- 浏览: 284748 次
- 性别:
- 来自: 湖南岳阳
最新评论
-
ternus:
兄弟,我用boboBrowse 也遇到了排序的问题,上线了讨论 ...
lucene 分组 bobo-Browse 排序的问题 -
luli0822:
Awesome bookmarks of those guru ...
流行的jQuery信息提示插件(jQuery Tooltip Plugin) -
shenbai:
如果你要在前台运行,你应该run得是ElasticSearch ...
ElasticSearch 源码分析 环境入门 -
cl1154781231:
<s:peroperty value="#at ...
关于Struts2中标签的一些心得 -
RonQi:
转载的吗?http://blog.csdn.net/stray ...
利用bobo-browse 实现lucene的分组统计功能
关于SpanQuery(跨度搜索),它是Query的子类,但是SpanQuery仍然是一个抽象类,它有6个直接子类实现类。继承关系如图所示:
其中SpanTermQuery是一个最基础的跨度搜索实现类,SpanTermQuery与SpanQuery的关系,就如同TermQuery与Query的关系:SpanTermQuery是为SpanQuery其它的具体实现子类服务的,其实TermQuery也是为Query的具体子类实现类服务的,例如构造一个BooleanQuery查询,可以向其中添加多个TermQuery查询子句。
SpanTermQuery跨度搜索
SpanTermQuery的应用与TermQuery的用法是一样的,获取到的检索结果集也是相同的。
这里,SpanTermQuery是SpanQuery的子实现类,所有从跨度搜索的角度来说,他的跨度值就是使用SpanTermQuery的唯一的一个构造方法所用的一个Term的跨度值。也就是说,它的起始位置和结束位置都是一个固定的值(其实就是一个固定跨度)。
SpanFirstQuery跨度搜索
SpanFirstQuery搜索是基于SpanTermQuery的,在实例化一个SpanFirstQuery的时候,是通过一个SpanTermQuery的实例作为参数来构造的。
该SpanFirstQuery只有唯一的一个构造方法:
public SpanFirstQuery(SpanQuery match, int end) {
this.match = match;
this.end = end;
}
上面的end指定了在查询时,从起始位置开始(起始位置为0,这点可以在后面的测试中得知。因为名称中First已经表达了这层含义),在小于end的位置之前的文本中,与match进行匹配。
先使用ThesaurusAnalyzer分析器来实现分词,为指定的数据建立索引,如下所示:
package org.apache.lucene.shirdrn.main;
import java.io.IOException;
import net.teamhot.lucene.ThesaurusAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.index.CorruptIndexException;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.store.LockObtainFailedException;
public class MySearchEngineUsingThesaurusAnalyzer {
public static void main(String[] args){
String indexPath = "E:\\Lucene\\index";
IndexWriter writer;
try {
writer = new IndexWriter(indexPath,new ThesaurusAnalyzer(),true);
Field fieldA = new Field("contents","今天是我们地球的生日,对于我们每个人,在我们的宇宙中,一场空前关于我们熟悉的宇宙论的辩论激烈地展开了。",Field.Store.YES,Field.Index.TOKENIZED);
Document docA = new Document();
docA.add(fieldA);
Field fieldB1 = new Field("contents","谁知道宇宙空间的奥秘,在我们这些人当中?",Field.Store.YES,Field.Index.TOKENIZED);
Field fieldB2 = new Field("contents","宇宙飞船。",Field.Store.YES,Field.Index.TOKENIZED);
Field fieldB3 = new Field("contents","我们的太空宇宙。",Field.Store.YES,Field.Index.TOKENIZED);
Document docB = new Document();
docB.add(fieldB1);
docB.add(fieldB2);
docB.add(fieldB3);
Field fieldC = new Field("contents","我们宇宙学家对地球的重要性。",Field.Store.YES,Field.Index.TOKENIZED);
Document docC = new Document();
docC.add(fieldC);
writer.addDocument(docA);
writer.addDocument(docB);
writer.addDocument(docC);
writer.close();
} catch (CorruptIndexException e) {
e.printStackTrace();
} catch (LockObtainFailedException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}
首先要把ThesaurusAnalyzer分析器的jar包加入到CLASSPATH中,然后运行上面的主函数,建立索引。
建立的索引文件在本地磁盘指定的索引目录E:\Lucene\index下生成,这时候可以测试SpanFirstQuery的使用了。
因为ThesaurusAnalyzer分析器自带了一个词库,该词库中有词条“我们”,我们就通过“我们”来构造SpanQuery,进行查询。
编写一个SpanFirstQuerySearcher测试类,带主函数,如下所示:
package org.apache.lucene.shirdrn.main;
import java.io.IOException;
import java.util.Date;
import java.util.List;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.index.CorruptIndexException;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.TermDocs;
import org.apache.lucene.search.Hits;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.spans.SpanFirstQuery;
import org.apache.lucene.search.spans.SpanQuery;
import org.apache.lucene.search.spans.SpanTermQuery;
public class SpanFirstQuerySearcher {
public static void main(String[] args) {
String indexPath = "E:\\Lucene\\index";
try {
IndexSearcher searcher = new IndexSearcher(indexPath);
String keyword = "我们";
