`
anzn20
  • 浏览: 88108 次
  • 性别: Icon_minigender_1
  • 来自: 成都
社区版块
存档分类
最新评论

java排序集锦

    博客分类:
  • JAVA
阅读更多
package sort;

import java.util.Random;

/**
 * 排序测试类
 * 
 * 排序算法的分类如下: 1.插入排序(直接插入排序、折半插入排序、希尔排序); 2.交换排序(冒泡泡排序、快速排序);
 * 3.选择排序(直接选择排序、堆排序); 4.归并排序; 5.基数排序。
 * 
 * 关于排序方法的选择: (1)若n较小(如n≤50),可采用直接插入或直接选择排序。
 * 当记录规模较小时,直接插入排序较好;否则因为直接选择移动的记录数少于直接插人,应选直接选择排序为宜。
 * (2)若文件初始状态基本有序(指正序),则应选用直接插人、冒泡或随机的快速排序为宜;
 * (3)若n较大,则应采用时间复杂度为O(nlgn)的排序方法:快速排序、堆排序或归并排序。
 * 
 */
/**
 * @corporation 北京环亚
 * @author HDS
 * @date Nov 19, 2009 10:43:44 AM
 * @path sort
 * @description JAVA排序汇总
 */
public class SortTest {

	// //////==============================产生随机数==============================///////////////////
	/**
	 * @description 生成随机数
	 * @date Nov 19, 2009
	 * @author HDS
	 * @return int[]
	 */
	public int[] createArray() {
		Random random = new Random();
		int[] array = new int[10];
		for (int i = 0; i < 10; i++) {
			array[i] = random.nextInt(100) - random.nextInt(100);// 生成两个随机数相减,保证生成的数中有负数
		}
		System.out.println("==========原始序列==========");
		printArray(array);
		return array;
	}

	/**
	 * @description 打印出随机数
	 * @date Nov 19, 2009
	 * @author HDS
	 * @param data
	 */
	public void printArray(int[] data) {
		for (int i : data) {
			System.out.print(i + " ");
		}
		System.out.println();
	}

	/**
	 * @description 交换相邻两个数
	 * @date Nov 19, 2009
	 * @author HDS
	 * @param data
	 * @param x
	 * @param y
	 */
	public void swap(int[] data, int x, int y) {
		int temp = data[x];
		data[x] = data[y];
		data[y] = temp;
	}

	/**
	 * 冒泡排序----交换排序的一种
	 * 方法:相邻两元素进行比较,如有需要则进行交换,每完成一次循环就将最大元素排在最后(如从小到大排序),下一次循环是将其他的数进行类似操作。
	 * 性能:比较次数O(n^2),n^2/2;交换次数O(n^2),n^2/4
	 * 
	 * @param data
	 *            要排序的数组
	 * @param sortType
	 *            排序类型
	 * @return
	 */
	public void bubbleSort(int[] data, String sortType) {
		if (sortType.equals("asc")) { // 正排序,从小排到大
			// 比较的轮数
			for (int i = 1; i < data.length; i++) { // 数组有多长,轮数就有多长
				// 将相邻两个数进行比较,较大的数往后冒泡
				for (int j = 0; j < data.length - i; j++) {// 每一轮下来会将比较的次数减少
					if (data[j] > data[j + 1]) {
						// 交换相邻两个数
						swap(data, j, j + 1);
					}
				}
			}
		} else if (sortType.equals("desc")) { // 倒排序,从大排到小
			// 比较的轮数
			for (int i = 1; i < data.length; i++) {
				// 将相邻两个数进行比较,较大的数往后冒泡
				for (int j = 0; j < data.length - i; j++) {
					if (data[j] < data[j + 1]) {
						// 交换相邻两个数
						swap(data, j, j + 1);
					}
				}
			}
		} else {
			System.out.println("您输入的排序类型错误!");
		}
		printArray(data);// 输出冒泡排序后的数组值
	}

