`

Hibernate程序性能优化

阅读更多
  本文依照HIBERNATE帮助文档,一些网络书籍及项目经验整理而成,只提供要点和思路,具体做法可以留言探讨,或是找一些更详细更有针对性的资料。

  初用HIBERNATE的人也许都遇到过性能问题,实现同一功能,用HIBERNATE与用JDBC性能相差十几倍很正常,如果不及早调整,很可能影响整个项目的进度。

  大体上,对于HIBERNATE性能调优的主要考虑点如下:

  Ø 数据库设计调整

  Ø HQL优化

  Ø API的正确使用(如根据不同的业务类型选用不同的集合及查询API)

  Ø 主配置参数(日志,查询缓存,fetch_size, batch_size等)

  Ø 映射文件优化(ID生成策略,二级缓存,延迟加载,关联优化)

  Ø 一级缓存的管理

  Ø 针对二级缓存,还有许多特有的策略

  Ø 事务控制策略。

  1、 数据库设计

  a) 降低关联的复杂性

  b) 尽量不使用联合主键

  c) ID的生成机制,不同的数据库所提供的机制并不完全一样

  d) 适当的冗余数据,不过分追求高范式

  2、 HQL优化

  HQL如果抛开它同HIBERNATE本身一些缓存机制的关联,HQL的优化技巧同普通的SQL优化技巧一样,可以很容易在网上找到一些经验之谈。

  3、 主配置

  a) 查询缓存,同下面讲的缓存不太一样,它是针对HQL语句的缓存,即完全一样的语句再次执行时可以利用缓存数据。但是,查询缓存在一个交易系统(数据变更频繁,查询条件相同的机率并不大)中可能会起反作用:它会白白耗费大量的系统资源但却难以派上用场。

  b) fetch_size,同JDBC的相关参数作用类似,参数并不是越大越好,而应根据业务特征去设置

  c) batch_size同上。

  d) 生产系统中,切记要关掉SQL语句打印。

  4、 缓存

  a) 数据库级缓存:这级缓存是最高效和安全的,但不同的数据库可管理的层次并不一样,比如,在ORACLE中,可以在建表时指定将整个表置于缓存当中。

  b) SESSION缓存:在一个HIBERNATE SESSION有效,这级缓存的可干预性不强,大多于HIBERNATE自动管理,但它提供清除缓存的方法,这在大批量增加/更新操作是有效的。比如,同时增加十万条记录,按常规方式进行,很可能会发现OutofMemeroy的异常,这时可能需要手动清除这一级缓存:Session.evict以及 Session.clear

  c) 应用缓存:在一个SESSIONFACTORY中有效,因此也是优化的重中之重,因此,各类策略也考虑的较多,在将数据放入这一级缓存之前,需要考虑一些前提条件:

  i. 数据不会被第三方修改(比如,是否有另一个应用也在修改这些数据?)

  ii. 数据不会太大

  iii. 数据不会频繁更新(否则使用CACHE可能适得其反)

  iv. 数据会被频繁查询

  v. 数据不是关键数据(如涉及钱,安全等方面的问题)。

  缓存有几种形式,可以在映射文件中配置:read-only(只读,适用于很少变更的静态数据/历史数据),nonstrict-read- write,read-write(比较普遍的形式,效率一般),transactional(JTA中,且支持的缓存产品较少)

  d) 分布式缓存:同c)的配置一样,只是缓存产品的选用不同,在目前的HIBERNATE中可供选择的不多,oscache, jboss cache,目前的大多数项目,对它们的用于集群的使用(特别是关键交易系统)都持保守态度。在集群环境中,只利用数据库级的缓存是最安全的。

  5、 延迟加载

  a) 实体延迟加载:通过使用动态代理实现

  b) 集合延迟加载:通过实现自有的SET/LIST,HIBERNATE提供了这方面的支持

  c) 属性延迟加载:

  6、 方法选用

  a) 完成同样一件事,HIBERNATE提供了可供选择的一些方式,但具体使用什么方式,可能用性能/代码都会有影响。显示,一次返回十万条记录 (List/Set/Bag/Map等)进行处理,很可能导致内存不够的问题,而如果用基于游标(ScrollableResults)或 Iterator的结果集,则不存在这样的问题。

  b) Session的load/get方法,前者会使用二级缓存,而后者则不使用。

  c) Query和list/iterator,如果去仔细研究一下它们,你可能会发现很多有意思的情况,二者主要区别(如果使用了Spring,在HibernateTemplate中对应find,iterator方法):

  i. list只能利用查询缓存(但在交易系统中查询缓存作用不大),无法利用二级缓存中的单个实体,但list查出的对象会写入二级缓存,但它一般只生成较少的执行SQL语句,很多情况就是一条(无关联)。

  ii. iterator则可以利用二级缓存,对于一条查询语句,它会先从数据库中找出所有符合条件的记录的ID,再通过ID去缓存找,对于缓存中没有的记录,再构造语句从数据库中查出,因此很容易知道,如果缓存中没有任何符合条件的记录,使用iterator会产生N+1条SQL语句(N为符合条件的记录数)

  iii. 通过iterator,配合缓存管理API,在海量数据查询中可以很好的解决内存问题,如:

  while(it.hasNext()){

  YouObject object = (YouObject)it.next();

  session.evict(youObject);

  sessionFactory.evice(YouObject.class, youObject.getId());

  }

  如果用list方法,很可能就出OutofMemory错误了。

  iv. 通过上面的说明,我想你应该知道如何去使用这两个方法了。

  7、 集合的选用

  在HIBERNATE 3.1文档的“19.5. Understanding Collection performance”中有详细的说明。

  8、 事务控制

  事务方面对性能有影响的主要包括:事务方式的选用,事务隔离级别以及锁的选用

  a) 事务方式选用:如果不涉及多个事务管理器事务的话,不需要使用JTA,只有JDBC的事务控制就可以。

  b) 事务隔离级别:参见标准的SQL事务隔离级别

  c) 锁的选用:悲观锁(一般由具体的事务管理器实现),对于长事务效率低,但安全。乐观锁(一般在应用级别实现),如在HIBERNATE中可以定义 VERSION字段,显然,如果有多个应用操作数据,且这些应用不是用同一种乐观锁机制,则乐观锁会失效。因此,针对不同的数据应有不同的策略,同前面许多情况一样,很多时候我们是在效率与安全/准确性上找一个平衡点,无论如何,优化都不是一个纯技术的问题,你应该对你的应用和业务特征有足够的了解。

  9、 批量操作

  即使是使用JDBC,在进行大批数据更新时,BATCH与不使用BATCH有效率上也有很大的差别。我们可以通过设置batch_size来让其支持批量操作。

  举个例子,要批量删除某表中的对象,如“delete Account”,打出来的语句,会发现HIBERNATE找出了所有ACCOUNT的ID,再进行删除,这主要是为了维护二级缓存,这样效率肯定高不了,在后续的版本中增加了bulk delete/update,但这也无法解决缓存的维护问题。也就是说,由于有了二级缓存的维护问题,HIBERNATE的批量操作效率并不尽如人意!

  从前面许多要点可以看出,很多时候我们是在效率与安全/准确性上找一个平衡点,无论如何,优化都不是一个纯技术的问题,你应该对你的应用和业务特征有足够的了解,一般的,优化方案应在架构设计期就基本确定,否则可能导致没必要的返工,致使项目延期,而作为架构师和项目经理,还要面对开发人员可能的抱怨,必竟,我们对用户需求更改的控制力不大,但技术/架构风险是应该在初期意识到并制定好相关的对策。

  还有一点要注意,应用层的缓存只是锦上添花,永远不要把它当救命稻草,应用的根基(数据库设计,算法,高效的操作语句,恰当API的选择等)才是最重要的。

分享到:
评论

相关推荐

    Hibernate程序性能优化的考虑要点

    ### Hibernate程序性能优化的考虑要点 在开发基于Hibernate框架的应用时,性能优化是至关重要的环节。Hibernate作为一款优秀的对象关系映射(ORM)工具,它能够简化Java应用程序与数据库之间的交互,但不当的配置和...

    Hibernate程序性能优化.doc

    ### Hibernate程序性能优化 #### 一、概述 Hibernate作为一款流行的Java持久层框架,为开发者提供了简化数据库操作的强大工具。然而,在实际应用中,不少开发者遇到了性能问题:使用Hibernate实现的功能与直接使用...

    Hibernate性能优化研究.pdf

    ### Hibernate性能优化研究 #### 一、引言 随着企业级应用的发展,高效的数据持久化技术成为了提升系统性能的关键因素之一。Hibernate作为一种流行的面向Java环境的对象关系映射(Object-Relational Mapping,简称...

