`

将Bitmap转换成为PNG图片数组

阅读更多
import java.io.ByteArrayOutputStream;
import java.io.IOException;

import net.rim.device.api.compress.ZLibOutputStream;
import net.rim.device.api.system.Bitmap;
import net.rim.device.api.util.CRC32;

/**
 * PNGEncoder takes a Java Image object and creates a byte string which can be saved as a PNG file.
 * The Image is presumed to use the DirectColorModel.
 *
 * <p>Thanks to Jay Denny at KeyPoint Software
 *    http://www.keypoint.com/
 * who let me develop this code on company time.</p>
 *
 * <p>You may contact me with (probably very-much-needed) improvements,
 * comments, and bug fixes at:</p>
 *
 *   <p><code>david@catcode.com</code></p>
 *
 * <p>This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.</p>
 *
 * <p>This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.</p>
 *
 * <p>You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 * A copy of the GNU LGPL may be found at
 * <code>http://www.gnu.org/copyleft/lesser.html</code></p>
 *
 * @author J. David Eisenberg
 * @version 1.5, 19 Oct 2003
 *
 * CHANGES:
 * --------
 * 19-Nov-2002 : CODING STYLE CHANGES ONLY (by David Gilbert for Object Refinery Limited);
 * 19-Sep-2003 : Fix for platforms using EBCDIC (contributed by Paulo Soares);
 * 19-Oct-2003 : Change private fields to protected fields so that
 *               PNGEncoderB can inherit them (JDE)
 * Fixed bug with calculation of nRows
 * 08-Apr-2008 : Ported to BlackBerry (by Richard Puckett II)
 */

public class PNGEncoder {

    /** Constant specifying that alpha channel should be encoded. */
    public static final boolean ENCODE_ALPHA = true;

    /** Constant specifying that alpha channel should not be encoded. */
    public static final boolean NO_ALPHA = false;

    /** Constants for filter (NONE) */
    public static final int FILTER_NONE = 0;

    /** Constants for filter (SUB) */
    public static final int FILTER_SUB = 1;

    /** Constants for filter (UP) */
    public static final int FILTER_UP = 2;

    /** Constants for filter (LAST) */
    public static final int FILTER_LAST = 2;
    
    /** IHDR tag. */
    protected static final byte IHDR[] = {73, 72, 68, 82};
    
    /** IDAT tag. */
    protected static final byte IDAT[] = {73, 68, 65, 84};
    
    /** IEND tag. */
    protected static final byte IEND[] = {73, 69, 78, 68};

    /** The png bytes. */
    protected byte[] pngBytes;

    /** The prior row. */
    protected byte[] priorRow;

    /** The left bytes. */
    protected byte[] leftBytes;

    /** The image. */
    protected Bitmap image;

    /** The width. */
    protected int width, height;

    /** The byte position. */
    protected int bytePos, maxPos;

    /** The CRC value. */
    protected int crcValue;

    /** Encode alpha? */
    protected boolean encodeAlpha;

    /** The filter type. */
    protected int filter;

    /** The bytes-per-pixel. */
    protected int bytesPerPixel;

    /** The compression level. */
    protected int compressionLevel;

    /**
     * Class constructor
     */
    public PNGEncoder() {
        this(null, false, FILTER_NONE, 0);
    }

    /**
     * Class constructor specifying Image to encode, with no alpha channel encoding.
     *
     * @param image A Java Image object which uses the DirectColorModel
     */
    public PNGEncoder(Bitmap image) {
        this(image, false, FILTER_NONE, 0);
    }

    /**
     * Class constructor specifying Image to encode, and whether to encode alpha.
     *
     * @param image A Java Image object which uses the DirectColorModel
     * @param encodeAlpha Encode the alpha channel? false=no; true=yes
     */
    public PNGEncoder(Bitmap image, boolean encodeAlpha) {
        this(image, encodeAlpha, FILTER_NONE, 0);
    }

    /**
     * Class constructor specifying Image to encode, whether to encode alpha, and filter to use.
     *
     * @param image A Java Image object which uses the DirectColorModel
     * @param encodeAlpha Encode the alpha channel? false=no; true=yes
     * @param whichFilter 0=none, 1=sub, 2=up
     */
    public PNGEncoder(Bitmap image, boolean encodeAlpha, int whichFilter) {
        this(image, encodeAlpha, whichFilter, 0);
    }