Term term = new Term("contents",keyword);
SpanTermQuery spanTermQuery = new SpanTermQuery(term);
int end = 1;
SpanQuery spanFirstQuery = new SpanFirstQuery(spanTermQuery,end);
System.out.println("####################################################################");
System.out.println("SpanFirstQuery中end指定值为 : "+end);
System.out.println("####################################################################");
Date startTime = new Date();
Hits hits = searcher.search(spanFirstQuery);
for(int i=0;i<hits.length();i++){
TermDocs termDocs = searcher.getIndexReader().termDocs(term);
while(termDocs.next()){
if(termDocs.doc() == hits.id(i)){
System.out.println("Document的内部编号为 : "+hits.id(i));
Document doc = hits.doc(i);
System.out.println("Document的得分为 : "+hits.score(i));
List fieldList = doc.getFields();
System.out.println("Document(编号) "+hits.id(i)+" 的Field的信息: ");
for(int j=0;j<fieldList.size();j++){
Field field = (Field)fieldList.get(j);
System.out.println(" Field的name : "+field.name());
System.out.println(" Field的stringValue : "+field.stringValue());
System.out.println(" ------------------------------------");
}
System.out.println("搜索的该关键字【"+keyword+"】在Document(编号) "+hits.id(i)+" 中,出现过 "+termDocs.freq()+" 次");
}
}
}
System.out.println("********************************************************************");
Date finishTime = new Date();
long timeOfSearch = finishTime.getTime() - startTime.getTime();
System.out.println("本次搜索所用的时间为 "+timeOfSearch+" ms");
} catch (CorruptIndexException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}
}
当end=1时,也就是从具有一个词条的跨度,运行结果如下所示:
####################################################################
SpanFirstQuery中end指定值为 : 1
####################################################################
Document的内部编号为 : 2
Document的得分为 : 0.18888181
Document(编号) 2 的Field的信息:
Field的name : contents
Field的stringValue : 我们宇宙学家对地球的重要性。
------------------------------------
搜索的该关键字【我们】在Document(编号) 2 中,出现过 1 次
********************************************************************
本次搜索所用的时间为 78 ms
这里docB没有被检索出来。
当end=5时,增大了跨度,执行结果如下所示:
####################################################################
SpanFirstQuery中end指定值为 : 5
####################################################################
Document的内部编号为 : 2
Document的得分为 : 0.18888181
Document(编号) 2 的Field的信息:
Field的name : contents
Field的stringValue : 我们宇宙学家对地球的重要性。
------------------------------------
搜索的该关键字【我们】在Document(编号) 2 中,出现过 1 次
Document的内部编号为 : 0
Document的得分为 : 0.09444091
Document(编号) 0 的Field的信息:
Field的name : contents
Field的stringValue : 今天是我们地球的生日,对于我们每个人,在我们的宇宙中,一场空前关于我们熟悉的宇宙论的辩论激烈地展开了。
------------------------------------
搜索的该关键字【我们】在Document(编号) 0 中,出现过 4 次
********************************************************************
本次搜索所用的时间为 62 ms
当end=10的时候,可以看到3个Document都被检索到,如下所示:
####################################################################
SpanFirstQuery中end指定值为 : 10
####################################################################
Document的内部编号为 : 2
Document的得分为 : 0.18888181
Document(编号) 2 的Field的信息:
Field的name : contents
Field的stringValue : 我们宇宙学家对地球的重要性。
------------------------------------
搜索的该关键字【我们】在Document(编号) 2 中,出现过 1 次
Document的内部编号为 : 0
Document的得分为 : 0.13355961
Document(编号) 0 的Field的信息:
Field的name : contents
Field的stringValue : 今天是我们地球的生日,对于我们每个人,在我们的宇宙中,一场空前关于我们熟悉的宇宙论的辩论激烈地展开了。
------------------------------------
搜索的该关键字【我们】在Document(编号) 0 中,出现过 4 次
Document的内部编号为 : 1
Document的得分为 : 0.1259212
Document(编号) 1 的Field的信息:
Field的name : contents
Field的stringValue : 谁知道宇宙空间的奥秘,在我们这些人当中?
