`

弧度和角度

阅读更多

一、角的两种单位
“ 弧度”和“度”是度量角大小的两种不同的单位。就像“米”和“市尺”是度量长度大小的两种不同的单位一样。
  在flash里规定:在旋转角度(rotation)里的角,以“度”为单位;而在三角函数里的角要以“弧度”为单位。这个规定是我们首先要记住的!!!例如:rotation2--是旋转“2度”;sin(π/2)--是大小为“π/2弧度”的角的正弦。
  
     二、弧度的定义
     所谓“弧度的定义”就是说,1弧度的角大小是怎样规定的?
     我们知道“度”的定义是,“两条射线从圆心向圆周射出,形成一个夹角和夹角正对的一段弧。当这段弧长正好等于圆周长的360分之一时,两条射线的夹角的大小为1度。(如图1)
   
     那么,弧度又是怎样定义的呢? 弧度的定义是:两条射线从圆心向圆周射出,形成一个夹角和夹角正对的一段弧。当这段弧长正好等于圆的半径时,两条射线的夹角大小为1弧度。(如图2)
       比较一下,度和弧度的这两个定义非常相似。它们的区别,仅在于角所对的弧长大小不同。度的是等于圆周长的360分之一,而弧度的是等于半径。
       简单的说,弧度的定义是,当角所对的弧长等于半径时,角的大小为1弧度。



此主题相关图片如下:


    角所对的弧长是半径的几倍,那么角的大小就是几弧度。
它们的关系可用下式表示和计算:
    角(弧度)=弧长/半径
圆的周长是半径的 2π倍,所以一个周角(360度)是 2π弧度。
半圆的长度是半径的 π倍,所以一个平角(180度)是 π弧度。


    三、度跟弧度之间的换算
    据上所述,一个平角是 π 弧度。
即    180度=π弧度
由此可知:
    1度=π/180 弧度 ( ≈0.017453弧度 )
因此,得到 把度化成弧度的公式:
    弧度=度×π/180
例如:
      90°=90×π/180 =π/2 弧度
      60°=60×π/180 =π/3 弧度
      45°=45×π/180 =π/4 弧度
      30°=30×π/180 =π/6 弧度
      120°=120×π/180 =2π/3 弧度


反过来,弧度化成度怎么算?
因为    π弧度=180°
所以  1弧度=180°/π (≈57.3°)
因此,可得到 把弧度化成度的公式:
     度=弧度×180°/π
例如:
      4π/3 弧度=4π/3 ×180°/π
     = 240°


也许有些朋友会说,究竟是乘以“π/180 ”,还是“180°/π”很容易搞错。其实你只要记住:π是π弧度,180是180度。我要化成什么单位,就要把有这个单位的放在分子上。也就是说我要化成弧度,就要把π弧度放在分子上--乘以π/180 。另外,1度比1弧度要小得多,大约只有0.017453弧度(π/180≈0.017453)。所以把度化成弧度后,数字肯定要变小,那么化弧度时一定是乘以π/180 了。能够这样想一想,就不会搞错了。


在AS代码里把“π”写成“PI”。又因为“π”、“sin”都是“数学函数”,按规定要在前面加上“Math.”(Math是英语中“数学”Mathematics的缩写),加上后写成“Math.PI”、“Math.sin”。
所以    sin30°就得写成 Math.sin(30*Math.PI/180)。其中小括弧内的部分是把30°化为弧度,即30×π/180 。


如果把这些都弄明白了,你看到弧度,不会再糊涂了吧。

分享到:
评论

相关推荐

    弧度与角度相互之间转换公式

    弧度和角度是测量角度大小的两种基本单位,它们在数学和物理学中都有广泛的应用。如同长度单位中的“米”和“市尺”,弧度和度也是用来衡量角的长度,只是它们的定义和转换方式有所不同。 一、弧度与度的定义 1. *...

    弧度和角度转换

    测量中角度和弧度间的转换,

    地理经纬度弧度角度转换

    经纬度的单位有两种主要表示方式:角度和弧度。这两种单位之间的转换是地理信息系统(GIS)和数学计算中的常见操作。本节将深入探讨弧度和角度的转换原理,并提供实际应用中的转换方法。 一、弧度与角度的基本概念 ...

    弧度与角度转换AS代码

    在计算机编程中,特别是在2D和3D图形处理、数学计算以及物理模拟等领域,角度和弧度是两个常用的量。角度通常用于日常生活中,而弧度是数学中的标准单位,尤其是在高级数学运算中。在ActionScript(AS)编程中,理解...

