摘 要 稳定性是衡量软件系统质量的重要指标,内存泄漏是破坏系统稳定性的重要因素。由于采用垃圾回收机制,Java语言的内存泄漏的模式与C++等语言相比有很大的不同。全文通过与C++中的内存泄漏问题进行对比,讲述了Java内存泄漏的基本原理,以及如何借助Optimizeit profiler工具来测试内存泄漏和分析内存泄漏的原因,在实践中证明这是一套行之有效的方法。
关键词 Java; 内存泄漏; GC(垃圾收集器) 引用; Optimizeit
问题的提出
笔者曾经参与开发的网管系统,系统规模庞大,涉及上百万行代码。系统主要采用Java语言开发,大体上分为客户端、服务器和数据库三个层次。在版本进入测试和试用的过程中,现场人员和测试部人员纷纷反映:系统的稳定性比较差,经常会出现服务器端运行一昼夜就死机的现象,客户端跑死的现象也比较频繁地发生。对于网管系统来讲,经常性的服务器死机是个比较严重的问题,因为频繁的死机不仅可能导致前后台数据不一致,发生错误,更会引起用户的不满,降低客户的信任度。因此,服务器端的稳定性问题必须尽快解决。
解决思路
通过察看服务器端日志,发现死机前服务器端频繁抛出OutOfMemoryException内存溢出错误,因此初步把死机的原因定位为内存泄漏引起内存不足,进而引起内存溢出错误。如何查找引起内存泄漏的原因呢?有两种思路:第一种,安排有经验的编程人员对代码进行走查和分析,找出内存泄漏发生的位置;第二种,使用专门的内存泄漏测试工具Optimizeit进行测试。这两种方法都是解决系统稳定性问题的有效手段,使用内存测试工具对于已经暴露出来的内存泄漏问题的定位和解决非常有效;但是软件测试的理论也告诉我们,系统中永远存在一些没有暴露出来的问题,而且,系统的稳定性问题也不仅仅只是内存泄漏的问题,代码走查是提高系统的整体代码质量乃至解决潜在问题的有效手段。基于这样的考虑,我们的内存稳定性工作决定采用代码走查结合测试工具的使用,双管齐下,争取比较彻底地解决系统的稳定性问题。
在代码走查的工作中,安排了对系统业务和开发语言工具比较熟悉的开发人员对应用的代码进行了交叉走查,找出代码中存在的数据库连接声明和结果集未关闭、代码冗余和低效等故障若干,取得了良好的效果,文中主要讲述结合工具的使用对已经出现的内存泄漏问题的定位方法。
内存泄漏的基本原理
在C++语言程序中,使用new操作符创建的对象,在使用完毕后应该通过delete操作符显示地释放,否则,这些对象将占用堆空间,永远没有办法得到回收,从而引起内存空间的泄漏。如下的简单代码就可以引起内存的泄漏:
void function(){
Int[] vec = new int[5];
}
在function()方法执行完毕后,vec数组已经是不可达对象,在C++语言中,这样的对象永远也得不到释放,称这种现象为内存泄漏。
而Java是通过垃圾收集器(Garbage Collection,GC)自动管理内存的回收,程序员不需要通过调用函数来释放内存,但它只能回收无用并且不再被其它对象引用的那些对象所占用的空间。在下面的代码中,循环申请Object对象,并将所申请的对象放入一个Vector中,如果仅仅释放对象本身,但是因为Vector仍然引用该对象,所以这个对象对GC来说是不可回收的。因此,如果对象加入到Vector后,还必须从Vector中删除,最简单的方法就是将Vector对象设置为null。
Vector v = new Vector(10);
for (int i = 1; i < 100; i++)
{
Object o = new Object();
v.add(o);
o = null;
}//此时,所有的Object对象都没有被释放,因为变量v引用这些对象。
实际上无用,而还被引用的对象,GC就无能为力了(事实上GC认为它还有用),这一点是导致内存泄漏最重要的原因。
Java的内存回收机制可以形象地理解为在堆空间中引入了重力场,已经加载的类的静态变量和处于活动线程的堆栈空间的变量是这个空间的牵引对象。这里牵引对象是指按照Java语言规范,即便没有其它对象保持对它的引用也不能够被回收的对象,即Java内存空间中的本原对象。当然类可能被去加载,活动线程的堆栈也是不断变化的,牵引对象的集合也是不断变化的。对于堆空间中的任何一个对象,如果存在一条或者多条从某个或者某几个牵引对象到该对象的引用链,则就是可达对象,可以形象地理解为从牵引对象伸出的引用链将其拉住,避免掉到回收池中;而其它的不可达对象由于不存在牵引对象的拉力,在重力的作用下将掉入回收池。在图1中,A、B、C、D、E、F六个对象都被牵引对象所直接或者间接地“牵引”,使得它们避免在重力的作用下掉入回收池。如果TR1-A链和TR2-D链断开,则A、B、C三个对象由于失去牵引,在重力的作用下掉入回收池(被回收),D对象也是同样的原因掉入回收池,而F对象仍然存在一个牵引链(TR3-E-F),所以不会被回收,如图2、3所示。
图1 初始状态
图2 TR1-A链和TR2-D链断开,A、B、C、D掉入回收池
图3 A、B、C、D四个对象被回收
通过前面的介绍可以看到,由于采用了垃圾回收机制,任何不可达对象都可以由垃圾收集线程回收。因此通常说的Java内存泄漏其实是指无意识的、非故意的对象引用,或者无意识的对象保持。无意识的对象引用是指代码的开发人员本来已经对对象使用完毕,却因为编码的错误而意外地保存了对该对象的引用(这个引用的存在并不是编码人员的主观意愿),从而使得该对象一直无法被垃圾回收器回收掉,这种本来以为可以释放掉的却最终未能被释放的空间可以认为是被“泄漏了”。
