- 浏览: 3058826 次
- 性别:
- 来自: 海外
-
文章分类
- 全部博客 (430)
- Programming Languages (23)
- Compiler (20)
- Virtual Machine (57)
- Garbage Collection (4)
- HotSpot VM (26)
- Mono (2)
- SSCLI Rotor (1)
- Harmony (0)
- DLR (19)
- Ruby (28)
- C# (38)
- F# (3)
- Haskell (0)
- Scheme (1)
- Regular Expression (5)
- Python (4)
- ECMAScript (2)
- JavaScript (18)
- ActionScript (7)
- Squirrel (2)
- C (6)
- C++ (10)
- D (2)
- .NET (13)
- Java (86)
- Scala (1)
- Groovy (3)
- Optimization (6)
- Data Structure and Algorithm (3)
- Books (4)
- WPF (1)
- Game Engines (7)
- 吉里吉里 (12)
- UML (1)
- Reverse Engineering (11)
- NSIS (4)
- Utilities (3)
- Design Patterns (1)
- Visual Studio (9)
- Windows 7 (3)
- x86 Assembler (1)
- Android (2)
- School Assignment / Test (6)
- Anti-virus (1)
- REST (1)
- Profiling (1)
- misc (39)
- NetOA (12)
- rant (6)
- anime (5)
- Links (12)
- CLR (7)
- GC (1)
- OpenJDK (2)
- JVM (4)
- KVM (0)
- Rhino (1)
- LINQ (2)
- JScript (0)
- Nashorn (0)
- Dalvik (1)
- DTrace (0)
- LLVM (0)
- MSIL (0)
最新评论
-
mldxs:
虽然很多还是看不懂,写的很好!
虚拟机随谈(一):解释器,树遍历解释器,基于栈与基于寄存器,大杂烩 -
HanyuKing:
Java的多维数组 -
funnyone:
Java 8的default method与method resolution -
ljs_nogard:
Xamarin workbook - .Net Core 中不 ...
LINQ的恶搞…… -
txm119161336:
allocatestlye1 顺序为 // Fields o ...
最近做的两次Java/JVM分享的概要
原帖地址:http://www.iteye.com/topic/477934?page=3#1186622
再顺手转回来免得以后找起来麻烦
你的思路被局限在Java“语言”里了。JSR 292的主要服务对象是JVM上的动态语言,而不是Java。如果你了解JVM的spec而不只是Java的spec,你应该能理解Java字节码不是只能通过Java编译器来生成的。你可以把我之前回帖的那段完整引用一次:
对,说得一点也没错,所以MethodHandles的API就是这样的:
如果只是要做Java的method overload resolution,当然只要参数类型不要返回值类型就够了,但了解class文件及JVM内部数据组织方式的话就会知道,方法的签名(signature)在class文件里是以方法描述符(method descriptor)的形式存在,而该描述符上是有返回值类型的。MethodHandles的API这么设计就是为了快,能更直接的访问VM里的信息,以最快的方式找到目标方法。
如果那段文字仍然不能让你明白,那请看下面的例子。
首先要明确的是,在Java语言里,method overload只依赖于方法名和参数类型,不考虑返回值类型;仅在返回值类型不同的方法无法通过Java编译器的编译。
但生成Java字节码的方式有很多:JVM上有非常多其它语言,它们的编译器都可以生成Java字节码;动态代理要生成字节码;再不行,手工生成字节码也是可以的。从JVM的角度看,无论字节码的来源是什么,只要符合class文件规范、只要加载成功,JVM就可以执行那些字节码。
这里我用bitescript来生成一个class文件,类名为TestMethodSameName,包括两个foo方法,它们只在返回值类型上不同:
得到的class文件,内容如下:
如果用Java语法来写,就是:
再次注意到这段代码用Java编译器确实编译不了。但上面生成的字节码对JVM来说却是完全没问题的。执行结果输出如下:
这很好的说明了在深入到底层去挖掘MethodHandle时,指定返回值类型的必要性。
JDK原本包含的普通反射API之所以不需要指定返回值类型是因为它只是为Java语言服务的。如今的JSR 292则是为JVM上所有语言服务,主要目标是各种动态语言,但也不拒绝Java去使用它。
关于bitescript的用法,请参考这一帖的例子。上面生成的class文件我也放在附件里了,不相信例子的输出结果的话请自己执行一下,眼见为实。
原来是第6章。。
好像是inside jvm第3章还是第4章的内容,还好看过,不至于太OUT
《Inside the Java Virtual Machine》第二版的6.3.3讲解了描述符,6.6讲解了方法。在6.6的第一段就提到了仅靠返回值也可以区分方法的情况。
好像是inside jvm第3章还是第4章的内容,还好看过,不至于太OUT
再顺手转回来免得以后找起来麻烦
star022 写道
Java代码
findStatic(
TestMethodHandle1.class, // 方法所属类型(Class)
"hello", // 方法名
type // 由参数和返回值类型组成的“方法类型”
);
type// 由参数和返回值类型组成的“方法类型”
“方法类型”这个参数设计得很失败,
一个类中的方法,如果方法名和参数个数及类型一样,这个类能正确编译吗?
