`
bingobird
  • 浏览: 44929 次
社区版块
存档分类
最新评论
阅读更多

TCP/IP 是很多的不同的协议组成,实际上是一个协议组,TCP 用户数据报表协议(也称作TCP 传输控制协议,Transport Control Protocol。可靠的主机到主机层协议。这里要先强调一下,传输控制协议是OSI 网络的第四层的叫法,TCP 传输控制协议是TCP/IP 传输的6 个基本协议的一种。两个TCP 意思非相同。)。TCP 是一种可靠的面向连接的传送服务。

它在传送数据时是分段进行的,主机交换数据必须建立一个会话。它用比特流通信,即数据被作为无结构的字节流。通过每个TCP 传输的字段指定顺序号,以获得可靠性。是在OSI参考模型中的第四层,TCP 是使用IP 的网间互联功能而提供可靠的数据传输,IP 不停的把报文放到网络上,而TCP 是负责确信报文到达。在协同IP 的操作中TCP 负责:握手过程、报文管理、流量控制、错误检测和处理(控制),可以根据一定的编号顺序对非正常顺序的报文给予从新排列顺序。关于TCP 的RFC 文档有RFC793、RFC791、RFC1700。

在TCP 会话初期,有所谓的“三握手”:对每次发送的数据量是怎样跟踪进行协商使数据段的发送和接收同步,根据所接收到的数据量而确定的数据确认数及数据发送、接收完毕后何时撤消联系,并建立虚连接。为了提供可靠的传送,TCP 在发送新的数据之前,以特定的顺序将数据包的序号,并需要这些包传送给目标机之后的确认消息。TCP 总是用来发送大批量的数据。当应用程序在收到数据后要做出确认时也要用到TCP。由于TCP 需要时刻跟踪,这需要额外开销,使得TCP 的格式有些显得复杂。下面就让我们看一个TCP 的经典案例,这是后来被称为MITNICK 攻击中KEVIN 开创了两种攻击技术:

TCP 会话劫持

SYN FLOOD(同步洪流)

在这里我们讨论的时TCP 会话劫持的问题。

先让我们明白TCP 建立连接的基本简单的过程。为了建设一个小型的模仿环境我们假设有3 台接入互联网的机器。A 为攻击者操纵的攻击机。B 为中介跳板机器(受信任的服务器)。C 为受害者使用的机器(多是服务器),这里把C 机器锁定为目标机器。A 机器向B机器发送SYN 包,请求建立连接,这时已经响应请求的B 机器会向A 机器回应SYN/ACK表明同意建立连接,当A 机器接受到B 机器发送的SYN/ACK 回应时,发送应答ACK 建立A 机器与B 机器的网络连接。这样一个两台机器之间的TCP 通话信道就建立成功了。B 终端受信任的服务器向C 机器发起TCP 连接,A 机器对服务器发起SYN 信息,使C 机器不能响应B 机器。在同时A 机器也向B 机器发送虚假的C 机器回应的SYN 数据包,接收到SYN 数据包的B 机器(被C 机器信任)开始发送应答连接建立的SYN/ACK 数据包,这时C 机器正在忙于响应以前发送的SYN 数据而无暇回应B 机器,而A 机器的攻击者预测出B 机器包的序列号(现在的TCP 序列号预测难度有所加大)假冒C 机器向B 机器发送应答ACK 这时攻击者骗取B 机器的信任,假冒C 机器与B 机器建立起TCP 协议的对话连接。这个时候的C 机器还是在响应攻击者A 机器发送的SYN 数据。

TCP 协议栈的弱点:TCP 连接的资源消耗,其中包括:数据包信息、条件状态、序列号等。通过故意不完成建立连接所需要的三次握手过程,造成连接一方的资源耗尽。

通过攻击者有意的不完成建立连接所需要的三次握手的全过程,从而造成了C 机器的资源耗尽。序列号的可预测性,目标主机应答连接请求时返回的SYN/ACK 的序列号时可预测的。(早期TCP 协议栈,具体的可以参见1981 年出的关于TCP 雏形的RFC793 文档)

TCP 头结构

TCP 协议头最少20 个字节,包括以下的区域(由于翻译不禁相同,文章中给出相应的英文单词):

TCP 源端口(Source Port):16 位的源端口其中包含初始化通信的端口。源端口和源IP 地址的作用是标示报问的返回地址。

TCP 目的端口(Destination port):16 位的目的端口域定义传输的目的。这个端口指明报文接收计算机上的应用程序地址接口。

TCP 序列号(序列码,Sequence Number):32 位的序列号由接收端计算机使用,重新分段的报文成最初形式。当SYN 出现,序列码实际上是初始序列码(ISN),而第一个数据字节是ISN+1。这个序列号(序列码)是可以补偿传输中的不一致。

