JDBC批量Insert深度优化(有事务)
环境:
MySQL 5.1
RedHat Linux AS 5
JavaSE 1.5
DbConnectionBroker 微型数据库连接池
测试的方案:
执行10万次Insert语句,使用不同方式。
A组:静态SQL,自动提交,没事务控制(MyISAM引擎)
1、逐条执行10万次
2、分批执行将10万分成m批,每批n条,分多种分批方案来执行。
B组:预编译模式SQL,自动提交,没事务控制(MyISAM引擎)
1、逐条执行10万次
2、分批执行将10万分成m批,每批n条,分多种分批方案来执行。
-------------------------------------------------------------------------------------------
C组:静态SQL,不自动提交,有事务控制(InnoDB引擎)
1、逐条执行10万次
2、分批执行将10万分成m批,每批n条,分多种分批方案来执行。
D组:预编译模式SQL,不自动提交,有事务控制(InnoDB引擎)
1、逐条执行10万次
2、分批执行将10万分成m批,每批n条,分多种分批方案来执行。
本次主要测试C、D组,并得出测试结果。
SQL代码
DROP TABLE IF EXISTS tuser;
CREATE TABLE tuser (
id bigint(20) NOT NULL AUTO_INCREMENT,
name varchar(12) DEFAULT NULL,
remark varchar(24) DEFAULT NULL,
createtime datetime DEFAULT NULL,
updatetime datetime DEFAULT NULL,
PRIMARY KEY (id)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;
C、D组测试代码:
package testbatch;
import java.io.IOException;
import java.sql.*;
/**
* JDBC批量Insert优化(下)
*
* @author leizhimin 2009-7-29 10:03:10
*/
public class TestBatch {
public static DbConnectionBroker myBroker = null;
static {
try {
myBroker = new DbConnectionBroker("com.mysql.jdbc.Driver",
"jdbc:mysql://192.168.104.163:3306/testdb",
"vcom", "vcom", 2, 4,
"c:\\testdb.log", 0.01);
} catch (IOException e) {
e.printStackTrace();
}
}
/**
* 初始化测试环境
*
* @throws SQLException 异常时抛出
*/
public static void init() throws SQLException {
Connection conn = myBroker.getConnection();
conn.setAutoCommit(false);
Statement stmt = conn.createStatement();
stmt.addBatch("DROP TABLE IF EXISTS tuser");
stmt.addBatch("CREATE TABLE tuser (\n" +
" id bigint(20) NOT NULL AUTO_INCREMENT,\n" +
" name varchar(12) DEFAULT NULL,\n" +
" remark varchar(24) DEFAULT NULL,\n" +
" createtime datetime DEFAULT NULL,\n" +
" updatetime datetime DEFAULT NULL,\n" +
" PRIMARY KEY (id)\n" +
") ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8");
stmt.executeBatch();
conn.commit();
myBroker.freeConnection(conn);
}
/**
* 100000条静态SQL插入
*
* @throws Exception 异常时抛出
*/
public static void testInsert() throws Exception {
init(); //初始化环境
Long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
String sql = "\n" +
"insert into testdb.tuser \n" +
"\t(name, \n" +
"\tremark, \n" +
"\tcreatetime, \n" +
"\tupdatetime\n" +
"\t)\n" +
"\tvalues\n" +
"\t('" + RandomToolkit.generateString(12) + "', \n" +
"\t'" + RandomToolkit.generateString(24) + "', \n" +
"\tnow(), \n" +
"\tnow()\n" +
")";
Connection conn = myBroker.getConnection();
conn.setAutoCommit(false);
Statement stmt = conn.createStatement();
stmt.execute(sql);
conn.commit();
myBroker.freeConnection(conn);
}
Long end = System.currentTimeMillis();
System.out.println("单条执行100000条Insert操作,共耗时:" + (end - start) / 1000f + "秒!");
}
/**
* 批处理执行静态SQL测试
*
* @param m 批次
* @param n 每批数量
* @throws Exception 异常时抛出
*/
public static void testInsertBatch(int m, int n) throws Exception {
init(); //初始化环境
Long start = System.currentTimeMillis();
for (int i = 0; i < m; i++) {
//从池中获取连接
Connection conn = myBroker.getConnection();
conn.setAutoCommit(false);
Statement stmt = conn.createStatement();
for (int k = 0; k < n; k++) {
String sql = "\n" +
"insert into testdb.tuser \n" +
"\t(name, \n" +
"\tremark, \n" +
"\tcreatetime, \n" +
"\tupdatetime\n" +
"\t)\n" +
"\tvalues\n" +
"\t('" + RandomToolkit.generateString(12) + "', \n" +
