`
bencode
  • 浏览: 110620 次
  • 性别: Icon_minigender_1
  • 来自: 杭州
社区版块
存档分类
最新评论

《算法导论》读书笔记6(中位数和顺序统计学)

阅读更多

这一章《中位数和顺序统计学》很短,也是本书第二部分的最后一章

 

写几段代码吧。

 

求数组最小值

 

	int minimum(int[] a) {
		int min = a[0];
		for (int i = 1; i < a.length; i++) {
			if (min > a[i]) {
				min = a[i];
			}
		}
		return min;
	}

 

这个不用写测试,就当没写过。 这个方法需要做 n-1 次比较

 

同时找出最大值,最小值

 

如果用上面的方法,那么这个问题使用 2(n-1) 次比较肯定能解决。 当然可以更少一些。

 

	int[] minAndMax(int[] a) {
		int i = 1;
		int min = a[0];
		int max = a[0];
		
		if ((a.length & 1) == 0) { // 偶数
			i = 2;
			max = a[1];
		}
		
		if (min > max) {
			// swap
			int t = min;
			min = max;
			max = t;
		}
		// 下面从 i 开始,直到结束,共有偶数个数, 每次处理两个
		for (; i < a.length; i += 2) {
			int m = a[i];
			int n = a[i + 1];
			if (m > n) {
				// swap
				int t = m;
				m = n;
				n = t;
			}
			// now m <= n
			
			if (min > m) {
				min = m;
			}
			if (max < n) {
				max = n;
			}
		}
		
		int[] b = { min, max };
		return b;
	}

 

现在 每次循环 进行3 次比较, 共进行 3((n - 1) / 2) 次比较, 加上循环前的一次比较,共进行 3(n / 2) 次比较

 

选择第 i 小的数

 

我们可以进行一次排序,然后再输出第 i 小的数, 但这样复杂度会和排序一样

 

可以有更好的方法:

 

	int randSelect(int[] ary, int left, int right, int index) { // 从[left, right] 中找出第 index 小的数
		if (left > right || index > right - left) {
			throw new IllegalArgumentException();
		}
		
		if (left == right) {
			return ary[left]; // 此时 index == 0
		}

		int mid = partition(ary, left, right);  // 对数组进行一次划分,[left, mid - 1] [mid] [mid + 1, right]
		int len = mid - left;
		if (index == len) {  // 刚好
			return ary[mid];
		} else if (index < len) {  // 要找的数在左区间
			return randSelect(ary, left, mid - 1, index);
		} else {  // 要找的数在右区间, 当然此时要找第 index - len - 1小的数,因为要扣除左区间以及mid
			return randSelect(ary, mid + 1, right, index - len - 1);
		}
	}

 

其中 partition 在快速排序中遇到过

 

	int partition(int[] a, int low, int high) {
		int x = a[low];
		int m = low;
		for (int i = low + 1; i <= high; i++) {
			if (a[i] < x) {
				swap(a, ++m, i);
			}
		}
		swap(a, low, m);
		
		return m;
	}
	
	void swap(int[] a, int i, int j) {
		int t = a[i];
		a[i] = a[j];
		a[j] = t;
	}

 

不忙, 写个测试先。

 

	@Test
	public void testRandSelect() {
		Random rand = new Random();
		
		for (int i = 0; i < 100; i++) {
			int[] a = genRandAry(i + 1);
			int[] b = Arrays.copyOf(a, a.length); // 因为 randSelect会对数组a进行重排,所以先copy一份
			
			int k = rand.nextInt(a.length);  // 我们要从a中选出第 k 小的数
			int m = randSelect(a, 0, a.length - 1, k); 
			Arrays.sort(b); // 再对b进行排序
			assertEquals(b[k], m);  // 此时 m 就应该和 b[k] 一样
		}
	}

 

可以看到,运行是通过的:)

 

下面我们看分析其复杂度。

 

 首先重构 randSelect 将其修改为求比较次数

 

 

	int randSelect2(int[] ary, int left, int right, int index) {
		if (left > right || index > right - left) {
			throw new IllegalArgumentException();
		}
		
		if (left == right) {
			return 0; // modified
			//return ary[left];
		}

		int times = right - left; // 下面的partition要作 right - left 次比较, 见快速排序(笔记4)
		int mid = partition(ary, left, right);
		int len = mid - left;
		if (index == len) {
			return times;
			//return ary[mid];
		} else if (index < len) {
			return times + randSelect(ary, left, mid - 1, index); // modified
		} else {
			return times + randSelect(ary, mid + 1, right, index - len - 1); // modified
		}
	}