	/**
	 * 直接选择排序法----选择排序的一种 方法:每一趟从待排序的数据元素中选出最小(或最大)的一个元素,
	 * 顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。 性能:比较次数O(n^2),n^2/2 交换次数O(n),n
	 * 交换次数比冒泡排序少多了,由于交换所需CPU时间比比较所需的CUP时间多,所以选择排序比冒泡排序快。
	 * 但是N比较大时,比较所需的CPU时间占主要地位,所以这时的性能和冒泡排序差不太多,但毫无疑问肯定要快些。
	 * 
	 * @param data
	 *            要排序的数组
	 * @param sortType
	 *            排序类型
	 * @return
	 */
	public void selectSort(int[] data, String sortType) {
		if (sortType.endsWith("asc")) {// 正排序,从小排到大
			int index;
			for (int i = 1; i < data.length; i++) {
				index = 0;
				for (int j = 1; j <= data.length - i; j++) {
					if (data[j] > data[index]) {
						index = j;
					}
				}
				// 交换在位置data.length-i和index(最大值)两个数
				swap(data, data.length - i, index);
			}
		} else if (sortType.equals("desc")) { // 倒排序,从大排到小
			int index;
			for (int i = 1; i < data.length; i++) {
				index = 0;
				for (int j = 1; j <= data.length - i; j++) {
					if (data[j] < data[index]) {
						index = j;
					}
				}
				// 交换在位置data.length-i和index(最大值)两个数
				swap(data, data.length - i, index);
			}
		} else {
			System.out.println("您输入的排序类型错误!");
		}
		printArray(data);// 输出直接选择排序后的数组值
	}

	/**
	 * 插入排序 方法:将一个记录插入到已排好序的有序表(有可能是空表)中,从而得到一个新的记录数增1的有序表。 性能:比较次数O(n^2),n^2/4
	 * 复制次数O(n),n^2/4 比较次数是前两者的一般,而复制所需的CPU时间较交换少,所以性能上比冒泡排序提高一倍多,而比选择排序也要快。
	 * 
	 * @param data
	 *            要排序的数组
	 * @param sortType
	 *            排序类型
	 */
	public void insertSort(int[] data, String sortType) {
		if (sortType.equals("asc")) { // 正排序,从小排到大
			// 比较的轮数
			for (int i = 1; i < data.length; i++) {
				// 保证前i+1个数排好序
				for (int j = 0; j < i; j++) {
					if (data[j] > data[i]) {
						// 交换在位置j和i两个数
						swap(data, i, j);
					}
				}
			}
		} else if (sortType.equals("desc")) { // 倒排序,从大排到小
			// 比较的轮数
			for (int i = 1; i < data.length; i++) {
				// 保证前i+1个数排好序
				for (int j = 0; j < i; j++) {
					if (data[j] < data[i]) {
						// 交换在位置j和i两个数
						swap(data, i, j);
					}
				}
			}
		} else {
			System.out.println("您输入的排序类型错误!");
		}
		printArray(data);// 输出插入排序后的数组值
	}

	/**
	 * 反转数组的方法
	 * 
	 * @param data
	 *            源数组
	 */
	public void reverse(int[] data) {
		int length = data.length;
		int temp = 0;// 临时变量
		for (int i = 0; i < length / 2; i++) {
			temp = data[i];
			data[i] = data[length - 1 - i];
			data[length - 1 - i] = temp;
		}
		printArray(data);// 输出到转后数组的值
	}

	/**
	 * 快速排序 快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为两个子序列(sub-lists)。 步骤为:
	 * 1. 从数列中挑出一个元素,称为 "基准"(pivot), 2.
	 * 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分割之后,该基准是它的最后位置。这个称为分割(partition)操作。
	 * 3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
	 * 递回的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递回下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
	 * 
	 * @param data
	 *            待排序的数组
	 * @param low
	 * @param high
	 * @see SortTest#qsort(int[], int, int)
	 * @see SortTest#qsort_desc(int[], int, int)
	 */
	public void quickSort(int[] data, String sortType) {
		if (sortType.equals("asc")) { // 正排序,从小排到大
			qsort_asc(data, 0, data.length - 1);
		} else if (sortType.equals("desc")) { // 倒排序,从大排到小
			qsort_desc(data, 0, data.length - 1);
		} else {
			System.out.println("您输入的排序类型错误!");
		}
	}

