- 浏览: 2046284 次
- 性别:
- 来自: 北京
文章分类
- 全部博客 (795)
- java (263)
- 聚类搜索引擎 (9)
- 经验之谈 (67)
- DSP (3)
- C++ (140)
- Linux (37)
- SNMP (6)
- Python (6)
- 数据库 (61)
- 网络 (20)
- 算法 (15)
- 设计模式 (4)
- 笔试题 (38)
- 散文 (35)
- 数据结构 (9)
- 银行知识 (0)
- 榜样 (9)
- Lucene (15)
- Heritrix (6)
- MetaSeeker (0)
- netbeans (12)
- php (3)
- 英语 (8)
- DB2 (0)
- java基础 (5)
- mongodb & hadoop (4)
- Javascript (7)
- Spring (4)
- ibatis & myibatis (1)
- velocity (1)
- 微服务 (0)
- paddle (1)
- 第三方 (0)
- 知识沉淀 (1)
- 建模 (0)
最新评论
-
0372:
标示对java很陌生!
中文乱码解决的4种方式 -
梦留心痕:
Java中\是转意字符, 可是你的这句话我没看懂,只要把得到的 ...
java中如何忽略字符串中的转义字符--转载 -
yanjianpengit:
[b][/b]
java为什么非静态内部类里面不能有静态成员 -
springdata-jpa:
可以参考最新的文档:如何在eclipse jee中检出项目并转 ...
eclipse 如何把java项目转成web项目 -
qq1130127172:
,非常好。
(转)SpringMVC 基于注解的Controller @RequestMapping @RequestParam..
什么是对齐,以及为什么要对齐:
现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定变量的时候经常在特定的内存地址访问,这就需要各类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐。
对齐的作用和原因:各个硬件平台对存储空间的处理上有很大的不同。一些平台对某些特定类型的数据只能从某些特定地址开始存取。其他平台可能没有这种情况,但是最常见的是如果不按照适合其平台要求对数据存放进行对齐,会在存取效率上带来损失。比如有些平台每次读都是从偶地址开始,如果一个int型(假设为32位系统)如果存放在偶地址开始的地方,那么一个读周期就可以读出,而如果存放在奇地址开始的地方,就可能会需要2个读周期,并对两次读出的结果的高低字节进行拼凑才能得到该int数据。显然在读取效
率上下降很多。这也是空间和时间的博弈。
对齐的实现
通常,我们写程序的时候,不需要考虑对齐问题。编译器会替我们选择适合目标平台的对齐策略。当然,我们也可以通知给编译器传递预编译指令而改变对指定数据的对齐方法。
但是,正因为我们一般不需要关心这个问题,所以因为编辑器对数据存放做了对齐,而我们不了解的话,常常会对一些问题感到迷惑。最常见的就是struct数据结构的sizeof结果,出乎意料。为此,我们需要对对齐算法所了解。
对齐的算法:
由于各个平台和编译器的不同,现以本人使用的gcc version 3.2.2编译器(32位x86平台)为例子,来讨论编译器对struct数据结构中的各成员如何进行对齐的。
设结构体如下定义:
struct A
{
int a;
char b;
short c;
};
结构体A中包含了4字节长度的int一个,1字节长度的char一个和2字节长度的short型数据一个。所以A用到的空间应该是7字节。但是因为编译器要对数据成员在空间上进行对齐。
所以使用sizeof(strcut A)值为8。
现在把该结构体调整成员变量的顺序。
struct B
{
char b;
int a;
short c;
};
这时候同样是总共7个字节的变量,但是sizeof(struct B)的值却是12。