TCP 应答号(Acknowledgment Number):32 位的序列号由接收端计算机使用,重组分段的报文成最初形式。,如果设置了ACK 控制位,这个值表示一个准备接收的包的序列码。

数据偏移量(HLEN):4 位包括TCP 头大小,指示何处数据开始。

保留(Reserved):6 位值域,这些位必须是0。为了将来定义新的用途所保留。

标志(Code Bits):6 位标志域。表示为:紧急标志、有意义的应答标志、推、重置连接标志、同步序列号标志、完成发送数据标志。按照顺序排列是:URG、ACK、PSH、RST、SYN、FIN。

窗口(Window):16 位,用来表示想收到的每个TCP 数据段的大小。

校验位(Checksum):16 位TCP 头。源机器基于数据内容计算一个数值,收信息机要与源机器数值结果完全一样,从而证明数据的有效性。

优先指针(紧急,Urgent Pointer):16 位,指向后面是优先数据的字节,在URG

标志设置了时才有效。如果URG 标志没有被设置,紧急域作为填充。加快处理标示为紧急的数据段。

选项(Option):长度不定,但长度必须以字节。如果没有选项就表示这个一字节的域等于0。

填充:不定长,填充的内容必须为0,它是为了数学目的而存在。目的是确保空间的可预测性。保证包头的结合和数据的开始处偏移量能够被32 整除,一般额外的零以保证TCP 头是32 位的整数倍。

标志控制功能

URG:紧急标志

紧急(The urgent pointer) 标志有效。紧急标志置位,

ACK:确认标志

确认编号(Acknowledgement Number)栏有效。大多数情况下该标志位是置位的。

TCP 报头内的确认编号栏内包含的确认编号(w+1,Figure:1)为下一个预期的序列编号,同

时提示远端系统已经成功接收所有数据。

PSH:推标志

该标志置位时,接收端不将该数据进行队列处理,而是尽可能快将数据转由应用

处理。在处理telnet 或rlogin 等交互模式的连接时,该标志总是置位的。

RST:复位标志

复位标志有效。用于复位相应的TCP 连接。

SYN:同步标志

同步序列编号(Synchronize Sequence Numbers)栏有效。该标志仅在三次握手建立

TCP 连接时有效。它提示TCP 连接的服务端检查序列编号,该序列编号为TCP 连接初始端

(一般是客户端)的初始序列编号。在这里,可以把TCP 序列编号看作是一个范围从0 到4,

294,967,295 的32 位计数器。通过TCP 连接交换的数据中每一个字节都经过序列编号。

在TCP 报头中的序列编号栏包括了TCP 分段中第一个字节的序列编号。

FIN:结束标志

带有该标志置位的数据包用来结束一个TCP 回话,但对应端口仍处于开放状态,

准备接收后续数据。

服务端处于监听状态,客户端用于建立连接请求的数据包(IP packet)按照TCP/IP

协议堆栈组合成为TCP 处理的分段(segment)。

分析报头信息: TCP 层接收到相应的TCP 和IP 报头,将这些信息存储到内存中。

检查TCP 校验和(checksum):标准的校验和位于分段之中(Figure:2)。如果检验

失败,不返回确认,该分段丢弃,并等待客户端进行重传。

查找协议控制块(PCB{}):TCP 查找与该连接相关联的协议控制块。如果没有找

到,TCP 将该分段丢弃并返回RST。(这就是TCP 处理没有端口监听情况下的机制) 如果该

协议控制块存在,但状态为关闭,服务端不调用connect()或listen()。该分段丢弃,但不返

回RST。客户端会尝试重新建立连接请求。

建立新的socket:当处于监听状态的socket 收到该分段时,会建立一个子socket,

同时还有socket{},tcpcb{}和pub{}建立。这时如果有错误发生,会通过标志位来拆除相应

的socket 和释放内存,TCP 连接失败。如果缓存队列处于填满状态,TCP 认为有错误发生,

所有的后续连接请求会被拒绝。这里可以看出SYN Flood 攻击是如何起作用的。

丢弃:如果该分段中的标志为RST 或ACK,或者没有SYN 标志,则该分段丢弃。

并释放相应的内存。

发送序列变量

SND.UNA : 发送未确认

SND.NXT : 发送下一个

SND.WND : 发送窗口

SND.UP : 发送优先指针

SND.WL1 : 用于最后窗口更新的段序列号

SND.WL2 : 用于最后窗口更新的段确认号

ISS : 初始发送序列号

接收序列号

RCV.NXT : 接收下一个

RCV.WND : 接收下一个

RCV.UP : 接收优先指针

IRS : 初始接收序列号

当前段变量

SEG.SEQ : 段序列号

SEG.ACK : 段确认标记

SEG.LEN : 段长

SEG.WND : 段窗口

SEG.UP : 段紧急指针

SEG.PRC : 段优先级

CLOSED 表示没有连接,各个状态的意义如下:

LISTEN : 监听来自远方TCP 端口的连接请求。

SYN-SENT : 在发送连接请求后等待匹配的连接请求。

SYN-RECEIVED : 在收到和发送一个连接请求后等待对连接请求的确认。

ESTABLISHED : 代表一个打开的连接,数据可以传送给用户。

FIN-WAIT-1 : 等待远程TCP 的连接中断请求,或先前的连接中断请求的确认。

FIN-WAIT-2 : 从远程TCP 等待连接中断请求。

CLOSE-WAIT : 等待从本地用户发来的连接中断请求。

CLOSING : 等待远程TCP 对连接中断的确认。

LAST-ACK : 等待原来发向远程TCP 的连接中断请求的确认。

TIME-WAIT : 等待足够的时间以确保远程TCP 接收到连接中断请求的确认。

CLOSED : 没有任何连接状态。

TCP 连接过程是状态的转换,促使发生状态转换的是用户调用:OPEN,SEND,

RECEIVE,CLOSE,ABORT 和STATUS。传送过来的数据段,特别那些包括以下标记的数

据段SYN,ACK,RST 和FIN。还有超时,上面所说的都会时TCP 状态发生变化。

序列号

请注意,我们在TCP 连接中发送的字节都有一个序列号。因为编了号,所以可以

确认它们的收到。对序列号的确认是累积性的。TCP 必须进行的序列号比较操作种类包括

以下几种:

①决定一些发送了的但未确认的序列号。

②决定所有的序列号都已经收到了。

③决定下一个段中应该包括的序列号。

对于发送的数据TCP 要接收确认,确认时必须进行的:

SND.UNA = 最老的确认了的序列号。

SND.NXT = 下一个要发送的序列号。

SEG.ACK = 接收TCP 的确认,接收TCP 期待的下一个序列号。

SEG.SEQ = 一个数据段的第一个序列号。

SEG.LEN = 数据段中包括的字节数。

SEG.SEQ+SEG.LEN-1 = 数据段的最后一个序列号。

如果一个数据段的序列号小于等于确认号的值,那么整个数据段就被确认了。而

在接收数据时下面的比较操作是必须的:

RCV.NXT = 期待的序列号和接收窗口的最低沿。

RCV.NXT+RCV.WND:1 = 最后一个序列号和接收窗口的最高沿。

SEG.SEQ = 接收到的第一个序列号。

SEG.SEQ+SEG.LEN:1 = 接收到的最后一个序列号。

 

源文出处:http://hi.baidu.com/redsuitcj/blog/item/a621ebdcda24e53e5982dd0a.html

分享到:
评论

相关推荐

    TCP自定义通讯协议参考

    TCP自定义通讯协议是一种基于TCP协议的通信框架,它利用非阻塞异步通信机制,实现了客户端和服务端之间的双向信息交换。以下是对该协议的详细解释: 1. 机制: - TCP协议基础:TCP(Transmission Control Protocol...

    C#TCP通信协议

    - TCP协议本身有流量控制和拥塞控制机制,但实际应用中可能需要进一步优化,如设置合适的缓冲区大小,合理控制发送速度等。 7. **心跳机制**: - 为了检测网络连接是否断开,可以设置心跳机制,定期发送小量数据...

    基恩士上位机TCP通讯协议.rar_PLC 协议_PLC通讯_基恩士tcp_基恩士tcpip_基恩士上位机TCP通讯协议

    在开发过程中,可以利用各种编程语言提供的TCP库,如Python的socket库、C#的System.Net.Sockets命名空间等,简化通信过程。同时,理解基恩士PLC的寄存器布局和数据类型也是必要的,以便正确地读取和写入数据。 总的...

    基恩士上位机TCP通讯协议

    值得注意的是,当通信过程中发生错误时,用户需要有能力根据错误信息判断问题的所在,并及时排除故障。故障排查可能涉及到硬件连接检查、网络配置检查、通讯协议参数的校对等。 综上所述,基恩士上位机TCP通讯协议...

    TCP协议分析网络实验报告

    本实验报告针对TCP协议进行深入分析,旨在帮助学生理解TCP协议的工作原理及其在网络通信中的作用。实验通过实际操作的方式,让学生掌握如何使用工具捕获并分析TCP数据包,进而了解HTTP和DNS协议的工作过程。 #### ...

