修复 "保存'/opt/rr'的修改" 后 主菜单锁死问题. 修复 trivial 插件的语法错误. 修复 open-vm-tools 套件 缺失的 SOCKETS 驱动. 添加 vmtools 插件, 包含 qemu-ga & open-vm-tools. 4.1. 该插件会自动判断环境并启用对应的功能, 物理机也不用刻意删除该插件. 4.2. 新安装用户会默认选中, 升级用户如需要请手动添加该插件. 4.3. 如启用该插件, 请不要再在系统中安装套件. 修复 wireless 插件. 5.1. 修复 RR 下无线网络 IP 显示和刷新问题. 5.2. 修复 RR 下设置 SSID&PSK 后 DSM 下不驱动的问题. 5.3. 同步 RR 下的 SSID&PSK 到 DSM 下. 5.4. 修复 junior 模式下无线网络的支持, 已支持 无线网卡的 DSM 系统安装. (暂时不支持 intel 无线网卡) 5.5. wpa_supplicant.conf 文件位于引导盘第一个分区根目录, 纯无线环境可手动放置该文件后其启动引导.

    培训课件 -我是如何教创新创业及职涯设计课.pptx

    培训课件 -我是如何教创新创业及职涯设计课.pptx

    流量专网售前5G解决方案模板.docx

    流量专网售前5G解决方案模板.docx

    Simulink仿真模型下的混合储能控制器设计:实现功率分配、SOC均衡与高精度电流控制及母线电压补偿策略,Simulink仿真模型下的混合储能控制器设计:实现功率分配、SOC均衡与高精度电流控制及母

    Simulink仿真模型下的混合储能控制器设计:实现功率分配、SOC均衡与高精度电流控制及母线电压补偿策略,Simulink仿真模型下的混合储能控制器设计:实现功率分配、SOC均衡与高精度电流控制及母线电压补偿,储能控制器,simulink仿真模型。 采用下垂控制实现蓄电池超级电容构成的混合储能功率分配、SOC均衡控制、考虑线路阻抗情况下提高电流分配精度控制、母线电压补控制。 ,核心关键词: 1. 储能控制器 2. 下垂控制 3. 混合储能功率分配 4. SOC均衡控制 5. 线路阻抗 6. 电流分配精度控制 7. 母线电压补控制 用分号分隔的关键词结果为: 储能控制器;下垂控制;混合储能功率分配;SOC均衡控制;线路阻抗;电流分配精度控制;母线电压补控制,基于Simulink仿真的混合储能系统:下垂控制与SOC均衡策略研究

    19考试真题最近的t38.txt

    19考试真题最近的t38.txt

    基于V2G技术的电动汽车实时调度策略:降低充电与网损成本,IEEE配电网验证,基于V2G技术的电动汽车实时调度策略:降低充电成本与网损的调度模型及算法实现,MATLAB代码:基于V2G技术的电动汽车实

    基于V2G技术的电动汽车实时调度策略:降低充电与网损成本,IEEE配电网验证,基于V2G技术的电动汽车实时调度策略:降低充电成本与网损的调度模型及算法实现,MATLAB代码:基于V2G技术的电动汽车实时调度策略 关键词:电动汽车 实时调度 V2G 网损 仿真平台:MATLAB YALMIP+CVX 主要内容:代码主要做的是基于V2G技术的电动汽车实时调度策略,请注意是实时调度策略而非日前调度策略,首先以降低充电成本和网损成本为目标,建立电动汽车调度模型。 然后通过构建网损灵敏度指标分析电网节点性能,基于电网负荷制定分时电价,通过潮流计算和凸优化算法实时求解得到电动汽车充放电策略。 最后以 IEEE 33 节点配电网为例验证了所提策略可以有效降低充电成本与网损成本。 基本实现文档中的算法,复现效果良好可靠 ,V2G技术; 实时调度策略; 网损; 充电成本; 优化算法; 潮流计算; 凸优化算法; IEEE 33节点配电网。,基于V2G技术的实时电动汽车调度策略:降低充电成本与网损的MATLAB仿真研究

    三菱PLC焊接机智能控制参考方案:含触摸屏程序、PLC程序、伺服定位与通信控制等全套解决方案,专为精准内外径圆环物料处理设计 ,三菱PLC焊接机智能控制参考方案:集成触摸屏程序、PLC编程、伺服控制与

    三菱PLC焊接机智能控制参考方案:含触摸屏程序、PLC程序、伺服定位与通信控制等全套解决方案,专为精准内外径圆环物料处理设计。,三菱PLC焊接机智能控制参考方案:集成触摸屏程序、PLC编程、伺服控制与通讯技术,实现精准焊接与数据闭环管理。,三菱PLC焊接机控制参考程序。 包含触摸屏程序,PLC程序,IO表,伺服参数,通讯协议参数。 该设备由24个伺服电机、1套焊接机、2套CCD、4套扫码枪、6套位移传感器组成,plc程序有注释里面fb块也没加密,电气控制采用三菱Q系列Q06UDV型CPU,内置以太网通过TCP IP形式与上位机CCD及扫码枪通讯,两套QD77MS16定位模块控制伺服,外加QJ71C24N用于与位移传感器通过ModBus RTU协议进行串口通讯获取数据,另外运用三菱MX Conpnonet软件与上位机通讯完成与客户MES系统闭环控制,OEE数据采集并上传至客户工厂云服务器系统。 该设备组装物料小件尺寸小,为内外径相差0.79mm(圆环宽度)的小圆环,料盘为8X10的矩阵料盘,吸取较难,因此PLC自写了一套算法,采用三点设定自动运算出80个点的XY坐标,吸取成功率达99%以