    /**
     * Class constructor specifying Image source to encode, whether to encode alpha, filter to use,
     * and compression level.
     *
     * @param image A Java Image object
     * @param encodeAlpha Encode the alpha channel? false=no; true=yes
     * @param whichFilter 0=none, 1=sub, 2=up
     * @param compLevel 0..9
     */
    public PNGEncoder(Bitmap image, boolean encodeAlpha, int whichFilter, int compLevel) {
        this.image = image;
        this.encodeAlpha = encodeAlpha;
        setFilter(whichFilter);
        if (compLevel >= 0 && compLevel <= 9) {
            this.compressionLevel = compLevel;
        }
    }

    /**
     * Set the image to be encoded
     *
     * @param image A Java Image object which uses the DirectColorModel
     */
    public void setImage(Bitmap image) {
        this.image = image;
        pngBytes = null;
    }

    /**
     * Creates an array of bytes that is the PNG equivalent of the current image, specifying
     * whether to encode alpha or not.
     *
     * @param encodeAlpha boolean false=no alpha, true=encode alpha
     * @return an array of bytes, or null if there was a problem
     */
    public byte[] encode(boolean encodeAlpha) throws IOException {
        byte[]  pngIdBytes = {-119, 80, 78, 71, 13, 10, 26, 10};

        if (image == null) {
            return null;
        }
        width = image.getWidth();
        height = image.getHeight();

        /*
         * start with an array that is big enough to hold all the pixels
         * (plus filter bytes), and an extra 200 bytes for header info
         */
        pngBytes = new byte[((width + 1) * height * 3) + 200];

        /*
         * keep track of largest byte written to the array
         */
        maxPos = 0;

        bytePos = writeBytes(pngIdBytes, 0);
        
        writeHeader();

        if (writeImageData()) {
            writeEnd();
            pngBytes = resizeByteArray(pngBytes, maxPos);
        }
        else {
            pngBytes = null;
        }
        return pngBytes;
    }

    /**
     * Creates an array of bytes that is the PNG equivalent of the current image.
     * Alpha encoding is determined by its setting in the constructor.
     *
     * @return an array of bytes, or null if there was a problem
     */
    public byte[] encode() throws IOException {
        return encode(encodeAlpha);
    }

    /**
     * Set the alpha encoding on or off.
     *
     * @param encodeAlpha  false=no, true=yes
     */
    public void setEncodeAlpha(boolean encodeAlpha) {
        this.encodeAlpha = encodeAlpha;
    }

    /**
     * Retrieve alpha encoding status.
     *
     * @return boolean false=no, true=yes
     */
    public boolean getEncodeAlpha() {
        return encodeAlpha;
    }

    /**
     * Set the filter to use
     *
     * @param whichFilter from constant list
     */
    public void setFilter(int whichFilter) {
        this.filter = FILTER_NONE;
        if (whichFilter <= FILTER_LAST) {
            this.filter = whichFilter;
        }
    }

    /**
     * Retrieve filtering scheme
     *
     * @return int (see constant list)
     */
    public int getFilter() {
        return filter;
    }

    /**
     * Set the compression level to use
     *
     * @param level 0 through 9
     */
    public void setCompressionLevel(int level) {
        if (level >= 0 && level <= 9) {
            this.compressionLevel = level;
        }
    }

    /**
     * Retrieve compression level
     *
     * @return int in range 0-9
     */
    public int getCompressionLevel() {
        return compressionLevel;
    }

    /**
     * Increase or decrease the length of a byte array.
     *
     * @param array The original array.
     * @param newLength The length you wish the new array to have.
     * @return Array of newly desired length. If shorter than the
     *         original, the trailing elements are truncated.
     */
    protected byte[] resizeByteArray(byte[] array, int newLength) {
        byte[]  newArray = new byte[newLength];
        int     oldLength = array.length;

        System.arraycopy(array, 0, newArray, 0, Math.min(oldLength, newLength));
        return newArray;
    }

    /**
     * Write an array of bytes into the pngBytes array.
     * Note: This routine has the side effect of updating
     * maxPos, the largest element written in the array.
     * The array is resized by 1000 bytes or the length
     * of the data to be written, whichever is larger.
     *
     * @param data The data to be written into pngBytes.
     * @param offset The starting point to write to.
     * @return The next place to be written to in the pngBytes array.
     */
    protected int writeBytes(byte[] data, int offset) {
        maxPos = Math.max(maxPos, offset + data.length);
        if (data.length + offset > pngBytes.length) {
            pngBytes = resizeByteArray(pngBytes, pngBytes.length + Math.max(1000, data.length));
        }
        System.arraycopy(data, 0, pngBytes, offset, data.length);
        return offset + data.length;
    }