下面我们使用预编译指令#progma pack (value)来告诉编译器,使用我们指定的对齐值来取代缺省的。
#progma pack (2) /*指定按2字节对齐*/
struct C
{
char b;
int a;
short c;
};
#progma pack () /*取消指定对齐,恢复缺省对齐*/
sizeof(struct C)值是8。
修改对齐值为1:
#progma pack (1) /*指定按1字节对齐*/
struct D
{
char b;
int a;
short c;
};
#progma pack () /*取消指定对齐,恢复缺省对齐*/
sizeof(struct D)值为7。
对于char型数据,其自身对齐值为1,对于short型为2,对于int,float,double类型,其自身对齐值为4,单位字节。
这里面有四个概念值:
1.数据类型自身的对齐值:就是上面交代的基本数据类型的自身对齐值。
2.指定对齐值:#progma pack (value)时的指定对齐值value。
3.结构体或者类的自身对齐值:其成员中自身对齐值最大的那个值。
4.数据成员、结构体和类的有效对齐值:自身对齐值和指定对齐值中小的那个值。
有了这些值,我们就可以很方便的来讨论具体数据结构的成员和其自身的对齐方式。有效对齐值N是最终用来决定数据存放地址方式的值,最重要。有效对齐N,就是表示“对齐在N上”,也就是说该数据的"存放起始地址%N=0".而数据结构中的数据变量都是按定义的先后顺序来排放的。第一个数据变量的起始地址就是数据结构的起始地址。结构体的成员变量要对齐排放,结构体本身也要根据自身的有效对齐值圆整(就是结构体成员变量占用总长度需要是对结构体有效对齐值的整数倍,结合下面例子理解)。这样就不能理解上面的几个例子的值了。
例子分析:
分析例子B;
struct B
{
char b;
int a;
short c;
};
假设B从地址空间0x0000开始排放。该例子中没有定义指定对齐值,在笔者环境下,该值默认为4。第一个成员变量b的自身对齐值是1,比指定或者默认指定对齐值4小,所以其有效对齐值为1,所以其存放地址0x0000符合0x0000%1=0.第二个成员变量a,其自身对齐值为4,所以有效对齐值也为4,所以只能存放在起始地址为0x0004到0x0007这四个连续的字节空间中,复核0x0004%4=0,且紧靠第一个变量。第三个变量c,自身对齐值为2,所以有效对齐值也是2,可以存放在0x0008到0x0009这两个字节空间中,符合0x0008%2=0。所以从0x0000到0x0009存放的都是B内容。再看数据结构B的自身对齐值为其变量中最大对齐值(这里是b)所以就是4,所以结构体的有效对齐值也是4。根据结构体圆整的要求,0x0009到0x0000=10字节,(10+2)%4=0。所以0x0000A到0x000B也为结构体B所占用。故B从0x0000到0x000B共有12个字节,sizeof(struct B)=12;
同理,分析上面例子C:
#progma pack (2) /*指定按2字节对齐*/
struct C
{
char b;
int a;
short c;
};
#progma pack () /*取消指定对齐,恢复缺省对齐*/
第一个变量b的自身对齐值为1,指定对齐值为2,所以,其有效对齐值为1,假设C从0x0000开始,那么b存放在0x0000,符合0x0000%1=0;第二个变量,自身对齐值为4,指定对齐值为2,所以有效对齐值为2,所以顺序存放在0x0002、0x0003、0x0004、0x0005四个连续字节中,符合0x0002%2=0。第三个变量c的自身对齐值为2,所以有效对齐值为2,顺序存放
在0x0006、0x0007中,符合0x0006%2=0。所以从0x0000到0x00007共八字节存放的是C的变量。又C的自身对齐值为4,所以C的有效对齐值为2。又8%2=0,C只占用0x0000到0x0007的八个字节。所以sizeof(struct C)=8.