其实MethodHandle最终只需要暴露类似这样一个静态方法即可:
//方法如果没有返回值,为void
MethodHandle.<T>invoke(
Class clazz, // 方法所属类型(Class)
String methodName, // 方法名
Object... params//方法参数,可以运行时确定参数个数及类型,定位到具体方法
)
findStatic(
TestMethodHandle1.class, // 方法所属类型(Class)
"hello", // 方法名
type // 由参数和返回值类型组成的“方法类型”
);
type// 由参数和返回值类型组成的“方法类型”
“方法类型”这个参数设计得很失败,
一个类中的方法,如果方法名和参数个数及类型一样,这个类能正确编译吗?
其实MethodHandle最终只需要暴露类似这样一个静态方法即可:
//方法如果没有返回值,为void
MethodHandle.<T>invoke(
Class clazz, // 方法所属类型(Class)
String methodName, // 方法名
Object... params//方法参数,可以运行时确定参数个数及类型,定位到具体方法
)
你的思路被局限在Java“语言”里了。JSR 292的主要服务对象是JVM上的动态语言,而不是Java。如果你了解JVM的spec而不只是Java的spec,你应该能理解Java字节码不是只能通过Java编译器来生成的。你可以把我之前回帖的那段完整引用一次:
RednaxelaFX 写道
star022 写道
定位到一个java方法,其实只需要类型(Class),方法名及参数即可。
对,说得一点也没错,所以MethodHandles的API就是这样的:
引用
findStatic( TestMethodHandle1.class, // 方法所属类型(Class) "hello", // 方法名 type // 由参数和返回值类型组成的“方法类型” );
如果只是要做Java的method overload resolution,当然只要参数类型不要返回值类型就够了,但了解class文件及JVM内部数据组织方式的话就会知道,方法的签名(signature)在class文件里是以方法描述符(method descriptor)的形式存在,而该描述符上是有返回值类型的。MethodHandles的API这么设计就是为了快,能更直接的访问VM里的信息,以最快的方式找到目标方法。
如果那段文字仍然不能让你明白,那请看下面的例子。
首先要明确的是,在Java语言里,method overload只依赖于方法名和参数类型,不考虑返回值类型;仅在返回值类型不同的方法无法通过Java编译器的编译。
但生成Java字节码的方式有很多:JVM上有非常多其它语言,它们的编译器都可以生成Java字节码;动态代理要生成字节码;再不行,手工生成字节码也是可以的。从JVM的角度看,无论字节码的来源是什么,只要符合class文件规范、只要加载成功,JVM就可以执行那些字节码。
这里我用bitescript来生成一个class文件,类名为TestMethodSameName,包括两个foo方法,它们只在返回值类型上不同:
require 'rubygems' require 'bitescript' include BiteScript fb = FileBuilder.build(__FILE__) do public_class 'TestMethodSameName' do public_static_method 'foo', void, int do ldc 'TestMethodSameName.foo:(I)V' aprintln returnvoid end public_static_method 'foo', int, int do ldc 'TestMethodSameName.foo:(I)I' aprintln iload 0 ireturn end public_static_method 'main', void, string[] do push_int 123 invokestatic this, 'foo', [void, int] push_int 456 invokestatic this, 'foo', [int, int] pop returnvoid end end end fb.generate do |filename, class_builder| File.open(filename, 'w') do |file| file.write(class_builder.generate) end end
得到的class文件,内容如下:
Compiled from "test5.rb" public class TestMethodSameName extends java.lang.Object{ public static void foo(int); Code: 0: ldc #9; //String TestMethodSameName.foo:(I)V 2: getstatic #15; //Field java/lang/System.out:Ljava/io/PrintStream; 5: swap 6: invokevirtual #21; //Method java/io/PrintStream.println:(Ljava/lang/Object;)V 9: return public static int foo(int); Code: 0: ldc #24; //String TestMethodSameName.foo:(I)I 2: getstatic #15; //Field java/lang/System.out:Ljava/io/PrintStream; 5: swap 6: invokevirtual #21; //Method java/io/PrintStream.println:(Ljava/lang/Object;)V 9: iload_0 10: ireturn public static void main(java.lang.String[]); Code: 0: bipush 123 2: invokestatic #28; //Method foo:(I)V 5: sipush 456 8: invokestatic #30; //Method foo:(I)I 11: pop 12: return }