    /**
     * Write an array of bytes into the pngBytes array, specifying number of bytes to write.
     * Note: This routine has the side effect of updating
     * maxPos, the largest element written in the array.
     * The array is resized by 1000 bytes or the length
     * of the data to be written, whichever is larger.
     *
     * @param data The data to be written into pngBytes.
     * @param nBytes The number of bytes to be written.
     * @param offset The starting point to write to.
     * @return The next place to be written to in the pngBytes array.
     */
    protected int writeBytes(byte[] data, int nBytes, int offset) {
        maxPos = Math.max(maxPos, offset + nBytes);
        if (nBytes + offset > pngBytes.length) {
            pngBytes = resizeByteArray(pngBytes, pngBytes.length + Math.max(1000, nBytes));
        }
        System.arraycopy(data, 0, pngBytes, offset, nBytes);
        return offset + nBytes;
    }

    /**
     * Write a two-byte integer into the pngBytes array at a given position.
     *
     * @param n The integer to be written into pngBytes.
     * @param offset The starting point to write to.
     * @return The next place to be written to in the pngBytes array.
     */
    protected int writeInt2(int n, int offset) {
        byte[] temp = {(byte) ((n >> 8) & 0xff), (byte) (n & 0xff)};
        return writeBytes(temp, offset);
    }

    /**
     * Write a four-byte integer into the pngBytes array at a given position.
     *
     * @param n The integer to be written into pngBytes.
     * @param offset The starting point to write to.
     * @return The next place to be written to in the pngBytes array.
     */
    protected int writeInt4(int n, int offset) {
        byte[] temp = {(byte) ((n >> 24) & 0xff),
                       (byte) ((n >> 16) & 0xff),
                       (byte) ((n >> 8) & 0xff),
                       (byte) (n & 0xff)};
        return writeBytes(temp, offset);
    }

    /**
     * Write a single byte into the pngBytes array at a given position.
     *
     * @param b The integer to be written into pngBytes.
     * @param offset The starting point to write to.
     * @return The next place to be written to in the pngBytes array.
     */
    protected int writeByte(int b, int offset) {
        byte[] temp = {(byte) b};
        return writeBytes(temp, offset);
    }

    /**
     * Write a PNG "IHDR" chunk into the pngBytes array.
     */
    protected void writeHeader() {
        int startPos;

        startPos = bytePos = writeInt4(13, bytePos);
        bytePos = writeBytes(IHDR, bytePos);
        width = image.getWidth();
        height = image.getHeight();
        bytePos = writeInt4(width, bytePos);
        bytePos = writeInt4(height, bytePos);
        bytePos = writeByte(8, bytePos); // bit depth
        bytePos = writeByte((encodeAlpha) ? 6 : 2, bytePos); // direct model
        bytePos = writeByte(0, bytePos); // compression method
        bytePos = writeByte(0, bytePos); // filter method
        bytePos = writeByte(0, bytePos); // no interlace
        crcValue = CRC32.update(CRC32.INITIAL_VALUE, pngBytes, startPos, bytePos - startPos);
        bytePos = writeInt4(crcValue, bytePos);
    }

    /**
     * Perform "sub" filtering on the given row.
     * Uses temporary array leftBytes to store the original values
     * of the previous pixels.  The array is 16 bytes long, which
     * will easily hold two-byte samples plus two-byte alpha.
     *
     * @param pixels The array holding the scan lines being built
     * @param startPos Starting position within pixels of bytes to be filtered.
     * @param width Width of a scanline in pixels.
     */
    protected void filterSub(byte[] pixels, int startPos, int width) {
        int i;
        int offset = bytesPerPixel;
        int actualStart = startPos + offset;
        int nBytes = width * bytesPerPixel;
        int leftInsert = offset;
        int leftExtract = 0;

        for (i = actualStart; i < startPos + nBytes; i++) {
            leftBytes[leftInsert] =  pixels[i];
            pixels[i] = (byte) ((pixels[i] - leftBytes[leftExtract]) % 256);
            leftInsert = (leftInsert + 1) % 0x0f;
            leftExtract = (leftExtract + 1) % 0x0f;
        }
    }