现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定变量的时候经常在特定的内存地址访问,这就需要各类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐。
对齐的作用和原因:各个硬件平台对存储空间的处理上有很大的不同。一些平台对某些特定类型的数据只能从某些特定地址开始存取。其他平台可能没有这种情况,但是最常见的是如果不按照适合其平台要求对数据存放进行对齐,会在存取效率上带来损失。比如有些平台每次读都是从偶地址开始,如果一个int型(假设为32位系统)如果存放在偶地址开始的地方,那么一个读周期就可以读出,而如果存放在奇地址开始的地方,就可能会需要2个读周期,并对两次读出的结果的高低字节进行拼凑才能得到该int数据。显然在读取效
率上下降很多。这也是空间和时间的博弈。
对齐的实现
通常,我们写程序的时候,不需要考虑对齐问题。编译器会替我们选择适合目标平台的对齐策略。当然,我们也可以通知给编译器传递预编译指令而改变对指定数据的对齐方法。
但是,正因为我们一般不需要关心这个问题,所以因为编辑器对数据存放做了对齐,而我们不了解的话,常常会对一些问题感到迷惑。最常见的就是struct数据结构的sizeof结果,出乎意料。为此,我们需要对对齐算法所了解。
对齐的算法:
由于各个平台和编译器的不同,现以本人使用的gcc version 3.2.2编译器(32位x86平台)为例子,来讨论编译器对struct数据结构中的各成员如何进行对齐的。
设结构体如下定义:
struct A
{
int a;
char b;
short c;
};
结构体A中包含了4字节长度的int一个,1字节长度的char一个和2字节长度的short型数据一个。所以A用到的空间应该是7字节。但是因为编译器要对数据成员在空间上进行对齐。
所以使用sizeof(strcut A)值为8。
现在把该结构体调整成员变量的顺序。
struct B
{
char b;
int a;
short c;
};
这时候同样是总共7个字节的变量,但是sizeof(struct B)的值却是12。
下面我们使用预编译指令#progma pack (value)来告诉编译器,使用我们指定的对齐值来取代缺省的。
#progma pack (2) /*指定按2字节对齐*/
struct C
{
char b;
int a;
short c;
};
#progma pack () /*取消指定对齐,恢复缺省对齐*/
sizeof(struct C)值是8。
修改对齐值为1:
#progma pack (1) /*指定按1字节对齐*/
struct D
{
char b;
int a;
short c;
};
#progma pack () /*取消指定对齐,恢复缺省对齐*/
sizeof(struct D)值为7。
对于char型数据,其自身对齐值为1,对于short型为2,对于int,float,double类型,其自身对齐值为4,单位字节。
这里面有四个概念值:
1.数据类型自身的对齐值:就是上面交代的基本数据类型的自身对齐值。
2.指定对齐值:#progma pack (value)时的指定对齐值value。
3.结构体或者类的自身对齐值:其成员中自身对齐值最大的那个值。
4.数据成员、结构体和类的有效对齐值:自身对齐值和指定对齐值中小的那个值。
有了这些值,我们就可以很方便的来讨论具体数据结构的成员和其自身的对齐方式。有效对齐值N是最终用来决定数据存放地址方式的值,最重要。有效对齐N,就是表示“对齐在N上”,也就是说该数据的"存放起始地址%N=0".而数据结构中的数据变量都是按定义的先后顺序来排放的。第一个数据变量的起始地址就是数据结构的起始地址。结构体的成员变量要对齐排放,结构体本身也要根据自身的有效对齐值圆整(就是结构体成员变量占用总长度需要是对结构体有效对齐值的整数倍,结合下面例子理解)。这样就不能理解上面的几个例子的值了。
例子分析:
分析例子B;
struct B
{
char b;
int a;
short c;
};
假设B从地址空间0x0000开始排放。该例子中没有定义指定对齐值,在笔者环境下,该值默认为4。第一个成员变量b的自身对齐值是1,比指定或者默认指定对齐值4小,所以其有效对齐值为1,所以其存放地址0x0000符合0x0000%1=0.第二个成员变量a,其自身对齐值为4,所以有效对齐值也为4,所以只能存放在起始地址为0x0004到0x0007这四个连续的字节空间中,复核0x0004%4=0,且紧靠第一个变量。第三个变量c,自身对齐值为2,所以有效对齐值也是2,可以存放在0x0008到0x0009这两个字节空间中,符合0x0008%2=0。所以从0x0000到0x0009存放的都是B内容。再看数据结构B的自身对齐值为其变量中最大对齐值(这里是b)所以就是4,所以结构体的有效对齐值也是4。根据结构体圆整的要求,0x0009到0x0000=10字节,(10+2)%4=0。所以0x0000A到0x000B也为结构体B所占用。故B从0x0000到0x000B共有12个字节,sizeof(struct B)=12;
同理,分析上面例子C:
#progma pack (2) /*指定按2字节对齐*/
struct C
{
char b;
int a;
short c;
};
#progma pack () /*取消指定对齐,恢复缺省对齐*/
第一个变量b的自身对齐值为1,指定对齐值为2,所以,其有效对齐值为1,假设C从0x0000开始,那么b存放在0x0000,符合0x0000%1=0;第二个变量,自身对齐值为4,指定对齐值为2,所以有效对齐值为2,所以顺序存放在0x0002、0x0003、0x0004、0x0005四个连续字节中,符合0x0002%2=0。第三个变量c的自身对齐值为2,所以有效对齐值为2,顺序存放
在0x0006、0x0007中,符合0x0006%2=0。所以从0x0000到0x00007共八字节存放的是C的变量。又C的自身对齐值为4,所以C的有效对齐值为2。又8%2=0,C只占用0x0000到0x0007的八个字节。所以sizeof(struct C)=8.