"\t'" + RandomToolkit.generateString(24) + "', \n" +
"\tnow(), \n" +
"\tnow()\n" +
")";
//加入批处理
stmt.addBatch(sql);
}
stmt.executeBatch(); //执行批处理
conn.commit();
// stmt.clearBatch(); //清理批处理
stmt.close();
myBroker.freeConnection(conn); //连接归池
}
Long end = System.currentTimeMillis();
System.out.println("批量执行" + m + "*" + n + "=" + m * n + "条Insert操作,共耗时:" + (end - start) / 1000f + "秒!");
}
/**
* 100000条预定义SQL插入
*
* @throws Exception 异常时抛出
*/
public static void testInsert2() throws Exception { //单条执行100000条Insert操作,共耗时:40.422秒!
init(); //初始化环境
Long start = System.currentTimeMillis();
String sql = "" +
"insert into testdb.tuser\n" +
" (name, remark, createtime, updatetime)\n" +
"values\n" +
" (?, ?, ?, ?)";
for (int i = 0; i < 100000; i++) {
Connection conn = myBroker.getConnection();
conn.setAutoCommit(false);
PreparedStatement pstmt = conn.prepareStatement(sql);
pstmt.setString(1, RandomToolkit.generateString(12));
pstmt.setString(2, RandomToolkit.generateString(24));
pstmt.setDate(3, new Date(System.currentTimeMillis()));
pstmt.setDate(4, new Date(System.currentTimeMillis()));
pstmt.executeUpdate();
conn.commit();
pstmt.close();
myBroker.freeConnection(conn);
}
Long end = System.currentTimeMillis();
System.out.println("单条执行100000条Insert操作,共耗时:" + (end - start) / 1000f + "秒!");
}
/**
* 批处理执行预处理SQL测试
*
* @param m 批次
* @param n 每批数量
* @throws Exception 异常时抛出
*/
public static void testInsertBatch2(int m, int n) throws Exception {
init(); //初始化环境
Long start = System.currentTimeMillis();
String sql = "" +
"insert into testdb.tuser\n" +
" (name, remark, createtime, updatetime)\n" +
"values\n" +
" (?, ?, ?, ?)";
for (int i = 0; i < m; i++) {
//从池中获取连接
Connection conn = myBroker.getConnection();
conn.setAutoCommit(false);
PreparedStatement pstmt = conn.prepareStatement(sql);
for (int k = 0; k < n; k++) {
pstmt.setString(1, RandomToolkit.generateString(12));
pstmt.setString(2, RandomToolkit.generateString(24));
pstmt.setDate(3, new Date(System.currentTimeMillis()));
pstmt.setDate(4, new Date(System.currentTimeMillis()));
//加入批处理
pstmt.addBatch();
}
pstmt.executeBatch(); //执行批处理
conn.commit();
// pstmt.clearBatch(); //清理批处理
pstmt.close();
myBroker.freeConnection(conn); //连接归池
}
Long end = System.currentTimeMillis();
System.out.println("批量执行" + m + "*" + n + "=" + m * n + "条Insert操作,共耗时:" + (end - start) / 1000f + "秒!");
}
public static void main(String[] args) throws Exception {
init();
Long start = System.currentTimeMillis();
System.out.println("--------C组测试----------");
testInsert();
testInsertBatch(100, 1000);
testInsertBatch(250, 400);
testInsertBatch(400, 250);
testInsertBatch(500, 200);
testInsertBatch(1000, 100);
testInsertBatch(2000, 50);
testInsertBatch(2500, 40);
testInsertBatch(5000, 20);
Long end1 = System.currentTimeMillis();
System.out.println("C组测试过程结束,全部测试耗时:" + (end1 - start) / 1000f + "秒!");
System.out.println("--------D组测试----------");
testInsert2();
testInsertBatch2(100, 1000);
testInsertBatch2(250, 400);
testInsertBatch2(400, 250);
testInsertBatch2(500, 200);
testInsertBatch2(1000, 100);
testInsertBatch2(2000, 50);
testInsertBatch2(2500, 40);
testInsertBatch2(5000, 20);
Long end2 = System.currentTimeMillis();
System.out.println("D组测试过程结束,全部测试耗时:" + (end2 - end1) / 1000f + "秒!");
}
}
执行结果:
--------C组测试----------
单条执行100000条Insert操作,共耗时:103.656秒!
