`

简单的oracle物化视图

阅读更多

物化视图是一种特殊的物理表,“物化”(Materialized)视图是相对普通视图而言的。普通视图是虚拟表,应用的局限性大,任何对视图的查询,Oracle都实际上转换为视图SQL语句的查询。这样对整体查询性能的提高,并没有实质上的好处。

    1、物化视图的类型:ON DEMAND、ON COMMIT

    二者的区别在于刷新方法的不同,ON DEMAND顾名思义,仅在该物化视图“需要”被刷新了,才进行刷新(REFRESH),即更新物化视图,以保证和基表数据的一致性;而ON COMMIT是说,一旦基表有了COMMIT,即事务提交,则立刻刷新,立刻更新物化视图,使得数据和基表一致。

    2、ON DEMAND物化视图

    物化视图的创建本身是很复杂和需要优化参数设置的,特别是针对大型生产数据库系统而言。但Oracle允许以这种最简单的,类似于普通视图的方式来做,所以不可避免的会涉及到默认值问题。也就是说Oracle给物化视图的重要定义参数的默认值处理是我们需要特别注意的。

    物化视图的特点:

    (1) 物化视图在某种意义上说就是一个物理表(而且不仅仅是一个物理表),这通过其可以被user_tables查询出来,而得到佐证;(2) 物化视图也是一种段(segment),所以其有自己的物理存储属性;(3) 物化视图会占用数据库磁盘空间,这点从user_segment的查询结果,可以得到佐证;

    创建语句:create materialized view mv_name as select * from table_name

    默认情况下,如果没指定刷新方法和刷新模式,则Oracle默认为FORCE和DEMAND。

    物化视图的数据怎么随着基表而更新?

    Oracle提供了两种方式,手工刷新和自动刷新,默认为手工刷新。也就是说,通过我们手工的执行某个Oracle提供的系统级存储过程或包,来保证物化视图与基表数据一致性。这是最基本的刷新办法了。自动刷新,其实也就是Oracle会建立一个job,通过这个job来调用相同的存储过程或包,加以实现。

    ON DEMAND物化视图的特性及其和ON COMMIT物化视图的区别,即前者不刷新(手工或自动)就不更新物化视图,而后者不刷新也会更新物化视图,——只要基表发生了COMMIT。

    3、ON COMMIT物化视图

    ON COMMIT物化视图的创建,和上面创建ON DEMAND的物化视图区别不大。因为ON DEMAND是默认的,所以ON COMMIT物化视图,需要再增加个参数即可。

    需要注意的是,无法在定义时仅指定ON COMMIT,还得附带个参数才行。

    创建ON COMMIT物化视图:create materialized view mv_name refresh force on commit as select * from table_name

    备注:实际创建过程中,基表需要有主键约束,否则会报错(ORA-12014)

分享到:
评论

相关推荐

    Oracle物化视图创建和使用

    Oracle 物化视图创建和使用 Oracle 物化视图是一种预先计算并保存表连接或聚集等耗时较多的操作的结果,以提高查询性能。物化视图对应用程序透明,不会影响应用程序的正确性和有效性,但需要占用存储空间。基表发生...

    Oracle物化视图应用详解

    Oracle物化视图是一种数据库对象,它存储了查询结果,以提供快速的数据访问,特别适合于需要频繁查询但计算过程复杂或涉及大量数据连接的场景。物化视图的使用可以显著提高查询性能,因为它避免了每次查询时的计算...

    Oracle物化视图增量刷新的应用研究.pdf

    物化视图操作简单,支持增量刷新及全量刷新,可以支持复杂的表连接、聚合函数等操作,为数据的加工创建了便捷条件,提高了查询效率,减少了服务器消耗资源。 本文主要研究 Oracle 物化视图增量刷新的应用,揭示了...

    oracle物化视图_循序渐进学习笔记

    Oracle物化视图是一种在数据库中预先计算并存储视图查询结果的数据对象,它与普通的视图不同,普通视图在查询时动态地基于基表数据生成结果,而物化视图则拥有自己的物理存储,提供了对数据的快速访问。在本篇循序渐...

    利用ORACLE物化视图建立报表数据库.pdf

    "利用ORACLE物化视图建立报表数据库.pdf" 本文主要介绍了利用ORACLE物化视图建立报表数据库的方法和原理。报表数据库是指独立于生产数据库的数据库,用于存储和管理报表数据。通过建立报表数据库,可以实现工作负荷...