    Hibernate性能优化

    《Hibernate性能优化》 在Java应用开发中,Hibernate作为一个强大的对象关系映射(ORM)框架,极大地简化了数据库操作。然而,如果不进行适当的优化,它可能会成为系统性能的瓶颈。以下是一些关于Hibernate性能优化...

    hibernate性能优化方案

    ### Hibernate性能优化方案详解 #### 一、引言 Hibernate作为Java领域中广泛使用的对象关系映射(ORM)框架,其高效性和灵活性受到众多开发者的青睐。然而,不当的设计和配置往往会导致性能瓶颈,严重影响应用程序...

    Hibernate3性能优化方案

    通过对Hibernate3进行性能优化,我们可以有效提高应用程序的运行速度和资源利用效率。抓取优化和二级缓存是两个非常重要的优化方向。通过合理设置抓取策略和启用二级缓存,可以在很大程度上减少数据库交互次数,降低...

    Hibernate性能优化:一级缓存

    本文将深入探讨Hibernate性能优化中的一个重要概念——一级缓存,并结合给出的压缩包文件“hibernate_cache_level1”,来详细解析一级缓存的工作原理及其优化策略。 一级缓存是Hibernate内置的一种缓存机制,它存在...

    Hibernate缓存,性能优化

    本文将深入探讨Hibernate缓存的原理、类型及其对性能优化的影响。 ### Hibernate缓存原理 Hibernate缓存主要分为一级缓存和二级缓存。一级缓存,也称为会话缓存(Session Cache),是默认启用的,由Hibernate自动...

    hibernate性能优化.doc

    在 Hibernate 中,性能优化是非常重要的,因为它直接影响着应用程序的效率和可扩展性。在本文中,我们将讨论两个常见的性能优化问题:批量处理和 1+n 问题,并提供相应的解决方法。 问题 1:批量处理 在 Hibernate...

    Hibernate 性能优化

    ### Hibernate 性能优化 #### 一、引言 Hibernate 是一款非常强大的对象关系映射(ORM)框架,它能够简化 Java 应用程序与数据库之间的交互过程。然而,对于初次接触 Hibernate 的开发者来说,可能会遇到性能方面...

    优化Hibernate性能的几点建议

    ### 优化Hibernate性能的几点建议 ...总之,通过上述几个方面的优化措施,可以显著提高基于Hibernate构建的应用程序的性能。在实际应用中,还需要结合具体的业务场景和技术栈来灵活调整这些策略。

    hibernate性能测试代码

    总之,理解并进行Hibernate的性能测试是提升应用程序效率的关键步骤。通过编写和运行性能测试代码,我们可以获得宝贵的性能数据,为系统的持续优化提供指导。不过,需要注意的是,任何优化都应该基于具体的应用场景...

    spring和hibernate整合的优化配置

    ### Spring与Hibernate整合的优化配置 #### 一、Spring与Hibernate简介 - **Spring框架**:作为Java开发领域中的一款主流轻量级框架,Spring主要提供了依赖注入(DI)和面向切面编程(AOP)的功能,使得Java开发...

    hibernate性能优化[参考].pdf

    在软件开发领域,尤其是在使用Java进行企业级应用开发时,Hibernate作为一款强大的对象关系映射(ORM)框架,其性能优化是至关重要的。以下是对《hibernate性能优化[参考].pdf》内容的详细解读: 1. **数据库优化**...

    Hibernate优化

    《Hibernate优化深度解析》 在Java开发中,Hibernate作为一款强大的对象关系映射(ORM)框架,极大地简化了数据库...通过以上这些优化措施,我们可以显著提高应用程序的运行效率,降低数据库压力,提升整体系统性能。

    Hibernate性能调优

    在Hibernate中,关联管理是性能优化的关键因素之一。关联通常包括以下几种类型:单向`one-to-many`关联、双向`one-to-many`关联、`many-to-one`关联以及`one-to-one`关联。 ##### 单向`one-to-many`关联 - **定义**...

    hibernate性能:性能、规模、风险 初评

    2. **性能瓶颈**:虽然Hibernate提供了一系列的性能优化措施,但在实际应用中,还需要根据具体的业务场景进行细致的调优。例如,对于高并发访问的情况,可能需要关注二级缓存的配置、查询优化等方面。 3. **数据库...

Global site tag (gtag.js) - Google Analytics