    /**
     * Perform "up" filtering on the given row.
     * Side effect: refills the prior row with current row
     *
     * @param pixels The array holding the scan lines being built
     * @param startPos Starting position within pixels of bytes to be filtered.
     * @param width Width of a scanline in pixels.
     */
    protected void filterUp(byte[] pixels, int startPos, int width) {
        int     i, nBytes;
        byte    currentByte;

        nBytes = width * bytesPerPixel;

        for (i = 0; i < nBytes; i++) {
            currentByte = pixels[startPos + i];
            pixels[startPos + i] = (byte) ((pixels[startPos  + i] - priorRow[i]) % 256);
            priorRow[i] = currentByte;
        }
    }

//    protected int[] blur(int[] src, int width, int height) {
//     int[] blurred = new int[width * height];
//        int scanPos = 0;            // where we are in the scan lines
//    
//     int boxw = 2;
//     double mul = 1.0 / (double) (boxw * 2 + 1);
//     System.out.println("mul = " + mul);
//    
//     for (int y = 0; y < height; y++) {
//         int redChannel = 0;
//         int greenChannel = 0;
//         int blueChannel = 0;
//
//     for (int x = 0; x < boxw; x++) {
//     redChannel += (src[scanPos] >> 16) & 0xff;
//     greenChannel += (src[scanPos] >> 8) & 0xff;
//     blueChannel += src[scanPos] & 0xff;
//     }
//     System.out.println("Primed redChannel (" + scanPos + ") = " + redChannel);
//     System.out.println("Primed greenChannel = " + greenChannel);
//     System.out.println("Primed blueChannel = " + blueChannel);
//    
//     for (int x = 0; x < width; x++) {
//     if (x > boxw) {
//     redChannel -= (src[scanPos - boxw - 1] >> 16) & 0xff;
//     greenChannel -= (src[scanPos - boxw - 1] >> 8) & 0xff;
//     blueChannel -= src[scanPos - boxw - 1] & 0xff;
//     }
//
//     if (x + boxw < width) {
//     redChannel += (src[scanPos + boxw] >> 16) & 0xff;
//     greenChannel += (src[scanPos + boxw] >> 8) & 0xff;
//     blueChannel += src[scanPos + boxw] & 0xff;
//     }
//
//     blurred[scanPos] |= (new Double(redChannel / (boxw + 1)).byteValue() << 16);
//     blurred[scanPos] |= (new Double(greenChannel / (boxw + 1)).byteValue() << 8);
//         blurred[scanPos] |= new Double(blueChannel / (boxw + 1)).byteValue();
//
//         if (encodeAlpha) {
//         blurred[scanPos] |= (src[scanPos] & 0xff000000);
//         }
//        
//         scanPos++;
//     }
//     }
//    
//     return blurred;
//    }

    /**
     * Write the image data into the pngBytes array.
     * This will write one or more PNG "IDAT" chunks. In order
     * to conserve memory, this method grabs as many rows as will
     * fit into 32K bytes, or the whole image; whichever is less.
     *
     *
     * @return true if no errors; false if error grabbing pixels
     */
    protected boolean writeImageData() throws IOException {
        int rowsLeft = height;  // number of rows remaining to write
        int startRow = 0;       // starting row to process this time through
        int nRows;              // how many rows to grab at a time

        byte[] scanLines;       // the scan lines to be compressed
        int scanPos;            // where we are in the scan lines
        int startPos;           // where this line's actual pixels start (used for filtering)

        byte[] compressedLines; // the resultant compressed lines
        int nCompressed;        // how big is the compressed area?
        
        bytesPerPixel = (encodeAlpha) ? 4 : 3;

        ByteArrayOutputStream outBytes = new ByteArrayOutputStream(1024);

        ZLibOutputStream compBytes = new ZLibOutputStream(outBytes);

        while (rowsLeft > 0) {
         nRows = Math.min(32767 / (width * (bytesPerPixel + 1)), rowsLeft);
         nRows = Math.max( nRows, 1 );

         int[] pixels = new int[width * nRows];

         image.getARGB(pixels, 0, width, 0, startRow, width, nRows);
        