 

然后对上面的方法进行简化

1.  参数检查不需要

2. left == right 测试 ---> n == 0

3. 把left 和 right 等表示成 n 相关, 并去掉 a, index

3. 在一般情况下,partition 分得很平均, 并且我们假设代码路径都只经过 index < len 这个分支

 

上面的方法即可简化成求平均比较次数

 

	int randSelect2(int n) {
		if (n == 0) {
			return 0;
		}
		int times = n - 1;	// partition比较次数
		return times + randSelect2(n / 2); // 每次分割后n 减半
	}

 

写成递归式就是 T(n) = T(n / 2) + (n - 1) 

 

上面这个写成数列就是: (n - 1) + (n - 1) / 2 + (n - 1) / 4 + (n - 1) / 8 + ...

 

即 (n - 1)( 1 + 1/2 + 1/4 + 1/8 + ..) ---> 差不多的 2(n-1) 

 

所以randSelect算法复杂度是线性的 

 

当然也可以使用算法笔记2中的工具进行绘制, 看其复杂度

 



 

和2(n-1)相符!

 

  • 大小: 5.5 KB
分享到:
评论

相关推荐

    算法导论系列读书笔记之九

    在“算法导论系列读书笔记之九”中,我们聚焦于其中的两个重要概念:中位数和顺序统计学。 中位数是统计学中的一个关键概念,它是将一组数据从小到大排列后位于中间位置的数值。对于奇数个数据,中位数是中间的那个...

    算法导论老师手册

    中位数和顺序统计量在数据分析中非常重要。这部分内容介绍了如何找到一个集合中的第k小元素,包括快速选择算法等。教师应强调这些算法在处理大规模数据集时的效率和实用性。 #### 9. 散列表(Chapter 11: Hash ...

    毕业设计物联网实战项目基于Eclipse Theia开源框架开发的物联网在线编程IDE.zip

    【项目资源】: 物联网项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    Android毕设实战项目基于Android的医院挂号系统.zip

    【项目资源】: 适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    (源码)基于Python的KMeans和EM算法结合图像分割项目.zip

    # 基于Python的KMeans和EM算法结合图像分割项目 ## 项目简介 本项目结合KMeans聚类和EM(期望最大化)算法,实现对马赛克图像的精准分割。通过Gabor滤波器提取图像的多维特征,并利用KMeans进行初步聚类,随后使用EM算法优化聚类结果,最终生成高质量的分割图像。 ## 项目的主要特性和功能 1. 图像导入和预处理: 支持导入马赛克图像,并进行灰度化、滤波等预处理操作。 2. 特征提取: 使用Gabor滤波器提取图像的多维特征向量。 3. 聚类分析: 使用KMeans算法对图像进行初步聚类。 利用KMeans的聚类中心初始化EM算法,进一步优化聚类结果。 4. 图像生成和比较: 生成分割后的图像,并与原始图像进行比较,评估分割效果。 5. 数值比较: 通过计算特征向量之间的余弦相似度,量化分割效果的提升。 ## 安装使用步骤 ### 假设用户已经下载了项目的源码文件 1. 环境准备:

    HCIP第一次作业:静态路由综合实验

    HCIP第一次作业:静态路由综合实验

    毕设单片机实战项目基于stm32、esp8266和Android的智能家居系统-设备端.zip

    【项目资源】: 单片机项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    统计学基于Python的Johnson-SU分布参数计算与优化:数据拟合及弹性网络参数优化方法实现(复现论文或解答问题,含详细可运行代码及解释)

    内容概要:本文详细介绍了Johnson-SU分布的参数计算与优化过程,涵盖位置参数γ、形状参数δ、尺度参数ξ和伸缩参数λ的计算方法,并实现了相应的Python代码。文中首先导入必要的库并设置随机种子以确保结果的可复现性。接着,分别定义了四个参数的计算函数,其中位置参数γ通过加权平均值计算,形状参数δ基于局部均值和标准差的比值,尺度参数ξ结合峰度和绝对偏差,伸缩参数λ依据偏态系数。此外,还实现了Johnson-SU分布的概率密度函数(PDF),并使用负对数似然函数作为目标函数,采用L-BFGS-B算法进行参数优化。最后,通过弹性网络的贝叶斯优化展示了另一种参数优化方法。; 适合人群:具有Python编程基础,对统计学和机器学习有一定了解的研究人员或工程师。; 使用场景及目标:①需要对复杂数据分布进行建模和拟合的场景;②希望通过优化算法提升模型性能的研究项目;③学习如何实现和应用先进的统计分布及优化技术。; 阅读建议:由于涉及较多数学公式和编程实现,建议读者在阅读时结合相关数学知识,同时动手实践代码,以便更好地理解和掌握Johnson-SU分布及其优化方法。