	/**
	 * 快速排序的具体实现,排正序
	 * 
	 * @param data
	 * @param low
	 * @param high
	 */
	private void qsort_asc(int data[], int low, int high) {
		int i, j, x;
		if (low < high) { // 这个条件用来结束递归
			i = low;
			j = high;
			x = data[i];
			while (i < j) {
				while (i < j && data[j] > x) {
					j--; // 从右向左找第一个小于x的数
				}
				if (i < j) {
					data[i] = data[j];
					i++;
				}
				while (i < j && data[i] < x) {
					i++; // 从左向右找第一个大于x的数
				}
				if (i < j) {
					data[j] = data[i];
					j--;
				}
			}
			data[i] = x;
			qsort_asc(data, low, i - 1);
			qsort_asc(data, i + 1, high);
		}
	}

	/**
	 * 快速排序的具体实现,排倒序
	 * 
	 * @param data
	 * @param low
	 * @param high
	 */
	private void qsort_desc(int data[], int low, int high) {
		int i, j, x;
		if (low < high) { // 这个条件用来结束递归
			i = low;
			j = high;
			x = data[i];
			while (i < j) {
				while (i < j && data[j] < x) {
					j--; // 从右向左找第一个小于x的数
				}
				if (i < j) {
					data[i] = data[j];
					i++;
				}
				while (i < j && data[i] > x) {
					i++; // 从左向右找第一个大于x的数
				}
				if (i < j) {
					data[j] = data[i];
					j--;
				}
			}
			data[i] = x;
			qsort_desc(data, low, i - 1);
			qsort_desc(data, i + 1, high);
		}
	}

	/**
	 * 二分查找特定整数在整型数组中的位置(递归) 查找线性表必须是有序列表
	 * 
	 * @paramdataset
	 * @paramdata
	 * @parambeginIndex
	 * @paramendIndex
	 * @returnindex
	 */
	public int binarySearch(int[] dataset, int data, int beginIndex,
			int endIndex) {
		int midIndex = (beginIndex + endIndex) >>> 1; // 相当于mid = (low + high)
														// / 2,但是效率会高些
		if (data < dataset[beginIndex] || data > dataset[endIndex]
				|| beginIndex > endIndex)
			return -1;
		if (data < dataset[midIndex]) {
			return binarySearch(dataset, data, beginIndex, midIndex - 1);
		} else if (data > dataset[midIndex]) {
			return binarySearch(dataset, data, midIndex + 1, endIndex);
		} else {
			return midIndex;
		}
	}

	/**
	 * 二分查找特定整数在整型数组中的位置(非递归) 查找线性表必须是有序列表
	 * 
	 * @paramdataset
	 * @paramdata
	 * @returnindex
	 */
	public int binarySearch(int[] dataset, int data) {
		int beginIndex = 0;
		int endIndex = dataset.length - 1;
		int midIndex = -1;
		if (data < dataset[beginIndex] || data > dataset[endIndex]
				|| beginIndex > endIndex)
			return -1;
		while (beginIndex <= endIndex) {
			midIndex = (beginIndex + endIndex) >>> 1; // 相当于midIndex =
														// (beginIndex +
														// endIndex) / 2,但是效率会高些
			if (data < dataset[midIndex]) {
				endIndex = midIndex - 1;
			} else if (data > dataset[midIndex]) {
				beginIndex = midIndex + 1;
			} else {
				return midIndex;
			}
		}
		return -1;
	}

	// /////////////////////===================================测试====================//////////////////
	public static void main(String[] args) {
		SortTest ST = new SortTest();
		int[] array = ST.createArray();
		System.out.println("==========冒泡排序后(正序)==========");
		ST.bubbleSort(array, "asc");
		System.out.println("==========冒泡排序后(倒序)==========");
		ST.bubbleSort(array, "desc");

		array = ST.createArray();
		System.out.println("==========选择排序后(正序)==========");
		ST.selectSort(array, "asc");
		System.out.println("==========选择排序后(倒序)==========");
		ST.selectSort(array, "desc");
		
		array = ST.createArray();
        System.out.println("==========插入排序后(正序)==========");
        ST.insertSort(array, "asc");
        System.out.println("==========插入排序后(倒序)==========");
        ST.insertSort(array, "desc");

        array = ST.createArray();
        System.out.println("==========快速排序后(正序)==========");
        ST.quickSort(array, "asc");
        ST.printArray(array);
        System.out.println("==========快速排序后(倒序)==========");
        ST.quickSort(array, "desc");
        ST.printArray(array);
        System.out.println("==========数组二分查找==========");
        System.out.println("您要找的数在第" + ST.binarySearch(array, 74)+ "个位子。(下标从0计算)");