如果用Java语法来写,就是:
public class TestMethodSameName { public static void foo(int i) { System.out.println("TestMethodSameName.foo:(I)V"); } public static int foo(int i) { System.out.println("TestMethodSameName.foo:(I)I"); return i; } public static void main(String[] args) { foo(123); // foo:(I)V foo(456); // foo:(I)I } }
再次注意到这段代码用Java编译器确实编译不了。但上面生成的字节码对JVM来说却是完全没问题的。执行结果输出如下:
引用
TestMethodSameName.foo:(I)V
TestMethodSameName.foo:(I)I
TestMethodSameName.foo:(I)I
这很好的说明了在深入到底层去挖掘MethodHandle时,指定返回值类型的必要性。
JDK原本包含的普通反射API之所以不需要指定返回值类型是因为它只是为Java语言服务的。如今的JSR 292则是为JVM上所有语言服务,主要目标是各种动态语言,但也不拒绝Java去使用它。
关于bitescript的用法,请参考这一帖的例子。上面生成的class文件我也放在附件里了,不相信例子的输出结果的话请自己执行一下,眼见为实。
- TestMethodSameName.zip (455 Bytes)
- 下载次数: 6
评论
3 楼
phyeas
2009-10-01
![](/images/smiles/icon_redface.gif)
![](/images/smiles/icon_redface.gif)
2 楼
RednaxelaFX
2009-10-01
phyeas 写道
![](/images/smiles/icon_biggrin.gif)
![](/images/smiles/icon_biggrin.gif)
![](/images/smiles/icon_razz.gif)
![](/images/smiles/icon_razz.gif)
《Inside the Java Virtual Machine》第二版的6.3.3讲解了描述符,6.6讲解了方法。在6.6的第一段就提到了仅靠返回值也可以区分方法的情况。
1 楼
phyeas
2009-10-01
![](/images/smiles/icon_biggrin.gif)
![](/images/smiles/icon_biggrin.gif)
![](/images/smiles/icon_razz.gif)
![](/images/smiles/icon_razz.gif)
发表评论
-
The Prehistory of Java, HotSpot and Train
2014-06-02 08:18 0http://cs.gmu.edu/cne/itcore/vi ... -
MSJVM and Sun 1.0.x/1.1.x
2014-05-20 18:50 0当年的survey paper: http://www.sym ... -
Sun JDK1.4.2_28有TieredCompilation
2014-05-12 08:48 0原来以前Sun的JDK 1.4.2 update 28就已经有 ... -
IBM JVM notes (2014 ver)
2014-05-11 07:16 0Sovereign JIT http://publib.bou ... -
class data sharing by Apple
2014-03-28 05:17 0class data sharing is implement ... -
Java 8与静态工具类
2014-03-19 08:43 16329以前要在Java里实现所谓“静态工具类”(static uti ... -
Java 8的default method与method resolution
2014-03-19 02:23 10488先看看下面这个代码例子, interface IFoo { ... -
HotSpot Server VM与Server Class Machine
2014-02-18 13:21 0HotSpot VM历来有Client VM与Server V ... -
Java 8的lambda表达式在OpenJDK8中的实现
2014-02-04 12:08 0三月份JDK8就要发布首发了,现在JDK8 release c ... -
GC stack map与deopt stack map的异同
2014-01-08 09:56 0两者之间不并存在包含关系。它们有交集,但也各自有特别的地方。 ... -
HotSpot Server Compiler与data-flow analysis
2014-01-07 17:41 0http://en.wikipedia.org/wiki/Da ... -
字符串的一般封装方式的内存布局 (1): 元数据与字符串内容,整体还是分离?