这里通过一个例子来演示Java的内存泄漏。假设有一个日志类Logger,其提供一个静态的log(String msg)方法,任何其它类都可以调用Logger.Log(message)来将message的内容记录到系统的日志文件中。Logger类有一个类型为HashMap的静态变量temp,每次在执行log(message)方法的时候,都首先将message的值丢入temp中(以当前线程+当前时间为键),在方法退出之前再从temp中将以当前线程和当前时间为键的条目删除。注意,这里当前时间是不断变化的,所以log方法在退出之前执行删除条目的操作并不能删除方法执行之初丢入的条目。这样,任何一个作为参数传给log方法的字符串最终由于被Logger的静态变量temp引用,而无法得到回收,这种违背实现者主观意图的无意识的对象保持就是我们所说的Java内存泄漏。
http://dev.yesky.com/56/2591556.shtml
分享到:
相关推荐
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
8c71b76fb2ec10cf50fc6b0308d3dcfc_9545878e2b97a84b2e089ece58da9e82
Android逆向过程学习
内容概要:本文详细介绍了基于西门子S7-200 PLC的糖果包装控制系统的设计与实现。首先阐述了PLC在工业自动化领域的优势及其在糖果包装生产线中的重要性。接着深入探讨了系统的硬件连接方式,包括传感器、执行机构与PLC的具体接口配置。随后展示了关键的编程实现部分,如糖果计数、包装执行、送膜控制、称重判断以及热封温度控制等具体梯形图代码片段。此外,还分享了一些实用的经验技巧,如防止信号抖动、PID参数优化、故障诊断方法等。最后总结了该系统的优势,强调其对提高生产效率和产品质量的重要作用。 适合人群:从事工业自动化控制、PLC编程的技术人员,尤其是对小型PLC系统感兴趣的工程师。 使用场景及目标:适用于糖果制造企业,旨在提升包装生产线的自动化程度,确保高效稳定的生产过程,同时降低维护成本并提高产品一致性。 其他说明:文中不仅提供了详细的理论讲解和技术指导,还结合实际案例进行了经验分享,有助于读者更好地理解和掌握相关知识。
内容概要:本文详细介绍了参与西门子杯比赛中关于三部十层电梯系统的博图V15.1程序设计及其WinCC画面展示的内容。文中不仅展示了电梯系统的基本架构,如抢单逻辑、方向决策、状态机管理等核心算法(采用SCL语言编写),还分享了许多实际调试过程中遇到的问题及解决方案,例如未初始化变量导致的异常行为、状态机遗漏空闲状态、WinCC画面动态显示的挑战以及通信配置中的ASCII码解析错误等问题。此外,作者还特别提到一些创意性的设计,如电梯同时到达同一层时楼层显示器变为闪烁爱心的效果,以及节能模式下电梯自动停靠中间楼层的功能。 适合人群:对PLC编程、工业自动化控制、电梯调度算法感兴趣的工程技术人员,尤其是准备参加类似竞赛的学生和技术爱好者。 使用场景及目标:适用于希望深入了解PLC编程实践、掌握电梯群控系统的设计思路和技术要点的人士。通过学习本文可以更好地理解如何利用PLC进行复杂的机电一体化项目的开发,提高解决实际问题的能力。 其他说明:文章风格幽默诙谐,将严肃的技术话题融入轻松的生活化比喻之中,使得原本枯燥的专业知识变得生动有趣。同时,文中提供的经验教训对于从事相关领域的工作者来说非常宝贵,能够帮助他们少走弯路并激发更多创新思维。
慧荣量产工具合集.zip
内容概要:本文详细介绍了永磁同步电机(PMSM)的FOC(磁场定向控制)和SVPWM(空间矢量脉宽调制)算法的仿真模型。首先解释了FOC的基本原理及其核心的坐标变换(Clark变换和Park变换),并给出了相应的Python代码实现。接下来探讨了SVPWM算法的工作机制,包括扇区判断和占空比计算的方法。此外,文章还讨论了电机的PI双闭环控制结构,即速度环和电流环的设计与实现。文中不仅提供了详细的理论背景,还分享了一些实用的编程技巧和注意事项,帮助读者更好地理解和应用这些算法。 适合人群:电气工程专业学生、从事电机控制系统开发的技术人员以及对永磁同步电机控制感兴趣的科研人员。 使用场景及目标:① 学习和掌握永磁同步电机的FOC控制和SVPWM算法的具体实现;② 提供丰富的代码示例和实践经验,便于快速搭建和调试仿真模型;③ 探讨不同参数设置对电机性能的影响,提高系统的稳定性和效率。 其他说明:文章强调了在实际应用中需要注意的一些细节问题,如坐标变换中的系数选择、SVPWM算法中的扇区判断优化以及PI控制器的参数调整等。同时,鼓励读者通过动手实验来加深对各个模块的理解。
# 压缩文件中包含: 中文文档 jar包下载地址 Maven依赖 Gradle依赖 源代码下载地址 # 本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件;
Android逆向过程学习
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
3dmax插件
# 【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar中文文档.zip】 中包含: 中文文档:【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar中文文档.zip,java,spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar,org.springframework.ai,spring-ai-autoconfigure-vector-store-qdrant,1.0.0-M7,org.springframework.ai.vectorstore.qdr
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
