Hadoop是一个用于构建分布式应用程序的框架。Hadoop框架给应用程序透明的提供了一组稳定和可靠的接口。这项技术的实现得易于映射/ 归约编程范式。在这个范式里,一个应用程序被分割成为许多的小的任务块。每一个这样的任务块被集群中的任意一个节点的计算机执行或重新执行。此外,这种范 式还提供了一种分布式的文件系统,这种文件系统用来存储数据于集群中相互间具有高带宽的计算机上。映射/归约和分布式文件系统都被设计成为容错的结构。也 就是说,当集群中某个节点发生了故障整个文件系统或者映射/归约操作仍然能够有效的运作。
Hadoop起初是作为Nutch项目的基础结构来开发的。有关Nutch得更具体的信息可以访问Apache关于Nutch开源项目的官方网站。Hadoop和Nutch都隶属于Lucene Apache项目。
Hadoop的映射/归约(Map/Reduce)
设计模型和执行框架:
映射/归约是一种编程范式最早在Lisp编程语言中得已实现,这种范式将一个大型的分布式计算看作是一系列建立在 键/值映射数据集上的分布式操作。Hadoop的映射/规约框架利用一个集群中的计算机执行用户定义的映射/归约任务。一个映射/规约操作分为两个阶段: 映射阶段和规约阶段。用户通常是把一个键值对应的数据集作为计算的输入提供给系统。
在映射阶段,框架将用户输入的数据分割成很多片断(fragments)并把每一个数据片断分配一个映射任务。系统常常将很多这样的映射任务分 配给一个集群中多个运行了该框架的计算机。每一个映射操作包括消耗掉数据片断中的键值对并且产生一个中间态的键值对应集合。例如对于每一个输入的键值对 (K,V),映射操作调用用户定义的映射函数将(K,V)对转化成为一个不同的键值对(K’,V’)
接着,系统结构将这些中间态的数据集按照键的值进行排序并生成一个新的(K’,V’*)元组(tuples)。这样所有对应同一个键不同值的数据便会被放到一起。同时系统也将这些元组分隔成为很多片断,这些片段的数目等同于归约任务的数目。
在归约的阶段,每一个归约操作消耗掉分配给它的(K’,V’*)片断。对于每一个这样的元组,归约操作会调用用户定义的归约函数用来将这些片断 转化成为用户需要的键值对(K,V)进行输出。和映射操作类似,系统将这许许多多的归约操作分配给集群计算机并且负责将映射操作中所产生的中间态数据集传 输给相应的归约操作。
在各个阶段时候的操作都是作为一种容错的风格来执行的。如果某个节点在执行操作中发生故障。其正在执行的任务将重新分配给其他的节点。多个映射归约任务的同时执行保证了良好的装载平衡,同时,也确保发生故障的机器在重新启动以后能够很快的被重新分配任务。
Hadoop映射/归约的架构:
Hadoop映射/归约框架是一个主/从(master/slave)架构.它由一个主服务器(Jobtracker)和若干从服务器(tasktracker)组成。主服务器是用户与系统打交道的关键。用户将自定义的
映射/归约操作提交给主服务器。主服务器将操作放入作业队列中并按照先到先服务的原则对队列中的任务进行处理。主服务器用来将映射或者归约操作分配给不同的从服务器。从服务器在主服务器的控制下执行操作,同时,不同的从服务器间在映射和归约阶段也进行着数据传输
Hadoop DFS
Hadoop的分布式文件系统(HDFS)被设计用来在集群计算机间存储大型 数据文件。这个设计来源于Google文件系统(GFS)。Hadoop分布式文件系统将每一个文件作为一组数据块进行存储,一个文件中除了最后一个数据 块的所有数据块都具有相同的大小。作为容错处理,这些数据块被复制成为了很多份。每一个文件的数据块大小和复制的份数是可以被管理员配置的。另外,值得注 意的是,HDFS中的文件都是只写一次并且每一个时间点严格的只允许一个线程执行写操作。
HDFS构架:
类似于Hadoop的映射规约(Map/Reduce), HDFS也遵循 master/Slave的架构。一个HDFS装置包括了一个控制服务器用来管理文件系统的命名空间和管理客户服务器对文件的访问,我们把这样的节点也叫 做命名节点(Namenode)。此外,在这样一个装置中还包括了一系列的数据节点(Datanode),每一个数据节点代表一个运行了HDFS文件系统 存储结构的机群计算机。命名节点通过一个RPC的结构对文件系统进行类似于文件或目录的打开,关闭,重命名之类的操作。同时,命名节点也负责决定将数据块 映射(Map)到相应的数据节点上。而数据节点则负责向文件系统的用户提供对文件的读写操作。数据节点也可以在命名节点的控制下对数据块进行创建,删除或 者复制的操作。
分享到:
相关推荐
在日常的开发和使用中,我们经常需要借助各种小工具来提高工作效率,例如快速启动常用的应用程序、管理文件等。一个简单但功能强大的集成工具箱可以帮助用户快速访问、启动并管理程序。今天,我们将以Python为基础,结合Tkinter和Win32API,开发一个类似Windows快捷方式的工具箱应用,能够让你轻松集成各种常用程序并一键启动
django自建博客app
《基于YOLOv8的智慧校园实验室高压灭菌锅安全联锁系统》(包含源码、可视化界面、完整数据集、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计
