- 浏览: 60616 次
- 性别:
- 来自: 上海
文章分类
- 全部博客 (117)
- RPC相关 (4)
- mvc_controller (3)
- mvc_model (3)
- maven (4)
- mvc_view (5)
- IO (2)
- 业务相关 (2)
- MQ (7)
- 搜索引擎 (3)
- zookeeper (2)
- 工具相关 (4)
- 编辑错误 (1)
- tomcat (1)
- 单元测试 (1)
- 负载均衡 (1)
- ubuntu (1)
- nginx (1)
- dubbo (2)
- 网络站点分发 (1)
- 电商-支付相关 (10)
- 电商订单业务相关 (3)
- Core java1 (3)
- Core Java (12)
- 多线程高并发(并发包/线程/锁) (10)
- 数据库+缓存 (17)
- springcloud (2)
- jvm (5)
- 日志相关 (1)
- 算法 (3)
- spring (2)
- 分布式一致性算法 (1)
最新评论
多线程三种方式:
http://blog.csdn.net/aboy123/article/details/38307539
runnable与callable区别:
https://www.cnblogs.com/frinder6/p/5507082.html
callable与futurTask实现:
get()怎样实现阻塞。
执行完之后,如何通知其他线程的。
futureTask的run:
https://www.jianshu.com/p/7ef8be1205ec
futureTask源码分析:
wait/notify 有顺序的。 wait有释放锁(https://blog.csdn.net/pange1991/article/details/53860651)
park/unpark挂起线程,一次性的,与先后顺序无关。灵活
park(a);
unpark(a);
ExecutorService对象原理简析:
http://blog.csdn.net/lu123535884/article/details/49495833
线程池 submit execute区别
http://blog.csdn.net/u010940300/article/details/50251841
感想思考:
线程状态有哪些,如何变化的。
调用了interrupt就能中断线程吗。
调用Thread.interrupt()方法并不能真正停止线程,只是在当前线程做了一个中断的状态标志
阅读jdk或spring源码正确方式。
http://blog.csdn.net/aboy123/article/details/38307539
runnable与callable区别:
https://www.cnblogs.com/frinder6/p/5507082.html
callable与futurTask实现:
package com.hailong.hailongTest.thread; import java.util.HashMap; import java.util.Map; import java.util.concurrent.Callable; import java.util.concurrent.ExecutionException; import java.util.concurrent.FutureTask; import com.hailong.hailongTest.InsertSort; import com.hailong.hailongTest.SelectSort; public class UserServiceByFuture { public static Map<String, String> UserServiceByFuture(final int[] testInts1, final int[] testInts2) { // InsertSort insertSort = new InsertSort(); // SelectSort selectSort = new SelectSort(); // Map<String, String> result = new HashMap<String, String>(); // result.put("a", insertSort.getInsertSort(testInts1)); // result.put("b", selectSort.getSelectSort(testInts2)); //----------------------------------------------------------- Callable<String> callableString = new Callable<String>() { public String call() throws Exception { InsertSort insertSort = new InsertSort(); return insertSort.getInsertSort(testInts1); // TODO Auto-generated method stub } }; FutureTask<String> futureTask = new FutureTask<String>(callableString); new Thread(futureTask).start(); //----------------------------------------------------------- Callable<String> callableString2 = new Callable<String>() { public String call() throws Exception { SelectSort selectSort = new SelectSort(); return selectSort.getSelectSort(testInts2); // TODO Auto-generated method stub } }; FutureTask<String> futureTask2 = new FutureTask<String>(callableString2); new Thread(futureTask2).start(); //----------------------------------------------------------- Map<String, String> result = new HashMap<String, String>(); try { result.put("a", futureTask.get()); result.put("b", futureTask2.get()); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (ExecutionException e) { // TODO Auto-generated catch block e.printStackTrace(); } return result; } public static void main(String[] args) { long currentTime = System.currentTimeMillis(); int[] testInts1 = {1,44,6,2,45,98,45}; int[] testInts2 = {1,44,6,2,45,98,45}; // TODO Auto-generated method stub Map<String, String> result = UserServiceByFuture(testInts1, testInts2); System.out.println(result.get("a")); System.out.println(result.get("b")); System.out.println(System.currentTimeMillis() - currentTime); } }
get()怎样实现阻塞。
执行完之后,如何通知其他线程的。
futureTask的run:
https://www.jianshu.com/p/7ef8be1205ec
futureTask源码分析:
import java.util.concurrent.FutureTask.WaitNode; import java.util.concurrent.locks.LockSupport; public class FutureTask<V> implements RunnableFuture<V> { /** * The run state of this task, initially NEW. The run state * transitions to a terminal state only in methods set, * setException, and cancel. During completion, state may take on * transient values of COMPLETING (while outcome is being set) or * INTERRUPTING (only while interrupting the runner to satisfy a * cancel(true)). Transitions from these intermediate to final * states use cheaper ordered/lazy writes because values are unique * and cannot be further modified. * * Possible state transitions: * NEW -> COMPLETING -> NORMAL * NEW -> COMPLETING -> EXCEPTIONAL * NEW -> CANCELLED * NEW -> INTERRUPTING -> INTERRUPTED */ private volatile int state; private static final int NEW = 0; private static final int COMPLETING = 1; private static final int NORMAL = 2; private static final int EXCEPTIONAL = 3; private static final int CANCELLED = 4; private static final int INTERRUPTING = 5; private static final int INTERRUPTED = 6; /** The underlying callable; nulled out after running */ private Callable<V> callable; /** The result to return or exception to throw from get() */ private Object outcome; // non-volatile, protected by state reads/writes /** The thread running the callable; CASed during run() */ private volatile Thread runner; /** Treiber stack of waiting threads */ private volatile WaitNode waiters; /** * Returns result or throws exception for completed task. * * @param s completed state value */ @SuppressWarnings("unchecked") private V report(int s) throws ExecutionException { Object x = outcome; if (s == NORMAL) return (V)x; if (s >= CANCELLED) throw new CancellationException(); throw new ExecutionException((Throwable)x); } /** * Creates a {@code FutureTask} that will, upon running, execute the * given {@code Callable}. * * @param callable the callable task * @throws NullPointerException if the callable is null */ public FutureTask(Callable<V> callable) { if (callable == null) throw new NullPointerException(); this.callable = callable; this.state = NEW; // ensure visibility of callable } /** * Creates a {@code FutureTask} that will, upon running, execute the * given {@code Runnable}, and arrange that {@code get} will return the * given result on successful completion. * * @param runnable the runnable task * @param result the result to return on successful completion. If * you don't need a particular result, consider using * constructions of the form: * {@code Future<?> f = new FutureTask<Void>(runnable, null)} * @throws NullPointerException if the runnable is null */ public FutureTask(Runnable runnable, V result) { this.callable = Executors.callable(runnable, result); this.state = NEW; // ensure visibility of callable } public boolean isCancelled() { return state >= CANCELLED; } public boolean isDone() { return state != NEW; } // 只能取消还没被执行的任务(任务状态为NEW的任务)- cancel(boolean) public boolean cancel(boolean mayInterruptIfRunning) { // 只有刚创建的情况才能取消 if (state != NEW) return false; // ture:中断,false:取消 if (mayInterruptIfRunning) { // 继续判断任务的当前状态是否为NEW,因为此时执行任务线程可能再度获得处理了,任务状态可能已发生改变 if (!UNSAFE.compareAndSwapInt(this, stateOffset, NEW, INTERRUPTING)) return false; // 如果任务状态依然是NEW, 也就是执行线程没有改变任务的状态, // 则让执行线程中断(在这个过程中执行线程可能会改变任务的状态) Thread t = runner; // 对runner 发布interrupt信号 if (t != null) t.interrupt(); // 修改状态为已经通知线程中断 UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED); // final state } else if (!UNSAFE.compareAndSwapInt(this, stateOffset, NEW, CANCELLED)) return false; finishCompletion(); return true; } /** * @throws CancellationException {@inheritDoc} * 获取任务的执行结果-get()方法和get(long,TimeUnit)方法, 核心在于内部调用的awaitDone()方法 */ public V get() throws InterruptedException, ExecutionException { int s = state; if (s <= COMPLETING) s = awaitDone(false, 0L); return report(s); } /** * @throws CancellationException {@inheritDoc} */ public V get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException { if (unit == null) throw new NullPointerException(); int s = state; if (s <= COMPLETING && (s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING) throw new TimeoutException(); return report(s); } /** * Sets the result of this future to the given value unless * this future has already been set or has been cancelled. * * <p>This method is invoked internally by the {@link #run} method * upon successful completion of the computation. * * @param v the value */ protected void set(V v) { // 首先将任务的状态改变 // 状态改变成功之后再将结果赋值 // 赋值成功,改变任务的状态 // 处理等待线程队列(将线程阻塞状态改为唤醒,这样哪些等待获取结果的线程就可以取得任务结果) if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) { outcome = v; // 修改状态 UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state // 通知其他在等待结果的线程 finishCompletion(); } } /** * Causes this future to report an {@link ExecutionException} * with the given throwable as its cause, unless this future has * already been set or has been cancelled. * * <p>This method is invoked internally by the {@link #run} method * upon failure of the computation. * * @param t the cause of failure */ protected void setException(Throwable t) { if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) { outcome = t; // 修改为异常状态 UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state // 通知其他在等待结果的线程 finishCompletion(); } } public void run() { // 判断状态来设置futuretask归属线程 // 1.判断任务的状态是否是初始化状态 // 2.判断执行任务的线程对象runner是否为空,为空就将当前执行线程赋值给runner属性 if (state != NEW || !UNSAFE.compareAndSwapObject(this, runnerOffset, null, Thread.currentThread())) return; try { Callable<V> c = callable; // 任务状态是NEW, 并且callable不为空(在任务被cancel()时,callable会被置空)则执行任务 if (c != null && state == NEW) { V result; boolean ran; try { // 执行任务,返回结果 result = c.call(); // 标记执行成功 ran = true; } catch (Throwable ex) { result = null; ran = false; // 设置为异常状态,并通知其他在等待结果的线程 setException(ex); } // 执行成功,修改状态为成功,并通知其他在等待结果的线程 if (ran) set(result); } } finally { // runner must be non-null until state is settled to // prevent concurrent calls to run() runner = null; // state must be re-read after nulling runner to prevent // leaked interrupts int s = state; if (s >= INTERRUPTING) // 如果状态为发起中断信号(INTERRUPTING = 5)或已经中断信号(INTERRUPTED = 6) // 让出cpu() handlePossibleCancellationInterrupt(s); } } /** * Executes the computation without setting its result, and then * resets this future to initial state, failing to do so if the * computation encounters an exception or is cancelled. This is * designed for use with tasks that intrinsically execute more * than once. * * @return true if successfully run and reset */ protected boolean runAndReset() { if (state != NEW || !UNSAFE.compareAndSwapObject(this, runnerOffset, null, Thread.currentThread())) return false; boolean ran = false; int s = state; try { Callable<V> c = callable; if (c != null && s == NEW) { try { c.call(); // don't set result ran = true; } catch (Throwable ex) { setException(ex); } } } finally { // runner must be non-null until state is settled to // prevent concurrent calls to run() runner = null; // state must be re-read after nulling runner to prevent // leaked interrupts s = state; if (s >= INTERRUPTING) handlePossibleCancellationInterrupt(s); } return ran && s == NEW; } /** * Removes and signals all waiting threads, invokes done(), and * nulls out callable. * 在任务执行完成(包括取消、正常结束、发生异常), 将等待线程列表唤醒 * 同时让任务执行体置空 */ private void finishCompletion() { // assert state > COMPLETING; for (WaitNode q; (q = waiters) != null;) { if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) { for (;;) { Thread t = q.thread; if (t != null) { q.thread = null; LockSupport.unpark(t); } WaitNode next = q.next; if (next == null) break; q.next = null; // unlink to help gc q = next; } break; } } done(); callable = null; // to reduce footprint } /** * Awaits completion or aborts on interrupt or timeout. * * @param timed true if use timed waits * @param nanos time to wait, if timed * @return state upon completion * 等待任务的执行结果 * timed: 是否有时间限制 nanos: 限制的时间 */ private int awaitDone(boolean timed, long nanos) throws InterruptedException { // 计算限制的时间范围,记录等待的超时 final long deadline = timed ? System.nanoTime() + nanos : 0L; // 当前等待线程节点 // 多个在等待结果的线程,通过一个链表进行保存,WaitNode就是每个线程在链表节点 WaitNode q = null; // 是否将节点放在了等待列表中 boolean queued = false; // 无限循环来实现线程阻塞等待,自扰锁同步 for (;;) { // 判断当前线程是否被中断 if (Thread.interrupted()) { // 当前线程移出队列 removeWaiter(q); throw new InterruptedException(); } int s = state; // 1. 