	}

}


参考文献:http://www.blogjava.net/yaozhongping/archive/2009/11/18/302832.html
分享到:
评论
19 楼 ora92 2009-12-23  
很好,good!
18 楼 xinshou 2009-12-22  
收藏收藏。
17 楼 liang010588 2009-12-20  
看到选择排序发现楼主的方法有缺陷:
例如给一数组:【-27 67 31 -42 16 0 -6 -51 30 18 】,
根据楼主选择排序正序得到结果为:【-42 -51 -27 0 -6 16 18 30 31 67 】,
在倒数第二次排序结果为:【-51 -42 -27 0 -6 16 18 30 31 67 】,
最后一次排序时:i=9,j=1,data.length-i=1,因此,并没有进入第二层循环,并进行if判断,此时index=0,然后就调用了swap语句,,对数组中0和1元素进行交换,导致结果错误,建议第二层循环将 j<data.length-i 改为 j<=data.length-i ,即可。
说的可能有点乱,新手,见谅。
16 楼 jialuweb 2009-12-18  
算法 和 排序的方法 是要好好看看的 那个比较重要 我现在写逻辑多了 慢慢都忘了 一些基础的东东了  可以看看重新理解一下 过程
15 楼 anyasir 2009-12-17  
刚看到冒泡。。。其实冒泡不用“数组有多长就做几轮循环”,而是做数组长度-1轮。。因为最后那个元素已经不用比较了
。。。继续。。。
14 楼 fantasybei 2009-12-17  
lz把公司名去掉吧.... - -!
13 楼 EldonReturn 2009-12-16  
适合打印出来去面试的路上看,呵呵
12 楼 djob2008 2009-12-16  
知道海量数据如何排吗?给你几G数据
11 楼 gjhohj 2009-12-16  
不错,马上练练。
10 楼 xu283900277xiu 2009-12-15  
内容比较全面,最近我也写过类似的,不过还没有完成。
9 楼 jianghn01 2009-12-15  
  学java不要久,前面也做了一些相关的题目。正好对比下思路。
8 楼 berlou 2009-12-15  
没细看, 抱歉的说句直观感觉价值不大。
排序算法的实现都好多了吧, 再写一个出来是更快还是更通用?
起码从int[]的使用上就知道通用性肯定不如comparable或者comparator来的通用。
性能上, 等算法帝出来解释一下吧, 跟JDK包里的比有改进?
7 楼 flyfan 2009-12-15  
还挺全面的,排序我用得比较少,楼主辛苦了,收藏之
6 楼 fengsky491 2009-12-15  
我还真不会,看看
5 楼 chanball 2009-12-15  
javaeye的字体怎么那么丑的啦,记得以前不是这样子的呀
4 楼 xfbbsnet 2009-12-15  
拿来练练笔还是不错的~~
3 楼 曾经de迷茫 2009-12-15  
又见排序。。
2 楼 moshalanye 2009-12-15  
   不错的东西!值得收藏下!
1 楼 raomengwen 2009-12-15  
内容很全面,分别把所有的方法都罗列出来了,非常的好

相关推荐

    java冒泡排序java冒泡排序集锦方法!

    以上三个知识点总结了关于 Java 排序的一些基本应用,包括基础的冒泡排序算法、使用标准库 `Collections.sort()` 进行排序以及使用 `RuleBasedCollator` 实现国际化排序等。这些技术对于编写高效、可维护的 Java ...

    java排序.txt

    根据提供的文件信息,我们可以归纳出以下关于Java排序的相关知识点: ### 一、文件基本信息 - **文件名**:`java排序.txt` - **文件描述**:该文本文件主要介绍了几种常用的Java排序算法,并通过示例代码展示了...