    【老生谈算法】MATLAB弧度与角度转换原理.docx

    了解弧度和角度之间的转换原理非常重要,因为在科学计算和工程应用中,经常需要在这两种角度表示方式之间进行转换。 一、弧度与角度的定义 弧度是以圆心角为基准的角度表示方式,它是以弧长为半径的圆弧所对应的...

    rad_dms.zip_rockiss_弧度转角度

    综上所述,"rad_dms.zip_rockiss_弧度转角度"可能包含了一个实用的工具库,用于在编程环境中进行角度和弧度的转换,以及判断弧度所在的象限。这样的工具对于任何需要处理角度数据的项目都极其有用。

    弧度值转角度值,C#初学者入门学习使用

    在编程领域,尤其是在科学计算和图形处理中,经常会遇到将弧度值转换为角度值的情况。C#作为一款广泛使用的编程语言,提供了丰富的数学函数来处理这类问题,非常适合初学者入门学习。本教程将深入讲解如何在C#环境中...

    角度转化_C++_角度转换_

    在IT行业中,尤其是在进行数值计算或者图形处理时,我们经常需要在角度和弧度之间进行转换。C++作为一门强大的编程语言,提供了丰富的数学库来支持这种转换。本篇文章将详细探讨C++中如何实现角度到弧度以及弧度到...

    基于MFC的的测量角度、十进制角度、弧度之间的互换Angle.zip

    在编程领域,尤其是在科学计算和图形处理中,角度和弧度是常见的度量单位。MFC(Microsoft Foundation Classes)是微软提供的一种C++类库,用于构建Windows应用程序。本项目"基于MFC的的测量角度、十进制角度、弧度...

    角度-弧度互换工具

    在IT领域,尤其是在科学计算、工程应用以及游戏开发中,角度和弧度是两种常见的表示旋转的单位。角度-弧度互换工具是为了解决这两种单位之间的转换问题而设计的,这对于处理与几何、物理或者图形编程相关的计算至关...

    JIAODUZHUANHUAN.zip_VC角度_角度弧度_角度转换

    标题“JIAODUZHUANHUAN.zip_VC角度_角度弧度_角度转换”暗示我们关注的是一个用VC++编写的程序,该程序可能是一个图形用户界面应用,用于执行角度和弧度之间的相互转换。在数学和计算机科学中,角度和弧度是衡量旋转...

    弧度化角度

    c++,弧度化角度

    弧度制同步练习.doc

    这种转换方法在解决涉及角度和弧度的综合问题时尤为关键,如计算圆周运动中的角速度、时间与弧长的关系。 弧度与度数的互换不仅在数学理论中重要,在实际应用中也非常重要。例如,在工程测量、天文观测等领域,常常...

    基于MATLAB平台角度(经纬度)弧度转换

    假设我们有一个变量`angle`存储了上述格式的角度值,首先需要将角度值分离成度、分和秒,然后转换成弧度。具体步骤如下: - 将总角度拆分为度、分和秒:`degrees = floor(angle);`,`minutes = floor((angle - ...

    角度换算工具(度和弧度互相换算).rar

    在数学和工程领域,度和弧度是衡量角度大小的两种基本单位。理解并熟练运用这两种单位间的转换是至关重要的。VB(Visual Basic)是一种广泛使用的编程语言,它以其简单易学、功能强大的特点深受开发者喜爱。本次我们...

    python 弧度与角度互转实例

    首先,我们要了解弧度和角度之间的关系。在数学中,一个完整的圆周(360度)对应的弧度值是2π。因此,一个角度可以通过乘以π/180来转换为弧度,而一个弧度可以通过乘以180/π来转换为角度。 在给定的代码示例中,...

    角度转弧度.rar

    机器人角度转化弧度; 使用前需将文件夹中的 Rob_radian.txt 文件复制到C盘根目录下; 然后运行 Robot_radian.exe.exe,根据提示操作输入相应的机器人关节 角度,按enter键结束。之后计算出的弧度结果会显示在Rob_...

    角度转化弧度

    角度转化为弧度,带界面,实现简单角度转弧度,有简单的异常处理。

    角度弧度格式转换

    包含以下内容,支持不同格式的角度格式转换,角度转换为弧度,弧度转换为角度等 % deg2rad - Degrees to radians % dms2deg - Degrees,minutes,seconds to degrees % dms2rad - Degrees,minutes,seconds to radians ...

    RadToReg.rar

    在计算机科学中,特别是在图形学、物理学以及工程计算等领域,弧度和角度的转换是一个常见的需求。"RadToReg.rar" 文件提供了一个实用的小工具,用于便捷地进行这种转换。这个小工具是用Qt5.3.1框架和Visual Studio ...

Global site tag (gtag.js) - Google Analytics