批量执行100*1000=100000条Insert操作,共耗时:31.328秒!
批量执行250*400=100000条Insert操作,共耗时:31.406秒!
批量执行400*250=100000条Insert操作,共耗时:31.75秒!
批量执行500*200=100000条Insert操作,共耗时:31.438秒!
批量执行1000*100=100000条Insert操作,共耗时:31.968秒!
批量执行2000*50=100000条Insert操作,共耗时:32.938秒!
批量执行2500*40=100000条Insert操作,共耗时:33.141秒!
批量执行5000*20=100000条Insert操作,共耗时:35.265秒!
C组测试过程结束,全部测试耗时:363.656秒!
--------D组测试----------
单条执行100000条Insert操作,共耗时:107.61秒!
批量执行100*1000=100000条Insert操作,共耗时:32.64秒!
批量执行250*400=100000条Insert操作,共耗时:32.641秒!
批量执行400*250=100000条Insert操作,共耗时:33.109秒!
批量执行500*200=100000条Insert操作,共耗时:32.859秒!
批量执行1000*100=100000条Insert操作,共耗时:33.547秒!
批量执行2000*50=100000条Insert操作,共耗时:34.312秒!
批量执行2500*40=100000条Insert操作,共耗时:34.672秒!
批量执行5000*20=100000条Insert操作,共耗时:36.672秒!
D组测试过程结束,全部测试耗时:378.922秒!
测试结果意想不到吧,最短时间竟然超过上篇。观察整个测试结果,发现总时间很长,原因是逐条执行的效率太低了。
结论:
在本测试条件下,得出结论:
数据库连接池控制下,不自动提交,事务控制(InnoDB引擎)
1、逐条执行的效率很低很低,尽可能避免逐条执行。
2、事务控制下,静态SQL的效率超过预处理SQL。
3、分批的大小对效率影响挺大的,一般来说,事务控制下,分批大小在100-1000之间比较合适。
4、谈到优化方式,上面的批处理就是很好的优化策略。
大总结:
对比上篇没事务的测试结果,得出一个全面的结论:
1、连接池最基本的也是最重要的优化策略,总能大幅提高性能。
2、批处理在效率上总是比逐条处理有优势,要处理的数据的记录条数越大,批处理的优势越明显,批处理还有一个好处就是减少了对数据库的链接次数,从而减轻数据库的压力。
3、批处理执行SQL的时候,批处理的分批的大小与数据库的吞吐量以及硬件配置有很大关系,需要通过测试找到最佳的分批大小,一般在50-1000之间。
4、预处理SQL在没事务的表上效率较高,在有实物的情况下比静态SQL稍有不及。但预定义SQL还有个好处就是消耗的内存较少,静态SQL串会占用大量的内存资源,容易导致内存溢出的问题。因此批量执行时候可以优先选择预定义SQL。
5、在批处理执行的时候,每批执行完成后,最好显式的调用pstmt.close()或stmt.close()方法,以便尽快释放执行过的SQL语句,提高内存利用率。
6、对于有大量SELECT操作,MyISAM是更好的选择;对于有大量INSERT和UPDATE操作的表,InnoDB效率更好。
7、虽然测试结果只能反映特定情况下的一些事实,以上的优化策略是普遍策略,可以明显缩短寻找最优策略的时间,对于效率要求很高的程序,还应该做并发性等测试。
8、测试是件很辛苦的事情,你需要有大量的事实来证明你的优化是有效的,而不能单单凭经验,因为每个机器的环境都不一样,使用的方式也不同。
本文出自 “熔 岩” 博客,转载请与作者联系!