    JAVA排序汇总 各种排序

    在Java编程语言中,排序是数据处理中非常基础且重要的操作。本文将全面解析Java中的各种排序算法,帮助你理解并掌握它们的核心概念、实现方式以及适用场景。 1. 冒泡排序(Bubble Sort) 冒泡排序是最简单的排序...

    java中文排序,数字字母汉字排序

    在Java编程语言中,对包含中文、数字和字母的数据进行排序是一项常见的任务。这个场景下,我们关注的是如何实现一个自定义的排序规则,按照数字、字母和汉字的顺序进行排列。以下是对这一主题的详细解释。 首先,...

    java排序简单介绍

    Java排序是程序开发中常见的一种任务,主要用于对数据集合进行有序排列。在Java中,有多种内置和自定义的排序算法可供选择,每种都有其特定的适用场景和性能特点。下面将详细介绍几种常见的Java排序方法。 1. **...

    java 中文姓氏 排序

    ### Java 中文姓氏排序详解 #### 一、引言 在处理中文数据时,我们经常需要对含有中文姓名的数据进行排序。Java 提供了多种方式进行排序,包括使用 `Collections.sort()` 方法配合自定义比较器(`Comparator`)。...

    面向对象java排序包

    【面向对象Java排序包】是基于Java编程语言设计的一个专门用于处理排序问题的软件组件。这个包充分体现了面向对象的设计原则,将数据结构、算法和业务逻辑封装在独立的对象中,提高了代码的可读性和可维护性。它不仅...

    java排序代码大全

    根据给定文件中的标题“Java排序代码大全”以及描述与标签中的关键词如“Java排序”、“排序大全”和“算法”,本文将详细解读文件中所包含的几种排序算法的实现方式,并结合具体代码进行深入分析。 ### 快速排序...

    Java 实现ip 地址排序

    Java ip 地址排序Java ip 地址排序Java ip 地址排序Java ip 地址排序

    java排序大全(含各种排序算法)

    Java排序算法是编程中基础且重要的概念,它们用于组织数组或列表中的元素,使其按照特定顺序排列。在本文中,我们将探讨几种常见的排序算法的Java实现,包括插入排序、冒泡排序、选择排序、Shell排序、快速排序、...

    java排序算法使用及场景说明

    Java 排序算法使用及场景说明 本文档主要介绍了 Java 排序算法的使用和场景说明,包括了五个实践场景的解决方案。 Scenario 1: 找出两个文件共同的 URL 在这个场景中,我们有两个文件 a 和 b,每个文件中存放了 ...

    java排序大全.txt

    java排序算法大全 为了便于管理,先引入个基础类: 一 插入排序 二 冒泡排序 三,选择排序 四 Shell排序 五 快速排序 六 归并排序 等等

    Java排序算法(桶排序,基数排序等)

    Java 中实现排序算法通常涉及到多种方法,每种算法都有其特定的适用场景和性能特点。下面将详细介绍标题和描述中提到的一些常见排序算法,并提供Java实现。 1. 插入排序(Insertion Sort) 插入排序是一种简单直观...

    java排序可视化页面

    Java排序可视化页面是一种用于教学和理解排序算法的强大工具。它通过图形化的方式展示了排序过程,使得用户能够直观地看到冒泡排序、选择排序和插入排序这三种基础排序算法的工作原理。接下来,我们将深入探讨这些...

    Java排序算法实现

    Java排序算法实现 Java排序算法实现 Java排序算法实现

    Java排序算法大全

    Java排序算法大全是一份专为Java开发者准备的学习资源,涵盖了各种经典的排序算法,旨在帮助初学者和有经验的程序员深入理解排序的原理和实现。排序是计算机科学中的基础且重要的概念,它在数据处理、数据库操作、...

    Java排序算法详细整理

    【Java排序算法详细整理】 在计算机科学中,排序算法是用于对一组数据进行排列的算法。在Java中,实现各种排序算法有助于理解数据结构和算法的原理,同时也能提高编程能力。以下是对Java中常见的几种排序算法的详细...

    java 排序 面试题

    ### Java排序方法面试知识点详解 在Java编程领域中,排序算法是面试中常见的技术考察点之一。本篇文章将深入分析几种基本的排序算法,并通过具体的Java代码示例来阐述每种算法的特点及其应用场景。 #### 1. 插入...

Global site tag (gtag.js) - Google Analytics