------------------------------------
Field的name : contents
Field的stringValue : 宇宙飞船。
------------------------------------
Field的name : contents
Field的stringValue : 我们的太空宇宙。
------------------------------------
搜索的该关键字【我们】在Document(编号) 1 中,出现过 2 次
********************************************************************
本次搜索所用的时间为 234 ms
SpanNearQuery跨度搜索
SpanNearQuery只有一个构造方法,可以从SpanNearQuery的构造方法来看:
public SpanNearQuery(SpanQuery[] clauses, int slop, boolean inOrder) {
this.clauses = new ArrayList(clauses.length);
for (int i = 0; i < clauses.length; i++) {
SpanQuery clause = clauses[i];
if (i == 0) {
field = clause.getField();
} else if (!clause.getField().equals(field)) {
throw new IllegalArgumentException("Clauses must have same field.");
}
this.clauses.add(clause);
}
this.slop = slop;
this.inOrder = inOrder;
}
从方法的声明来看,各个参数如下:
clauses是指:一个SpanQuery的子句的数组;
slop是指:对于每个SpanQuery都由一个Term构造而成,在一段文本中,可能在出现的这两个词条之间由若干个其它不相关的词条,slop指定了一个整数值,从而可以忽略这些不相关的词条(忽略的个数<=slop),如果slop=0,则说明clauses中的SpanQuery查询的词条必须是相连着的;
inOrder是指:是否clauses子句们按照有序的方式实现搜索,当inOrder为true时,必须按照各个子句中检索的词条的前后顺序进行匹配,逆序的就被淘汰。
依然用上面建立的索引文件测试。
测试通过先构造一个SpanTermQuery(词条内容为“我们”)和一个SpanFirstQuery(词条内容为“宇宙”),再构造一个SpanNearQuery,测试代码如下所示:
package org.apache.lucene.shirdrn.main;
import java.io.IOException;
import java.util.Date;
import java.util.List;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.index.CorruptIndexException;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.TermDocs;
import org.apache.lucene.search.Hits;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.spans.SpanFirstQuery;
import org.apache.lucene.search.spans.SpanNearQuery;
import org.apache.lucene.search.spans.SpanQuery;
import org.apache.lucene.search.spans.SpanTermQuery;
public class SpanNearQuerySearcher {
public static void main(String[] args) {
String indexPath = "E:\\Lucene\\index";
try {
IndexSearcher searcher = new IndexSearcher(indexPath);
String keywordA = "我们";
Term termA = new Term("contents",keywordA);
SpanTermQuery spanTermQueryA = new SpanTermQuery(termA);
int end = 10;
System.out.println("####################################################################");
System.out.println("SpanFirstQuery中end指定值为 : "+end);
System.out.println("####################################################################");
SpanQuery spanFirstQuery = new SpanFirstQuery(spanTermQueryA,end);
String keywordB = "宇宙";
Term termB = new Term("contents",keywordA);
SpanTermQuery spanTermQueryB = new SpanTermQuery(termB);
int slop = 2;
System.out.println("####################################################################");
System.out.println("SpanNearQuery中slop指定值为 : "+slop);
System.out.println("####################################################################");
SpanNearQuery spanNearQuery = new SpanNearQuery(new SpanQuery[]{spanFirstQuery,spanTermQueryB},slop,true);
Date startTime = new Date();
Hits hits = searcher.search(spanNearQuery);
for(int i=0;i<hits.length();i++){
System.out.println("Document的内部编号为 : "+hits.id(i));
Document doc = hits.doc(i);
System.out.println("Document的得分为 : "+hits.score(i));
List fieldList = doc.getFields();
System.out.println("Document(编号) "+hits.id(i)+" 的Field的信息: ");
for(int j=0;j<fieldList.size();j++){
Field field = (Field)fieldList.get(j);
System.out.println(" Field的name : "+field.name());
System.out.println(" Field的stringValue : "+field.stringValue());
System.out.println(" ------------------------------------");
}
}