发表评论
-
DLL中导出函数的声明有两种方式:
2012-11-12 16:42 1863DLL中导出函数的声明有两种方式: 一种方式是:在函数声明中 ... -
k-means算法的C++实现
2011-04-05 11:38 2343k-means算法的C++实现: http://www.ku ... -
main()中的参数
2010-10-31 10:41 1540所有的应用程序都是从以main函数作为入口, 而mai ... -
static作用
2010-10-26 19:15 2390转自(from http://www.cnb ... -
mmap函数
2010-10-25 22:41 1915mmap函数的使用方法 UNIX ... -
C语言中三种内存分配方式
2010-10-25 20:23 01.malloc 原型:extern void *ma ... -
位拷贝和值拷贝
2010-10-23 15:37 1601为了便于说明我们以String类为例: 首先定义String ... -
(转帖)把类的析构函数写成虚函数的用意
2010-10-23 15:10 1702#include <iostream.h> cl ... -
动态规划/贪心算法----0/1背包问题AND普通背包问题
2010-10-23 14:03 6829两个背包问题都是比较典型的问题,对这两种算法的理解有很好的帮助 ... -
netstat, nslookup, finger, ping命令
2010-10-22 17:13 1535Netstat用于显示与IP、TCP ... -
C++返回值
2010-10-22 16:53 1551C++函数返回值: (1)正常情况下,函数的参数要复制一份在 ... -
switch语句后的表达式的值
2010-10-22 16:23 1844一般格式: switch (表达式) { case 常量 ... -
C++四种强制类型转换
2010-10-19 11:45 1579显式类型转换又被称之 ... -
C++四种强制类型转化的区别
2010-10-19 11:43 1359先介绍const_cast和reinterpret_cast: ... -
Visual C++线程同步技术剖析:临界区,时间,信号量,互斥量
2010-10-18 14:24 1835使线程同步 在程序中使用多线程时,一般很少有多个线程能在其 ... -
(转)临界区,互斥量,信号量,事件的区别
2010-10-18 14:22 1774四种进程或线程同步互斥的控制方法1、临界区:通过对多线程的串行 ... -
(转)在C++中实现同步锁,类似synchronize(object){....}
2010-10-18 13:49 1886在做C++的项目中发现, ... -
C++线程同步
2010-10-18 13:46 1619线程同步是多 ... -
C++多线程编程
2010-10-18 10:56 1755今天我给大家讲一讲C++ ... -
关于C++对函数传参与函数返回值进行引用传递的详解
2010-10-16 22:51 4063关于C++对函数传参与函数返回值进行引用传递的详解 ...
相关推荐
C语言中的字节对齐问题是指在编译器将C语言程序编译成机器代码时,对变量的存储方式进行调整,以提高存取效率和减少存储空间。字节对齐是指在内存中将变量按照一定的规则排列,以便在访问变量时可以提高存取效率。 ...