内容概要:本文详细介绍了平方根容积卡尔曼滤波(SRCKF)在永磁同步电机(PMSM)控制系统中的应用及其相对于传统CKF的优势。文章首先指出传统CKF在处理协方差矩阵时存在的数值不稳定性和非正定问题,导致系统性能下降。接着,作者通过引入SRCKF,利用Cholesky分解和QR分解来确保协方差矩阵的正定性,从而提高状态估计的精度和稳定性。文中展示了具体的电机模型和状态方程,并提供了详细的代码实现,包括状态预测、容积点生成以及观测更新等关键步骤。此外,文章还分享了实际调试过程中遇到的问题及解决方案,如选择合适的矩阵分解库和处理电机参数敏感性。最终,通过实验数据对比,证明了SRCKF在突加负载情况下的优越表现。 适合人群:从事永磁同步电机控制研究的技术人员、研究生及以上学历的研究者。 使用场景及目标:适用于需要高精度状态估计的永磁同步电机控制系统的设计与优化,特别是在处理非线性问题和提高数值稳定性方面。 其他说明:文章引用了相关领域的权威文献,如Arasaratnam的TAC论文和Zhong的《PMSM无传感器控制综述》,并强调了实际工程实践中代码调试的重要性。
# 【tokenizers-***.jar***文档.zip】 中包含: ***文档:【tokenizers-***-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【tokenizers-***.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【tokenizers-***.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【tokenizers-***.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【tokenizers-***-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: tokenizers-***.jar***文档.zip,java,tokenizers-***.jar,ai.djl.huggingface,tokenizers,***,ai.djl.engine.rust,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,djl,huggingface,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【tokenizers-***.jar***文档.zip】,再解压其中的 【tokenizers-***-javadoc-API文档-中文(简体)版.zip】,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件; # Maven依赖: ``` <dependency> <groupId>ai.djl.huggingface</groupId> <artifactId>tokenizers</artifactId> <version>***</version> </dependency> ``` # Gradle依赖: ``` Gradle: implementation group: 'ai.djl.huggingface', name: 'tokenizers', version: '***' Gradle (Short): implementation 'ai.djl.huggingface:tokenizers:***' Gradle (Kotlin): implementation("ai.djl.huggingface:tokenizers:***") ``` # 含有的 Java package(包): ``` ai.djl.engine.rust ai.djl.engine.rust.zoo ai.djl.huggingface.tokenizers ai.djl.huggingface.tokenizers.jni ai.djl.huggingface.translator ai.djl.huggingface.zoo ``` # 含有的 Java class(类): ``` ai.djl.engine.rust.RsEngine ai.djl.engine.rust.RsEngineProvider ai.djl.engine.rust.RsModel ai.djl.engine.rust.RsNDArray ai.djl.engine.rust.RsNDArrayEx ai.djl.engine.rust.RsNDArrayIndexer ai.djl.engine.rust.RsNDManager ai.djl.engine.rust.RsSymbolBlock ai.djl.engine.rust.RustLibrary ai.djl.engine.rust.zoo.RsModelZoo ai.djl.engine.rust.zoo.RsZooProvider ai.djl.huggingface.tokenizers.Encoding ai.djl.huggingface.tokenizers.HuggingFaceTokenizer ai.djl.huggingface.tokenizers.HuggingFaceTokenizer.Builder ai.djl.hu
3