    基于node、MySql、react、reactNative、antDesign完成的一套大型订票系统(毕设&课设&实训&大作业&竞赛&项目)

    一个使用node、MySql、react、reactNative、antDesign完成的一套大型订票系统,其中服务端、数据库,网页订票端、手机订票端和网页管理台.zip项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用,资源为网络商品(电子资料类)基于网络商品和电子资料商品的性质和特征不支持退款

    RexVision 1.6.1机器视觉框架源码发布:基于C#与Halcon混合编程,适用于视觉检测与机械手定位等应用,插件式开发省时高效,RexVision 1.6.1机器视觉框架源码发布:基于C#与

    RexVision 1.6.1机器视觉框架源码发布:基于C#与Halcon混合编程,适用于视觉检测与机械手定位等应用,插件式开发省时高效,RexVision 1.6.1机器视觉框架源码发布:基于C#与Halcon混合编程,支持多种视觉应用与手眼标定,VS2019可直接编译使用,RexVision 1.6.1,C#+Halcon机器视觉框架源码, 到手vs2019可以直接编译、 视觉检测、AOI视觉检测、机械手定位、点胶机、插件机、激光切割机、视觉螺丝机、视觉贴合机、激光焊接机、视觉裁板机……, C#联合Halcon混合编程源码,插件式开发 ,带手眼标定,相机静止和运动,支持C#脚本…能让你站在巨人的肩膀上,节省重复造轮子的时间。 ,关键词:RexVision 1.6.1; Halcon机器视觉框架; C#联合Halcon混合编程; 视觉检测; AOI视觉检测; 机械手定位; 点胶机; 插件机; 激光切割机; 视觉螺丝机; 视觉贴合机; 激光焊接机; 视觉裁板机; 手眼标定; 相机静止和运动支持; C#脚本。,基于Halcon的C#机器视觉源码,插件式开发助力自动化设备升级

    适用于 .NET 的音频工具库 (ATL)

    ATL .NET 是一个完全原生的、易于使用的 C# 库,用于 .NET 和 Mono,可以从各种数字音频格式、播放列表和 CUE 表中读取数据。.zip

    基于Qt Widget + 3D模块开发的一款医学牙齿数据可视化软件.zip(毕设&课设&实训&大作业&竞赛&项目)

    项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用,资源为网络商品(电子资料类)基于网络商品和电子资料商品的性质和特征不支持退款,质量优质,放心下载使用

    MATLAB代码:电转气P2G与碳捕集设备在热电联供综合能源系统中的优化调度模型研究:融入碳交易机制的非线性模型高效求解 ,MATLAB环境下结合P2G技术与碳捕集设备的综合能源系统优化调度模型,包括

    MATLAB代码:电转气P2G与碳捕集设备在热电联供综合能源系统中的优化调度模型研究:融入碳交易机制的非线性模型高效求解。,MATLAB环境下结合P2G技术与碳捕集设备的综合能源系统优化调度模型,包括热电联产与低碳调度,借鉴碳交易机制实现高效求解。,MATLAB代码:考虑P2G和碳捕集设备的热电联供综合能源系统优化调度模型 注意:店铺内有大量考虑碳交易代码,欢迎咨询 关键词:碳捕集 综合能源系统 电转气P2G 热电联产 低碳调度 参考文档:《Modeling and Optimization of Combined Heat and Power with Power-to-Gas and Carbon Capture System in Integrated Energy System》完美复现 仿真平台:MATLAB yalmip+gurobi 主要内容:代码主要做的是一个考虑电转气P2G和碳捕集设备的热电联供综合能源系统优化调度模型,模型耦合CHP热电联产单元、电转气单元以及碳捕集单元,并重点考虑了碳交易机制,建立了综合能源系统运行优化模型,模型为非线性模型,采用yalmip

    风光储直流微电网Simulink仿真模型研究:扰动观察法与叶尖速比实现MPPT控制参考论文分享,储能控制器在风光储直流微电网Simulink仿真模型中的实现与应用:光伏发电、风力发电与储能系统集成研究

    风光储直流微电网Simulink仿真模型研究:扰动观察法与叶尖速比实现MPPT控制参考论文分享,储能控制器在风光储直流微电网Simulink仿真模型中的实现与应用:光伏发电、风力发电与储能系统集成研究,储能控制器,风光储、风光储并网直流微电网simulink仿真模型。 系统有光伏发电系统、风力发电系统、储能系统、负载、逆变器?lcl?大电网构成。 附参考文献。 同时可附逆变器控制参数,lcl参数计算m文件(另议)。 光伏系统采用扰动观察法实现mppt控制,经过boost电路并入母线; 风机采用最佳叶尖速比实现mppt控制,风力发电系统中pmsg采用零d轴控制实现功率输出,通过三相电压型pwm变器整流并入母线; 储能系统由蓄电池构成,通过双向DCDC变器并入母线。 并网逆变器VSR采用基于电网电压定向矢量控制?双闭环,经过lcl滤波器并入大电网。 负载单元为直流负载 附参考文献。 ,核心关键词:储能控制器;风光储;并网直流微电网;simulink仿真模型;光伏发电系统;风力发电系统;储能系统;负载;逆变器;MPPT控

Global site tag (gtag.js) - Google Analytics