在C语言中,内存字节对齐是指编译器为了提高程序执行效率和可移植性,而对结构体成员在内存中的存储方式进行的调整。这个调整是基于体系结构的对齐规则,旨在提高程序的执行效率和可移植性。 在 C 语言中,sizeof ...
本文将围绕“VS C++字节对齐方式”这一主题展开讨论,通过对示例代码的分析来探讨Visual Studio环境下C++语言如何处理字节对齐问题,以及程序员应如何合理利用编译器特性来优化代码性能。 #### 二、字节对齐的基本...
然而,在实践中,为了提高内存访问的效率和简便性,往往需要在内存中按照一定的规则排列数据,这种规则就称为字节对齐(Byte Alignment)。 字节对齐的目的是使得数据类型的访问更加高效。不同的硬件平台在存储空间...
### C++内存中字节对齐问题详解 #### 一、什么是字节对齐,为什么要对齐? 在C++及其它编程语言中,字节对齐(Byte Alignment)是指数据在内存中的排列方式,它遵循特定的规则,使得数据结构中的每个元素能够在其...
在计算机科学中,字节对齐是一种重要的概念,它对程序的性能和内存使用产生了巨大的影响。字节对齐是指在计算机内存中,对各种类型的数据按照一定的规则排列,以便提高访问效率和减少内存占用。 字节对齐的作用和...
结构体字节对齐规则,主要是介绍结构体字节对齐规则,内容有点长,但是很全面.
字节对齐是指在计算机存储器中,数据结构的成员变量按照一定的规则在地址上进行排列,以满足特定的硬件访问效率要求。通常,这个规则是每个变量的起始地址必须是它自身大小的倍数。例如,一个32位整数应该在4字节的...
字节对齐是指在计算机内存中,数据结构中的各个成员变量在内存中的地址必须满足某种特定的规则,通常是要求这些变量的地址能够被某个固定的数值整除。这种固定数值通常被称为“对齐粒度”或“对齐单位”。 #### 为...
对齐,即**字节对齐**,是指在计算机内存中,数据按照一定规则在内存空间中的排列方式,以提高数据访问效率。理论上,任何类型的变量可以从任意内存地址开始访问,但实际上,为了提升性能,数据通常需要按照特定的...
本例中的代码首先展示了编译器在默认情况下(假设为4字节对齐)对两个结构体`number1`和`number2`的处理方式: ```c++ // ϵͳĬΪ4ֽڶ typedef struct_number1 { int a; char b; short c; } number1; typedef...
【字节对齐】是指在计算机编程中,为了优化数据存取效率和内存空间利用率,数据在内存中存储的位置必须遵循特定的规则,使得数据的起始地址能够被其自身大小整除。例如,对于32位CPU,在4字节对齐的规则下,一个整型...
字节对齐是C语言编程中一个不可忽视的概念,合理地运用它可以显著提高程序的运行效率,并避免潜在的兼容性问题。通过本文的介绍,相信读者已经对字节对齐有了较为全面的理解,并能够根据实际需求灵活地调整数据的...
在C++编程中,结构体(struct)字节对齐是一项重要的优化技术,它涉及到内存管理、性能优化以及跨平台兼容性。字节对齐是指在内存中安排数据时,确保数据的起始地址能够被特定数值(对齐模数)整除,这样做的目的是...
C语言中的字节对齐详解 字节对齐是一种内存存储方式,在现代计算机中,内存空间都是按照byte划分的。在理论上讲,似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定类型变量的时候经常在特定...
字节对齐是C语言编程中的一个重要概念,尤其在处理复杂数据结构时尤为重要。本文将深入探讨字节对齐的基本原理、目的以及如何在实际开发中进行合理配置。 #### 二、字节对齐的概念 **对齐**是指在内存中存储数据时...
本篇文章将深入探讨ARM程序中关于字/半字/字节对齐的问题,并通过具体的示例来帮助理解这一概念。 #### 字节对齐的概念 字节对齐是指数据在内存中的存储位置与该数据大小的关系。具体来说,在ARM架构中,为了提高...