pchook源码纯源码不是dll
# 【spring-ai-azure-store-1.0.0-M7.jar中文-英文对照文档.zip】 中包含: 中文-英文对照文档:【spring-ai-azure-store-1.0.0-M7-javadoc-API文档-中文(简体)-英语-对照版.zip】 jar包下载地址:【spring-ai-azure-store-1.0.0-M7.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【spring-ai-azure-store-1.0.0-M7.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【spring-ai-azure-store-1.0.0-M7.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【spring-ai-azure-store-1.0.0-M7-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: spring-ai-azure-store-1.0.0-M7.jar中文-英文对照文档.zip,java,spring-ai-azure-store-1.0.0-M7.jar,org.springframework.ai,spring-ai-azure-store,1.0.0-M7,org.springframework.ai.vectorstore.azure,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,springframework,spring,ai,azure,store,中文-英文对照API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【spring-ai-azure-store-1.0.0-M7.jar中文-英文对照文档.zip】,再解
内容概要:本文档是关于信捷电气XD、XL系列可编程序控制器的用户手册(硬件篇)。手册详细介绍了该系列PLC的硬件特性,包括产品概述、本体规格参数、系统构成、电源及输入输出规格、运行调试与维护、软元件切换等内容。此外,还提供了丰富的附录信息,如特殊软元件地址及功能、指令一览表、PLC功能配置表和常见问题解答。手册强调了安全操作的重要性,列出了多个安全注意事项,确保用户在正确环境下安装和使用设备,避免潜在风险。 适合人群:具备一定电气知识的专业人士,尤其是从事自动化控制系统设计、安装、调试及维护的技术人员。 使用场景及目标:①帮助用户了解XD、XL系列PLC的硬件特性和规格参数;②指导用户正确安装、接线、调试和维护设备;③提供详细的故障排查指南和技术支持信息,确保设备稳定运行;④为用户提供编程和指令使用的参考资料。 其他说明:手册不仅涵盖了硬件方面的内容,还涉及到了一些基础的软件编程概念,但更深入的编程指导请参考相关软件篇手册。用户在使用过程中遇到问题可以通过提供的联系方式获得技术支持。手册中的内容会定期更新,以适应产品改进和技术发展的需求。
# 【spring-ai-bedrock-converse-1.0.0-M7.jar中文文档.zip】 中包含: 中文文档:【spring-ai-bedrock-converse-1.0.0-M7-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【spring-ai-bedrock-converse-1.0.0-M7.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【spring-ai-bedrock-converse-1.0.0-M7.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【spring-ai-bedrock-converse-1.0.0-M7.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【spring-ai-bedrock-converse-1.0.0-M7-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: spring-ai-bedrock-converse-1.0.0-M7.jar中文文档.zip,java,spring-ai-bedrock-converse-1.0.0-M7.jar,org.springframework.ai,spring-ai-bedrock-converse,1.0.0-M7,org.springframework.ai.bedrock.converse,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,springframework,spring,ai,bedrock,converse,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【spring-ai-bedrock-converse-1