首先判断任务状态是否是完成状态, 如果完成, 是就直接返回结果 if (s > COMPLETING) { if (q != null) q.thread = null; return s; } // 2. 如果1为false,并且任务的状态是COMPLETING(已执行,但没有结束), 也就是在set()任务结果时被阻塞了,则让出当前线程cpu资源 else if (s == COMPLETING) // cannot time out yet Thread.yield(); // 3. 如果前两步false,并且q==null,则初始化一个当前线程的等待节点 else if (q == null) q = new WaitNode(); // 4. 下一次循环体, 如果前3步依然是false,并且当前节点没有加入到等待列表, // 则将当前线程节点放在等待列表的第一个位置 // 如果当前线程对应的WaitNode还没有加入到等待链表中,就加进去 else if (!queued) queued = UNSAFE.compareAndSwapObject(this, waitersOffset, q.next = waiters, q); // 5. 在下一次循环, 如果前4步为false, 如果是时间范围内等待的,则判断当前时间是否过期, // 过期则将线程节点移出等待队列并返回任务状态结果, 如果没过期,则让当前线程阻塞一定时间 // 通过parkNanos挂起当前线程,等待继续执行信号。 else if (timed) { nanos = deadline - System.nanoTime(); if (nanos <= 0L) { removeWaiter(q); return state; } LockSupport.parkNanos(this, nanos); } // 6. 如果不是时间范围内等待, 并且前5步均为false,则让线程阻塞,直到被唤醒 // 通过pack挂起当前线程,等待task run执行结束发送执行信号(unpack) else LockSupport.park(this); } } /** * Tries to unlink a timed-out or interrupted wait node to avoid * accumulating garbage. Internal nodes are simply unspliced * without CAS since it is harmless if they are traversed anyway * by releasers. To avoid effects of unsplicing from already * removed nodes, the list is retraversed in case of an apparent * race. This is slow when there are a lot of nodes, but we don't * expect lists to be long enough to outweigh higher-overhead * schemes. * 将线程节点从等待队列中移出 */ private void removeWaiter(WaitNode node) { if (node != null) { node.thread = null; retry: for (;;) { // restart on removeWaiter race for (WaitNode pred = null, q = waiters, s; q != null; q = s) { s = q.next; if (q.thread != null) pred = q; else if (pred != null) { pred.next = s; if (pred.thread == null) // check for race continue retry; } else if (!UNSAFE.compareAndSwapObject(this, waitersOffset, q, s)) continue retry; } break; } } } }
wait/notify 有顺序的。 wait有释放锁(https://blog.csdn.net/pange1991/article/details/53860651)
park/unpark挂起线程,一次性的,与先后顺序无关。灵活
park(a);
unpark(a);
ExecutorService对象原理简析:
http://blog.csdn.net/lu123535884/article/details/49495833
线程池 submit execute区别
http://blog.csdn.net/u010940300/article/details/50251841
感想思考:
线程状态有哪些,如何变化的。
调用了interrupt就能中断线程吗。
调用Thread.interrupt()方法并不能真正停止线程,只是在当前线程做了一个中断的状态标志
阅读jdk或spring源码正确方式。
发表评论
-
Synchronized实现原理和底层优化
2019-04-24 11:04 318Java并发编程:Synchronized及其实现原理 htt ... -
分布式锁Redlock
2019-03-08 10:01 403好文章:https://blog.csdn.n ... -
volatile指令重排序理解
2019-02-01 21:38 434volatile优点:可见性,防止指令重排序,那如何理解指令重 ... -
CyclicBarrier和CountDownLatch区别
2018-12-06 20:20 391这个链接图片总结到位 https://blog.csdn.ne ... -
线程池简单实现
2018-08-01 17:51 344以下实现注意,并没有用到最大线程数参数max import j ... -
线程相关好文章
2018-06-27 15:41 378notify和notifyAll有什么区别: https:// ... -
分布式锁实现(redis/zookeeper)
2018-01-16 10:53 670先理了解本地锁Lcok: http://572327713.i ... -
线程本地锁
2018-01-15 16:01 462static关键字的四种用法 https://www.cnbl ... -
volitile与原子类atomic区别
2018-01-02 11:41 506volatile的内存模型: http://blog.csdn ...
相关推荐
- **JDK1.5线程并发库**:引入了更高级的并发控制机制,如`ExecutorService`、`Callable`、`Future`等,提供了更安全、更高效的多线程解决方案,减少了线程同步和死锁的风险。 ##### 2. 创建线程的两种传统方式 - ...
在《java多线程并发编程核心技术应用实践》中,我们将深入探讨Java平台上的并发机制、线程安全与同步控制、线程池以及实战技巧。 首先,我们需要理解Java中的线程基础。线程是程序执行的最小单位,一个进程可以有多...
总结来说,Java多线程与并发库的高级应用,既包括了传统的多线程编程技术,也包含了JDK 1.5之后引入的高级并发工具和特性。掌握这些知识点对于任何想要在Java编程领域深入发展的开发者来说,都是非常必要的。
源码中可以看到如何实现函数式接口及其在多线程、事件处理等场景的应用。 4. **并发编程** - `java.util.concurrent`包提供了丰富的并发工具类,如`ExecutorService`、`Future`、`Semaphore`等,源码分析有助于...