分享到:
相关推荐
5. **连接池**:可以通过`jdbc_pool_timeout`、`jdbc_validate_connection`等设置,优化数据库连接的管理和性能。 **应用场景** - 日志分析:将日志数据存储到数据库,便于进行复杂SQL查询和报表生成。 - 实时监控...
20.4 Java应用通过JDBC API声明JDBC事务 20.5 Java应用通过Hibernate API声明JDBC事务 20.5.1 处理异常 20.5.2 Session与事务的关系 20.5.3 设定事务超时 20.6 Java应用通过Hibernate API声明JTA事务 ...
20.4 Java应用通过JDBC API声明JDBC事务 20.5 Java应用通过Hibernate API声明JDBC事务 20.5.1 处理异常 20.5.2 Session与事务的关系 20.5.3 设定事务超时 20.6 Java应用通过Hibernate API声明JTA事务 ...
20.4 Java应用通过JDBC API声明JDBC事务 20.5 Java应用通过Hibernate API声明JDBC事务 20.5.1 处理异常 20.5.2 Session与事务的关系 20.5.3 设定事务超时 20.6 Java应用通过Hibernate API声明JTA事务 ...
20.4 Java应用通过JDBC API声明JDBC事务 20.5 Java应用通过Hibernate API声明JDBC事务 20.5.1 处理异常 20.5.2 Session与事务的关系 20.5.3 设定事务超时 20.6 Java应用通过Hibernate API声明JTA事务 ...
《MySQL与Java开发者指南》是一本深度探讨MySQL数据库与Java编程语言如何协同工作的专业书籍,由Mark Matthews、Jim Cole和Joseph D. Gradecki三位作者共同撰写。本书旨在为开发人员提供一个全面的理解框架,帮助...
**Ibatis API 深度解析** Ibatis,作为一个轻量级的持久层框架,它在Java开发领域中被广泛使用。Ibatis 提供了一种将SQL语句与Java代码解耦的方式,使得数据库操作更加灵活,易于维护。本文将深入探讨Ibatis API的...
本篇文章将针对从Apache网站通过SVN下载的iBatis-2源代码进行深度剖析,帮助开发者更深入地理解其内部机制。 1. **iBatis框架概述** iBatis提供了一个SQL映射框架,允许开发者编写动态SQL,将数据库操作与业务逻辑...
1. 插入(Insert):使用Session的save()或saveOrUpdate()方法,将Java对象持久化到数据库。 2. 更新(Update):调用Session的update()或saveOrUpdate()方法,更新数据库中的记录。 3. 删除(Delete):通过Session...
《SQLite在Java中的应用深度解析》 SQLite是一个轻量级的、开源的、自包含的数据库引擎,广泛应用于移动设备、嵌入式系统以及桌面应用程序。在Java开发中,SQLite作为一个方便的数据存储解决方案,尤其适合那些对...
3. **插入数据**:使用`insert()`方法插入数据,可以是单条记录,也可以是批量插入。 4. **查询数据**:使用`select()`方法构造查询条件,结合`forEach()`遍历查询结果。 5. **更新数据**:`update()`方法用于更新...