    Oracle数据库中物化视图的原理剖析

    在Oracle 10g之前,要检查物化视图是否配置正确,需要使用DBMS_MVIEW包的EXPLAIN_MVIEW和EXPLAIN_REWRITE过程,这些过程只能简单地表明某个特性(如快速刷新或查询重写)可能适用于物化视图,但不会提供具体实现建议...

    SQL 优化之 oracle物化视图

    Oracle 物化视图 Oracle 物化视图是数据库对象,存储远程表的数据副本,也可以称为快照。物化视图可以查询表、视图和其他物化视图。通常情况下,物化视图被称为主表(在复制期间)或明细表(在数据仓库中)。 创建...

    oracle 物化视图详解(内含例子)

    ### Oracle 物化视图详解 #### 一、物化视图的概念与作用 物化视图是Oracle数据库中一种特殊的数据对象,它保存的是基于一个或多个表(称为基表)的查询结果集,并且这些结果集是物理上存在的。与普通的视图不同,...

    Oracle物化视图使用[文].pdf

    Oracle物化视图是数据库管理系统中的一个重要特性,尤其在处理大量数据和复杂查询的场景下,它可以极大地提升查询性能和数据一致性。物化视图与普通的视图不同,后者是逻辑上的虚表,其内容在查询时动态计算,而物化...

    ORACLE9I物化视图

    ### ORACLE9I 物化视图 #### 执行概览 随着数据库技术的发展,无论是数据仓库、数据集市还是在线事务处理(OLTP)系统,都承载着大量的等待被发现和理解的信息。然而,在海量数据中及时准确地查找并呈现这些信息...

    Oracle物化视图介绍

    ### Oracle物化视图介绍及应用详解 #### 一、物化视图概念与作用 在Oracle数据库中,物化视图(Materialized View, MV)是一种预计算并存储的查询结果,它能够显著提高复杂查询的性能。通常情况下,复杂的查询涉及到...

    基于Oracle物化视图日志的数据同步技术研究.pdf

    Oracle物化视图日志是一种强大的数据同步技术,尤其适用于分布式数据库和分布式应用系统之间的数据一致性维护。在当今信息化系统中,随着技术的快速发展,数据的分布性和实时性需求日益增强,数据同步成为了一个关键...

    oracle物化视图资料

    ### Oracle物化视图详解 #### 一、物化视图概述 Oracle物化视图是一种特殊类型的数据库对象,其核心功能在于预先计算并存储基于一个或多个表的查询结果,以此来加速后续的查询操作。与普通视图不同,普通视图在...

    ORACLE 物化视图 详解

    ### ORACLE 物化视图详解 #### 一、物化视图概述 在Oracle数据库中,物化视图(Materialized View)是一种特殊的数据库对象,它存储的是一个查询的结果集,可以理解为一个预计算的快照。物化视图主要用于提高报表...

    ORACLE使用物化视图和查询重写功能

    ### ORACLE使用物化视图和查询重写功能 #### 一、概述 在Oracle数据库中,物化视图和查询重写功能是提高查询效率和简化数据仓库管理的重要工具。物化视图是一种预计算的数据集合,它可以存储查询的结果集,而查询...

    物化视图的快速刷新

    物化视图是 Oracle 中的一种性能优化技术,它可以将复杂的查询结果存储在一个物化视图中,以便快速地检索数据。物化视图有三种刷新方式:COMPLETE、FAST 和 FORCE。 COMPLETE 刷新方式会删除表中所有的记录,然后...

    oracle物化视图配置指导书.doc

    Oracle物化视图是Oracle数据库中一种非常重要的特性,它提供了数据的一致性视图,通常用于实现数据的异步复制。本配置指导书主要针对Oracle高级复制中的物化视图,旨在帮助用户理解并成功配置物化视图,以满足在实际...

    Oracle怎么根据物化视图日志快速刷新物化视图

    ### Oracle如何根据物化视图日志快速刷新物化视图 #### 一、物化视图及其日志介绍 在Oracle数据库中,物化视图(Materialized View)是一种特殊的对象,它存储了预计算查询的结果,从而可以提高查询性能。物化视图...

    基于Oracle物化视图的查询性能优化.pdf

    Oracle物化视图是数据库性能优化的重要工具,尤其在处理大量数据查询和统计工作中显得尤为重要。物化视图,也称作快照,是数据库在某一时间点对目标表(主控)的副本,可以是主站点上的主表,也可以是物化视图站点上...

Global site tag (gtag.js) - Google Analytics