         /*
         * Create a data chunk. scanLines adds "nRows" for
         * the filter bytes.
         */
         scanLines = new byte[width * nRows * bytesPerPixel + nRows];

         if (filter == FILTER_SUB) {
         leftBytes = new byte[16];
         }
         if (filter == FILTER_UP) {
         priorRow = new byte[width * bytesPerPixel];
         }

         scanPos = 0;
         startPos = 1;
         for (int i = 0; i < width * nRows; i++) {
         if (i % width == 0) {
         scanLines[scanPos++] = (byte) filter;
         startPos = scanPos;
         }
         scanLines[scanPos++] = (byte) ((pixels[i] >> 16) & 0xff);
         scanLines[scanPos++] = (byte) ((pixels[i] >>  8) & 0xff);
         scanLines[scanPos++] = (byte) ((pixels[i]) & 0xff);
         if (encodeAlpha) {
         scanLines[scanPos++] = (byte) ((pixels[i] >> 24) & 0xff);
         }
         if ((i % width == width - 1) && (filter != FILTER_NONE)) {
         if (filter == FILTER_SUB) {
         filterSub(scanLines, startPos, width);
         }
         if (filter == FILTER_UP) {
         filterUp(scanLines, startPos, width);
         }
         }
         }

         /*
         * Write these lines to the output area
         */
         compBytes.write(scanLines, 0, scanPos);

         startRow += nRows;
         rowsLeft -= nRows;
        }
        compBytes.close();

        /*
         * Write the compressed bytes
         */
        compressedLines = outBytes.toByteArray();
        nCompressed = compressedLines.length;

        bytePos = writeInt4(nCompressed, bytePos);
        bytePos = writeBytes(IDAT, bytePos);
        crcValue = CRC32.update(CRC32.INITIAL_VALUE, IDAT);

        bytePos = writeBytes(compressedLines, nCompressed, bytePos);
        crcValue = CRC32.update(crcValue, compressedLines, 0, nCompressed);

        bytePos = writeInt4(crcValue, bytePos);
        return true;
    }

    /**
     * Write a PNG "IEND" chunk into the pngBytes array.
     */
    protected void writeEnd() {
        bytePos = writeInt4(0, bytePos);
        bytePos = writeBytes(IEND, bytePos);
        crcValue = CRC32.update(CRC32.INITIAL_VALUE, IEND);

        bytePos = writeInt4(crcValue, bytePos);
    }

}

 
分享到:
评论

相关推荐

    将Bitmap转换为Byte[]

    总的来说,将Bitmap转换为Byte数组是图形处理和数据存储中常见的操作,它在各种场景下都有应用,比如网络传输、数据库存储、序列化等。理解并掌握这个过程,对于进行高效的图像处理和数据操作至关重要。

    图片转换成十六进制数组保存的工具

    一个常见的方法是将图片转换为十六进制数组,这样可以方便地在内存中存储和处理。"图片转换成十六进制数组保存的工具"就是这样一个实用程序,专为满足这一需求而设计。 首先,我们要理解位图(Bitmap)的概念。位图...

    将Bitmap转成byte[]小例子

    - 网络传输:在上传图片或发送图片数据时,将Bitmap转换为byte[],可以减少网络传输的数据量。 - 缓存处理:在内存缓存中,使用byte[]形式的图片数据比直接使用Bitmap更节省内存。 综上所述,Bitmap与byte[]之间的...

    Android图片Bitmap和字符串String之间的相互转换

    - **分享功能**:当分享图片时,可以将Bitmap转换为String,然后嵌入到分享链接的HTML中。 提供的`PicDemo`压缩包文件可能包含了实现这些转换的工具类和示例代码。通过阅读和学习这些代码,开发者可以更好地理解和...

    Webp格式与Bitmap格式(JPG、PNG、Bmp等)互转 C#Demo

    反之,若要将Bitmap转换为WebP,需要先使用适当的方法将Bitmap数据转换为RGB或RGBA数组,然后使用`WebPEncodeRGB`或`WebPEncodeRGBA`进行编码。 在项目中,`WebPDemo`可能包含以下关键组件: 1. `WebPDecoder`: 这...

    Android中把bitmap存成BMP格式图片的方法

    本文将详细介绍如何在Android中将Bitmap转换为BMP格式。 首先,Android SDK提供了`Bitmap.compress()`方法来将Bitmap保存为JPEG或PNG格式,但不支持BMP。因此,我们需要自定义一个方法来处理BMP格式的转换。这个...