    TSP问题的3种智能优化方法求解(研究生课程《智能优化算法》结课大作业).zip

    TSP问题的3种智能优化方法求解(研究生课程《智能优化算法》结课大作业).zip

    毕业设计物联网实战项目基于Rtthread和MQTT搭建的物联网网关.zip

    【项目资源】: 物联网项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    基于STM32F103C8T6的温湿度传感器(HAL库版),通过串口向电脑端反馈数据(附通过ESP8266-01s模块连接WIFI上传云平台的资料代码-固件库版本).zip

    【项目资源】: 单片机项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    自动发布Java项目(Tomcat)Shell脚本

    自动发布Java项目(Tomcat)Shell脚本

    (源码)基于webpack和Vue的前端项目构建方案.zip

    # 基于webpack和Vue的前端项目构建方案 ## 项目简介 本项目是基于webpack和Vue构建的前端项目方案,借助webpack强大的打包能力以及Vue的开发特性,可用于快速搭建现代化的前端应用。项目不仅完成了基本的webpack与Vue的集成配置,还在构建速度优化和代码规范性方面做了诸多配置。 ## 项目的主要特性和功能 1. 打包功能运用webpack进行模块打包,支持将scss转换为css,借助babel实现语法转换。 2. Vue开发支持集成Vue框架,能使用Vue单文件组件的开发模式。 3. 构建优化采用threadloader实现多进程打包,cacheloader缓存资源,极大提高构建速度开启热更新功能,开发更高效。 4. 错误处理与优化提供不同环境下的错误映射配置,便于定位错误利用webpackbundleanalyzer分析打包体积。

    Hands-On Large Language Models - Jay Alammar 袋鼠书 《动手学大语言模型》

    Hands-On Large Language Models - Jay Alammar 袋鼠书 《动手学大语言模型》PDF

    《基于YOLOv8的舞蹈动作分析系统》(包含源码、完整数据集、可视化界面、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计.zip

    资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。

    (源码)基于Arduino Feather M0和Raspberry Pi的传感器数据采集与监控系统.zip

    # 基于Arduino Feather M0和Raspberry Pi的传感器数据采集与监控系统 ## 项目简介 本项目是一个基于Arduino Feather M0和Raspberry Pi的传感器数据采集与监控系统。系统通过Arduino Feather M0采集传感器数据,并通过WiFi将数据传输到Raspberry Pi。Raspberry Pi运行BalenaOS,集成了MySQL、PHP、NGINX、Apache和Grafana等工具,用于数据的存储、处理和可视化。项目适用于环境监测、物联网设备监控等场景。 ## 项目的主要特性和功能 1. 传感器数据采集使用Arduino Feather M0和AM2315传感器采集温度和湿度数据。 2. WiFi数据传输Arduino Feather M0通过WiFi将采集到的数据传输到Raspberry Pi。

    《基于YOLOv8的音响设备识别系统》(包含源码、完整数据集、可视化界面、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计.zip

    资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。

    Android毕设实战项目这是一个android 图书管理系统.zip

    【项目资源】: 适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    毕业设计物联网实战项目基于智龙2.0开发板和窄带物联网模块BC95。操作系统为RTT2.1。.zip

    【项目资源】: 物联网项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    (源码)基于Arduino的WiFi按钮项目.zip

    # 基于Arduino的WiFi按钮项目 ## 一、项目简介 本项目是一个基于ESP8266芯片的Arduino项目,主要实现WiFi连接、电压检测、LED灯控制以及向服务器发送POST请求等功能。通过简单的按钮操作,可以实现与服务器通信并获取相关信息,同时能检测电池电压并提示用户。 ## 二、项目的主要特性和功能 1. WiFi连接项目能够自动连接到指定的WiFi网络。 2. 电压检测通过ADC(模数转换器)检测电池电压,并在电压低于阈值时发出警告。 3. LED灯控制通过控制LED灯的亮灭来提示用户不同的状态信息(如连接成功、电压低等)。 4. 服务器通信项目可以向指定的服务器发送POST请求并处理返回的HTTP响应。 ## 三、安装使用步骤 1. 环境准备确保已安装Arduino IDE和ESP8266插件。 2. 下载源码下载项目的源码文件并解压。 3. 打开项目在Arduino IDE中打开解压后的main.cpp文件。

Global site tag (gtag.js) - Google Analytics