2013-11-07 17:44 22430(Disclaimer:未经许可请 ... -
字符串的一般封装方式的内存布局
2013-11-01 12:55 0(Disclaimer:未经许可请 ... -
关于string,内存布局,C++ std::string,CoW
2013-10-30 20:45 0(Disclaimer:未经许可请 ... -
对C语义的for循环的基本代码生成模式
2013-10-19 23:12 21897之前有同学在做龙书(第二版)题目,做到8.4的练习,跟我对答案 ... -
Java的instanceof是如何实现的
2013-09-22 16:57 0Java语言规范,Java SE 7版 http://docs ... -
oop、klass、handle的关系
2013-07-30 17:34 0oopDesc及其子类的实例 oop : oopDesc* ... -
Nashorn各种笔记
2013-07-15 17:03 0http://bits.netbeans.org/netbea ... -
《深入理解Java虚拟机(第二版)》书评
2013-07-08 19:19 0值得推荐的中文Java虚拟机入门书 感谢作者赠与的样书,以下 ... -
豆列:从表到里学习JVM实现
2013-06-13 14:13 48440刚写了个学习JVM用的豆列跟大家分享。 豆列地址:http: ...
相关推荐
风光储直流微电网Simulink仿真模型:光伏发电、风力发电与混合储能系统的协同运作及并网逆变器VSR的研究,风光储直流微电网Simulink仿真模型:MPPT控制、混合储能系统、VSR并网逆变器的设计与实现,风光储、风光储并网直流微电网simulink仿真模型。 系统由光伏发电系统、风力发电系统、混合储能系统(可单独储能系统)、逆变器VSR?大电网构成。 光伏系统采用扰动观察法实现mppt控制,经过boost电路并入母线; 风机采用最佳叶尖速比实现mppt控制,风力发电系统中pmsg采用零d轴控制实现功率输出,通过三相电压型pwm变器整流并入母线; 混合储能由蓄电池和超级电容构成,通过双向DCDC变器并入母线,并采用低通滤波器实现功率分配,超级电容响应高频功率分量,蓄电池响应低频功率分量,有限抑制系统中功率波动,且符合储能的各自特性。 并网逆变器VSR采用PQ控制实现功率入网。 ,风光储; 直流微电网; simulink仿真模型; 光伏发电系统; 最佳叶尖速比控制; MPPT控制; Boost电路; 三相电压型PWM变换器;
以下是针对初学者的 **51单片机入门教程**,内容涵盖基础概念、开发环境搭建、编程实践及常见应用示例,帮助你快速上手。
【Python毕设】根据你提供的课程代码,自动排出可行课表,适用于西工大选课_pgj
【毕业设计】[零食商贩]-基于vue全家桶+koa2+sequelize+mysql搭建的移动商城应用
电动汽车充电背景下的微电网谐波抑制策略与风力发电系统仿真研究,电动汽车充电微电网的谐波抑制策略与风力发电系统仿真研究,基于电动汽车充电的微电网谐波抑制策略研究,包括电动汽车充电负 载模型,风电模型,光伏发现系统,储能系统,以及谐波处理模块 风力发电系统仿真 ,电动汽车充电负载模型; 风电模型; 光伏发现系统; 储能系统; 谐波处理模块; 风力发电系统仿真,电动汽车充电微电网的谐波抑制策略研究:整合负载模型、风电模型与光伏储能系统
Vscode部署本地Deepseek的continue插件windows版本