用于hifi测序数据的基因组组装程序
Microsoft Access 2010 数据库引擎可再发行程序包AccessDatabaseEngine-X64解压后的文件AceRedist
从大模型、智能体到复杂AI应用系统的构建——以产业大脑为例
自然语言处理之TF-IDF算法与TextRank算法的缠绵_textrank,tf-idf和两者的组合-CSDN博客.html
内容概要:2023版《科学智能 (AI4S)全球发展观察与展望》阐述了AI for Science(AI4S)在全球范围内的最新进展及其对科学和工业的深远影响。文章首先回顾了AI4S在过去一年中的快速发展,特别是在药物研发、材料科学、地质学、污染治理等多个领域的应用实例。AI4S通过结合深度学习、机器学习和其他AI技术,加速了从基础研究到实际应用的转化过程。例如,在药物研发中,AI4S帮助科学家克服了“反摩尔定律”的挑战,提高了新药研发的成功率;在材料科学中,AI4S实现了复杂材料的高效模拟,如人造钻石、石墨烯、碳纳米管等;在地质学中,AI4S通过模拟地球内部结构和物理过程,为地震学研究提供了新视角。此外,文章还探讨了大语言模型(LLMs)与科学方法的结合,指出LLMs不仅能辅助科学研究,还能生成新的科学假设并进行逻辑推理。 适合人群:具备一定科研背景或对AI技术感兴趣的科研人员、工程师、政策制定者及高校师生。
这个数据集包含了日常步数统计、睡眠时长、活跃分钟数以及消耗的卡路里,是个人健康与健身追踪的一部分。 该数据集非常适合用于以下实践: 数据清洗:现实世界中的数据往往包含缺失值、异常值或不一致之处。例如,某些天的步数可能缺失,或者存在不切实际的数值(如10,000小时的睡眠或负数的卡路里消耗)。通过处理这些问题,可以学习如何清理和准备数据进行分析。 探索性分析(发现日常习惯中的模式):可以通过分析找出日常生活中的模式和趋势,比如一周中哪一天人们通常走得最多,或是睡眠时间与活跃程度之间的关系等。 构建可视化图表(步数趋势、睡眠与活动对比图):将数据转换成易于理解的图形形式,有助于更直观地看出数据的趋势和关联。例如,绘制步数随时间变化的趋势图,或是比较睡眠时间和活动量之间的关系图。 数据叙事(将个人风格的追踪转化为可操作的见解):通过讲述故事的方式,把从数据中得到的洞察变成具体的行动建议。例如,根据某人特定时间段内的活动水平和睡眠质量,提供改善健康状况的具体建议。
框架结构天城商业办公楼5200平米(建筑图 结构图 计算书 开题报告 任务书 文献翻.zip
柴油机连杆加工工艺及夹具设计.zip
读书网首页的HTML信息
文字渐变颜色代码生成器:让文字绽放多彩魅力,演示:在信息交流日益丰富的今天,个性化的文字展示成为吸引目光的关键。这款文字渐变颜色代码生成器,便是为满足这一需求而生的绿色软件,无需安装,便捷实用。 它的操作极为简便。用户只需在软件界面中输入想要转换的文字内容,接着从丰富的色彩选项里挑选心仪的起始颜色与结束颜色,随后轻轻按下 “转换按钮”,神奇的事情就此发生 —— 适用于论坛、网页、QQ 空间等多种平台,以及自定义格式的渐变颜色代码便会即刻生成。不仅如此,生成的代码还能自动复制到剪切板,极大地节省了用户手动复制的时间。当你在论坛回帖、更新网页内容或是装扮 QQ 空间时,只需轻松粘贴代码,原本单调的文字瞬间就能拥有绚丽的渐变色彩,瞬间脱颖而出,为你的表达增添独特魅力,让文字不再平凡,轻松成为视觉焦点。 一款可以轻松把一段文字生成渐变颜色代码的绿色软件,当你在软件中输入完要转换的文字后,只需要挑选自己喜欢的起始颜色、结束颜色后,按一下―转换按钮即可生成相应的论坛/网页/QQ空间以及自定义格式代码,并且代码可以自动复制到剪切板中,回帖时直接粘贴代码即可不错得文字代码生成器,让你得文字更加漂亮.
1.【锂电池剩余寿命预测】Transformer锂电池剩余寿命预测(Matlab完整源码和数据) 2.数据集:NASA数据集,已经处理好,B0005电池训练、B0006测试; 3.环境准备:Matlab2023b,可读性强; 4.模型描述:Transformer在各种各样的问题上表现非常出色,现在被广泛使用。 5.领域描述:近年来,随着锂离子电池的能量密度、功率密度逐渐提升,其安全性能与剩余使用寿命预测变得愈发重要。本代码实现了Transformer在该领域的应用。 6.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。
资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。
Android项目原生java语言课程设计,包含LW+ppt
配套文章:https://blog.csdn.net/gust2013/article/details/146909670?spm=1001.2014.3001.5502
《基于YOLOv8的智慧社区儿童游乐设施安全监测系统》(包含源码、可视化界面、完整数据集、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计