通过深入学习JDK源码,我们不仅能理解Java平台的核心工作原理,还能提升编程技巧,学习到高级设计模式和最佳实践。同时,这也是一个不断迭代和优化的过程,因为Oracle公司和其他开源社区会定期发布新的JDK版本,引入...
Java并发编程是多线程环境中的基石。在JDK1.8中,`java.util.concurrent`包提供了丰富的并发工具类,如`ExecutorService`、`Future`、`Semaphore`和`CyclicBarrier`等。`ConcurrentHashMap`是并发安全的哈希映射,其...
源码解析有助于掌握这些并发工具类的实现原理,从而编写更高效的多线程程序。 4. **I/O流** JDK 1.6对I/O流进行了改进,引入了NIO(Non-blocking I/O)框架,提供了一种异步数据传输方式。通过分析源码,可以学习...
在Java编程语言中,线程并发和线程池是多任务执行的核心概念,尤其是在...熟练掌握这些工具,能帮助开发者编写出更加稳定、高效的多线程应用程序。通过深入学习和实践,可以更好地理解和利用这些特性,优化程序性能。
│ 高并发编程第二阶段21讲、多线程Future设计模式详细介绍-上.mp4 │ 高并发编程第二阶段22讲、多线程Future设计模式详细介绍-下.mp4 │ 高并发编程第二阶段23讲、第二阶段课程答疑学员问题.mp4 │ 高并发编程...
3. **并发与多线程**:`java.util.concurrent`包提供了高级并发工具,如`ExecutorService`、`Future`、`BlockingQueue`等,这些工具的源码能帮助理解并发编程的最佳实践。 4. **JNI接口**:JNI是Java与本地代码交互...
ConcurrentLatch是一个基于JDK的多线程归类并发处理闩工具(基于JDK1.8)。与CountDownLatch不同的是它可以方便的获取哪个任务对应的哪个返回内容。与Future(或者FutureTask)不同的是,他可以通过一系列策略管理多个...
通过阅读《Java-jdk10-最新最全多线程编程实战指南-核心篇》这本书,开发者不仅可以理解Java多线程编程的基础知识,还能掌握高级并发编程技巧,从而在实际项目中实现高性能、高并发的程序设计。对于Java开发者来说,...
同时,JDK源码中的并发编程组件,如`java.util.concurrent`包下的`ExecutorService`和`Future`接口,展示了Java如何处理多线程任务。源码分析能让我们掌握线程池的创建、管理和任务调度,从而在编写并发程序时更加...
│ 高并发编程第二阶段21讲、多线程Future设计模式详细介绍-上.mp4 │ 高并发编程第二阶段22讲、多线程Future设计模式详细介绍-下.mp4 │ 高并发编程第二阶段23讲、第二阶段课程答疑学员问题.mp4 │ 高并发编程...
在JDK1.6源码中,我们可以看到许多经典的并发工具,如`java.util.concurrent`包,其中的线程池、Future、Semaphore等工具类为多线程编程提供了强大支持。此外,JVM内存管理、垃圾收集的实现也是源码中的重点,比如...
ExecutorService、Future、Callable接口,以及synchronized、volatile关键字的实现,都是多线程编程的重点。理解这些源码可以帮助我们编写更高效、更安全的并发代码。 5.IO流:Java的IO系统在1.7版本中已经有了丰富...
理解和掌握这些并发锁的原理和实现,能够帮助开发者编写高效、安全的并发代码,避免常见的死锁、活锁和饥饿等问题,提升多线程环境下的程序性能。在实际开发中,应根据具体需求选择合适的锁机制,并合理使用,以实现...
此外,JDK源码中还包括了对反射、多线程、网络通信、I/O流、集合框架等核心组件的实现。例如,`java.lang.reflect`包中的`Method`和`Constructor`类,让我们明白反射机制是如何工作的;`java.util.concurrent`包下的...
4. **多线程**:深入研究Thread类和synchronized关键字,理解线程状态转换、死锁、活锁、阻塞队列等概念,以及ExecutorService和Future接口的应用,有助于开发高并发程序。 5. **网络编程**:Socket、ServerSocket...
1. **Java基础知识**:在深入源码之前,我们需要对Java的基础语法有扎实的理解,包括类、对象、接口、异常处理、多线程、集合框架等。这些是理解源码的基础,因为源码中的每个功能都是基于这些概念构建的。 2. **...