内容概要:本文详细介绍了滤波器的两个关键参数——截止频率(F0)和品质因素(Q),并探讨了不同类型的滤波器(包括低通、高通、带通和带阻滤波器)的设计方法及其特性。文章首先明确了F0和Q的基本概念及其在滤波器性能中的作用,接着通过数学推导和图形展示的方式,解释了不同Q值对滤波器频率响应的影响。文中特别指出,通过调整Q值可以控制滤波器的峰谷效果和滚降速度,进而优化系统的滤波性能。此外,还讨论了不同类型滤波器的具体应用场景,如低通滤波器适用于消除高频噪声,高通滤波器用于去除直流分量和低频干扰,而带通滤波器和带阻滤波器分别用于选取特定频段信号和排除不需要的频段。最后,通过对具体案例的解析,帮助读者更好地理解和应用相关理论。 适合人群:电子工程及相关领域的技术人员、研究人员以及高校学生,特别是那些需要深入了解滤波器设计原理的人群。 使用场景及目标:适用于从事模拟电路设计的专业人士,尤其是希望掌握滤波器设计细节和技术的应用场合。目标是让读者能够灵活运用Q值和F0来优化滤波器设计,提升系统的信噪比和选择性,确保信号的纯净性和完整性。
内容概要:本文主要讲述了利用QUARTUSⅡ进行电子设计自动化的具体步骤和实例操作,详细介绍了如何利用EDA技术在QUARTUSⅡ环境中设计并模拟下降沿D触发器的工作过程,重点探讨了系统规格设计、功能描述、设计处理、器件编译和测试四个步骤及相关的设计验证流程,如功能仿真、逻辑综合及时序仿真等内容,并通过具体的操作指南展示了电路设计的实际操作方法。此外还强调了QUARTUSⅡ作为一款集成了多种功能的综合平台的优势及其对于提高工作效率的重要性。 适用人群:电子工程、自动化等相关专业的学生或者工程师,尤其适用于初次接触EDA技术和QuartusⅡ的用户。 使用场景及目标:旨在帮助用户理解和掌握使用QUARTUSⅡ这一先进的EDA工具软件进行从概念设计到最后成品制作整个电路设计过程的方法和技巧。目标是在实际工作中能够熟练运用QUARTUSⅡ完成各类复杂电子系统的高效设计。 其他说明:文中通过具体的案例让读者更直观理解EDA设计理念和技术特点的同时也为进一步探索EDA领域的前沿课题打下了良好基础。此外它还提到了未来可能的发展方向,比如EDA工具的功能增强趋势等。
Simulink建模下的光储系统与IEEE33节点配电网的协同并网运行:光照强度变化下的储能系统优化策略与输出性能分析,Simulink模型下的光伏微网系统:光储协同,实现380v电压等级下的恒定功率并网与平抑波动,Simulink含光伏的IEEE33节点配电网模型 微网,光储系统并网运行 光照强度发生改变时,储能可以有效配合光伏进行恒定功率并网,平抑波动,实现削峰填谷。 总的输出有功为270kw(图23) 无功为0 检验可以并网到电压等级为380v的电网上 逆变侧输出电压电流稳定(图4) ,Simulink; 含光伏; 配电网模型; 微网; 光储系统; 储能配合; 恒定功率并网; 电压等级; 逆变侧输出。,Simulink光伏微网模型:光储协同并网运行,实现功率稳定输出
基于Andres ELeon新法的双馈风机次同步振荡抑制策略:附加阻尼控制(SDC)的实践与应用,双馈风机次同步振荡的抑制策略研究:基于转子侧附加阻尼控制(SDC)的应用与效能分析,双馈风机次同步振荡抑制策略(一) 含 基于转子侧附加阻尼控制(SDC)的双馈风机次同步振荡抑制,不懂就问, 附加阻尼控制 (SDC)被添加到 RSC 内部控制器的q轴输出中。 这种方法是由Andres ELeon在2016年提出的。 该方法由增益、超前滞后补偿器和带通滤波器组成。 采用实测的有功功率作为输入信号。 有关更多信息,你可以阅读 Andres ELeon 的lunwen。 附lunwen ,关键词:双馈风机、次同步振荡、抑制策略;转子侧附加阻尼控制(SDC);RSC内部控制器;Andres ELeon;增益;超前滞后补偿器;带通滤波器;实测有功功率。,双馈风机次同步振荡抑制技术:基于SDC与RSCq轴控制的策略研究