    C#中bitmap、stream、byte类型转换实例

    在处理图像时,我们可能会遇到需要在不同的数据类型之间转换的情况,比如从Bitmap到Stream,再到byte数组,最后再还原回Bitmap。这样的转换在上传图片、存储图片数据或在网络中传输时非常常见。本篇文章将详细介绍...

    Drawable Bitmap InputStream byte[]相互转化工具类

    在网络传输或保存到数据库时,将Bitmap转换为byte数组可以降低存储和传输的成本。 下面是如何在这些类型之间进行转换: 1. Drawable到Bitmap: 要将Drawable转换为Bitmap,可以使用Drawable的`copyBounds()`方法...

    图片转换字符串数组

    在IT行业中,尤其是在编程领域,将图片转换为字符串数组是一个常见的需求,特别是在处理图像数据、进行图像识别或传输时。这个任务通常涉及到图像处理和数据编码。本篇将深入探讨如何使用C#语言来实现这一功能。 ...

    C# byte数组与Image相互转换的方法

    1、把一张图片(png bmp jpeg bmp gif)转换为byte数组存放到数据库。 2、把从数据库读取的byte数组转换为Image对象,赋值给相应的控件显示。 3、从图片byte数组得到对应图片的格式,生成一张图片保存到磁盘上。 ...

    C#传递图片给C++处理的方法.zip

    在C#中,我们可以加载一个图片文件到Bitmap对象,然后将其转换为字节数组。以下是一个基本的C#代码片段,展示了如何实现这一转换: ```csharp using System.Drawing; using System.IO; public byte[] ...

    bmp2c 源码+工具bmp转c数组

    在嵌入式开发中,将图像资源转换为C语言数组是一种常见的做法,这有利于将图像数据集成到固件中,特别是在资源有限的嵌入式系统中。标题提到的"bmp2c 源码+工具bmp转c数组"就是一个这样的工具,它能够将BMP图像文件...

    Android Drawable、Bitmap、byte、灰度 转换

    以下是如何将`Bitmap`转换为字节数组: ```java private byte[] Bitmap2Bytes(Bitmap bm) { ByteArrayOutputStream baos = new ByteArrayOutputStream(); bm.compress(Bitmap.CompressFormat.PNG, 100, baos); ...

    关于c++实现位图转换png

    本话题主要探讨如何使用C++编程语言将位图(Bitmap,通常为.BMP格式)转换为PNG(Portable Network Graphics)格式。PNG是一种无损压缩的位图格式,广泛用于网络和存储高质量图像。 首先,要实现这个功能,我们需要...

    Android Drawable、Bitmap、byte、灰度 之间的转换

    将Bitmap转换为byte数组,通常是为了便于在网络上传输或存储到文件中。这个过程涉及压缩,可以选择不同的压缩格式和质量。 ```java private byte[] Bitmap2Bytes(Bitmap bm) { ByteArrayOutputStream baos = new ...

    C#byte数组与Image的相互转换实例代码

    1、把一张图片(png bmp jpeg bmp gif)转换为byte数组存放到数据库。 2、把从数据库读取的byte数组转换为Image对象,赋值给相应的控件显示。 3、从图片byte数组得到对应图片的格式,生成一张图片保存到磁盘上。 ...

    C#-PDF文件和图片互相转换

    在本主题中,我们将深入探讨如何使用C#进行PDF文件和图片之间的转换。PDF(Portable Document Format)是一种通用的文件格式,用于保存文档的布局和内容,而图像则包含了像素数据,通常用于展示视觉信息。以下是一些...

    androidbitmap的用法.pdf

    `Bitmap2Bytes(Bitmap bm)`方法将Bitmap转换为byte数组。它创建一个`ByteArrayOutputStream`,然后使用`compress()`方法将Bitmap压缩成PNG格式(可选择其他格式),压缩质量设置为100(即无损压缩),最后将`...

    海康相机SDK 采图 直接生成BitMap类型

    处理完成后,可以使用Bitmap的Save方法将其保存为常见的图像文件格式,如JPG、PNG等。 6. **释放资源**:在完成所有操作后,别忘了关闭视频流和断开相机连接,释放占用的系统资源。 在C#编程环境中,利用.NET ...

    android Bitmap用法总结

    3. **Bitmap转换为byte数组**: 当需要将Bitmap保存到内存或发送到服务器时,可以将其转换为byte数组: ```java private byte[] Bitmap2Bytes(Bitmap bm) { ByteArrayOutputStream baos = new ...

Global site tag (gtag.js) - Google Analytics