    TCP协议详解及实战解析.pdf

    TCP(Transmission Control Protocol...总之,TCP协议是互联网通信的基础,它通过复杂的机制保证了数据的可靠传输,为各种应用提供了稳定的数据交换环境。理解和掌握TCP的工作原理对于网络编程和网络性能优化至关重要。

    TCP.rar_28335 IP TCP_tcp 通信

    在TCP/IP通信中,数据通常会先封装成IP数据报,然后由TCP协议进一步封装成TCP段。TCP段头包含了源端口号和目的端口号,用于标识发送方和接收方的应用进程。TCP协议还提供流量控制、拥塞控制机制,以避免网络拥塞并...

    原创labview通过TCP协议与基恩士PLC进行通讯代码

    总的来说,利用LabVIEW通过TCP/IP协议与基恩士PLC进行通讯是一个涉及网络编程、设备通信协议理解以及错误处理等多个技术层面的过程。通过深入学习和实践,你可以掌握这个技能,实现高效可靠的自动化控制。

    TCP协议 计算机见通信

    【TCP协议详解】 TCP(Transmission Control Protocol,传输控制协议)是一种面向连接的、可靠的、基于字节流的传输层通信协议。它确保了数据在互联网中的可靠传输,通过使用序列号、确认应答、重传机制等来实现...

    tcp协议三次握手过程

    TCP 协议三次握手过程详解 TCP(Transmission Control Protocol)传输控制协议是指建立一个可靠的连接服务,采用三次握手确认建立一个连接。三次握手过程是 TCP 协议的核心部分,保证了数据传输的可靠性和正确性。 ...

    tcp 协议通信.rar_TCP通信协议_利用tcp协议进行通信

    **TCP协议的特点:** 1. **连接性**:在通信前,TCP需要建立连接,即三次握手过程。发送方发送一个SYN(同步序列编号)报文段,接收方回应SYN+ACK(确认字符),最后发送方再发送一个ACK确认接收方的回应,连接建立...

    TCP协议三次握手过程分析

    ### TCP协议三次握手过程分析 #### 一、TCP协议简介 传输控制协议(Transmission Control Protocol,简称TCP)是互联网中最核心的协议之一,它属于传输层协议,主要负责在网络环境中提供可靠的、面向连接的数据...

    华夏车牌识别相机出入口车牌识别设备TCP网络通信协议v1.0.14.zip

    在车牌识别设备中,TCP协议可以确保相机与服务器或控制系统之间的通信稳定,即使在网络环境不稳定的情况下,也能通过重传机制保证数据的完整性。此外,TCP协议还提供了拥塞控制策略,避免了网络拥塞时的数据丢失。 ...

    基于TCP协议实现双方通信

    在"第八次作业"中,可能包含了实现以上通信过程的源代码文件,对于初学者来说,仔细阅读并理解这些代码,结合理论知识,可以更好地掌握TCP通信的实现方法。通过实践,你将能更深入地理解TCP协议的工作原理以及C#在...

    西门子 PLC TCP 通信协议

    在这一过程中,了解和掌握TCP通信协议的具体格式和内容至关重要。TCP通信协议通常包含以下关键元素: 1. **TPKT(Transmission Protocol Knowledge Transfer)头**:用于封装上层协议的数据包,确保数据包在网络层...

    一种基于TCP协议的点对点通信方法

    - **连接关闭**:通信结束后,双方发送断开连接的指令,TCP协议负责释放资源,保证通信过程的平滑结束。 #### 结论 综上所述,基于TCP协议的点对点通信方法在保证数据传输的可靠性方面有着明显优势。通过引入多线程...

    TCP协议实验1

    【TCP协议实验1】实验旨在帮助学生深入理解TCP协议的工作原理,掌握其连接状态控制、可靠传输机制,并涉及拥塞控制算法。实验的核心是实现TCP协议的状态机,特别是客户端的“停-等”模式,以及Socket接口的编程。TCP...

    Tcp协议图 时序过程 协议头

    在TCP协议中,"时序过程"和"协议头"是理解TCP工作原理的关键元素。 首先,我们来详细解析TCP的时序过程,这通常指的是TCP连接的建立、数据传输和连接释放,也被称为三次握手和四次挥手。 1. **三次握手**:当两个...

    TCP和MODBUS-TCP通讯调试软件V1.2_Wince_Winxp_通用版.rar

    3. **数据监视**:实时显示接收到的TCP和MODBUS-TCP数据,便于分析通信过程中的问题。 4. **错误检测**:软件可以识别并指出数据传输中的错误,如CRC校验错误、超时等,帮助快速定位问题。 5. **跨平台支持**:...

Global site tag (gtag.js) - Google Analytics