springboot疫情防控期间某村外出务工人员信息管理系统--
高效光伏并网发电系统MATLAB Simulink仿真设计与MPPT技术应用及PI调节闭环控制,光伏并网发电系统MATLAB Simulink仿真设计:涵盖电池、BOOST电路、逆变电路及MPPT技术效率提升,光伏并网发电系统MATLAB Simulink仿真设计。 该仿真包括电池,BOOST升压电路,单相全桥逆变电路,电压电流双闭环控制部分;应用MPPT技术,提高光伏发电的利用效率。 采用PI调节方式进行闭环控制,SPWM调制,采用定步长扰动观测法,对最大功率点进行跟踪,可以很好的提高发电效率和实现并网要求。 ,光伏并网发电系统; MATLAB Simulink仿真设计; 电池; BOOST升压电路; 单相全桥逆变电路; 电压电流双闭环控制; MPPT技术; PI调节方式; SPWM调制; 定步长扰动观测法。,光伏并网发电系统Simulink仿真设计:高效MPPT与PI调节控制策略
PFC 6.0高效循环加载系统:支持半正弦、半余弦及多级变荷载功能,PFC 6.0循环加载代码:支持半正弦、半余弦及多级变荷载的强大功能,PFC6.0循环加载代码,支持半正弦,半余弦函数加载,中间变荷载等。 多级加载 ,PFC6.0; 循环加载代码; 半正弦/半余弦函数加载; 中间变荷载; 多级加载,PFC6.0多级半正弦半余弦循环加载系统
某站1K的校园跑腿小程序 多校园版二手市场校园圈子失物招领 食堂/快递代拿代买跑腿 多校版本,多模块,适合跑腿,外卖,表白,二手,快递等校园服务 需要自己准备好后台的服务器,已认证的小程序,备案的域名!
【Python毕设】根据你提供的课程代码,自动排出可行课表,适用于西工大选课
COMSOL锂枝晶模型:五合一的相场、浓度场与电场模拟研究,涵盖单枝晶定向生长、多枝晶生长及无序生长等多元现象的探索,COMSOL锂枝晶模型深度解析:五合一技术揭示单枝晶至雪花枝晶的生长机制与物理场影响,comsol锂枝晶模型 五合一 单枝晶定向生长、多枝晶定向生长、多枝晶随机生长、无序生长随机形核以及雪花枝晶,包含相场、浓度场和电场三种物理场(雪花枝晶除外),其中单枝晶定向生长另外包含对应的参考文献。 ,comsol锂枝晶模型; 五合一模型; 单枝晶定向生长; 多枝晶定向生长; 多枝晶随机生长; 无序生长随机形核; 雪花枝晶; 相场、浓度场、电场物理场; 参考文献,COMSOL锂枝晶模型:多场景定向生长与相场电场分析
嵌入式大学生 点阵代码
那个有delphi12 tedgebrowser 使用的dll
基于DQN算法的微网储能优化调度与能量管理:深度强化学习的应用与实践,基于DQN算法的微网储能优化调度与能量管理:深度强化学习的应用与实践,基于DQN算法的微网储能运行优化与能量管理 关键词:微网 优化调度 储能优化 深度强化学习 DQN 编程语言:python 参考文献:《Explainable AI Deep Reinforcement Learning Agents for Residential Demand Side Cost Savings in Smart Grids》 内容简介: 受深层强化学习(RL)最新进展的激励,我们开发了一个RL代理来管理家庭中存储设备的操作,旨在最大限度地节省需求侧的成本。 所提出的技术是数据驱动的,并且RL代理从头开始学习如何在可变费率结构下有效地使用能量存储设备,即收缩“黑匣子”的概念,其中代理所学的技术被忽略。 我们解释了RL-agent的学习过程,以及基于存储设备容量的策略。 ,微网; 优化调度; 储能优化; 深度强化学习; DQN; 家庭存储设备; 需求侧成本节省; 智能电网; RL代理; 能量存储设备。,基于DQN算法的微网储