System.out.println("********************************************************************");
Date finishTime = new Date();
long timeOfSearch = finishTime.getTime() - startTime.getTime();
System.out.println("本次搜索所用的时间为 "+timeOfSearch+" ms");
} catch (CorruptIndexException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}
}
这里,指定了slop=2,inOrder=true,即:“我们”和“宇宙”是按先后顺序在Document中进行匹配的。
运行测试程序,结果如下:
####################################################################
SpanFirstQuery中end指定值为 : 10
####################################################################
####################################################################
SpanNearQuery中slop指定值为 : 2
####################################################################
Document的内部编号为 : 0
Document的得分为 : 0.059729677
Document(编号) 0 的Field的信息:
Field的name : contents
Field的stringValue : 今天是我们地球的生日,对于我们每个人,在我们的宇宙中,一场空前关于我们熟悉的宇宙论的辩论激烈地展开了。
------------------------------------
********************************************************************
本次搜索所用的时间为 93 ms
其实,我们指定了SpanFirstQuery足够大的跨度,但是在SpanNearQuery中指定的slop的值很小,在进行匹配的时候,只是允许两个词条之间可以有2个无关的其它词条,再加上指定了inOrder为true,严格有序,所以只检索到了编号为0的Document。
现在,将slop改为10,因为slop比较关键,决定了两个检索词条之间的间隙大小,这时可以看到检索结果如下所示:
####################################################################
SpanFirstQuery中end指定值为 : 10
####################################################################
####################################################################
SpanNearQuery中slop指定值为 : 10
####################################################################
Document的内部编号为 : 0
Document的得分为 : 0.078204505
Document(编号) 0 的Field的信息:
Field的name : contents
Field的stringValue : 今天是我们地球的生日,对于我们每个人,在我们的宇宙中,一场空前关于我们熟悉的宇宙论的辩论激烈地展开了。
------------------------------------
Document的内部编号为 : 1
Document的得分为 : 0.06730772
Document(编号) 1 的Field的信息:
Field的name : contents
Field的stringValue : 谁知道宇宙空间的奥秘,在我们这些人当中?
------------------------------------
Field的name : contents
Field的stringValue : 宇宙飞船。
------------------------------------
Field的name : contents
Field的stringValue : 我们的太空宇宙。
------------------------------------
********************************************************************
本次搜索所用的时间为 125 ms
SpanNearQuery的构造方法给了一个SpanQuery[] clauses子句数组,可以使用任何继承了SpanQuery的具体实现类,当然也包括SpanNearQuery,将它们添加到子句的数组中,实现复杂的搜索。
SpanNotQuery跨度搜索
依然从构造方法看:
public SpanNotQuery(SpanQuery include, SpanQuery exclude) {
this.include = include;
this.exclude = exclude;
if (!include.getField().equals(exclude.getField()))
throw new IllegalArgumentException("Clauses must have same field.");
}
该SpanNotQuery指定了一个SpanQuery include,该include子句查询会得到一个结果的集合,设为集合A;SpanQuery exclude也可以得到一个结果的集合,设为集合B,则SpanNotQuery检索结果的集合表示为:
A-B
很好理解,就是集合的差运算。
SpanOrQuery跨度搜索
这个也很好理解,就是集合的并运算,它的构造方法如下所示:
public SpanOrQuery(SpanQuery[] clauses) {
this.clauses = new ArrayList(clauses.length);
for (int i = 0; i < clauses.length; i++) {
SpanQuery clause = clauses[i];
if (i == 0) {
field = clause.getField();
} else if (!clause.getField().equals(field)) {
throw new IllegalArgumentException("Clauses must have same field.");
}
this.clauses.add(clause);
}
}
只要把你想要检索的SpanQuery子句构造好以后,添加到SpanQuery[] clauses数组中,谈后执行SpanOrQuery跨度搜索的时候,会把每个子句得到的结果合并起来,得到一个很庞大的检索结果集。
SpanRegexQuery跨度搜索
构造该SpanQuery也很容易:
public SpanRegexQuery(Term term) {
this.term = term;
}
只需要一个Term作为参数即可。从该SpanRegexQuery的名称来看,就知道它和正则表达式有一定的联系。其实在构造好一个SpanRegexQuery以后,可以为其设置一个正则表达式,这要看你对正则表达式的运用的熟练程度如何了。
在SpanRegexQuery中定义了两个成员变量:
private RegexCapabilities regexImpl = new JavaUtilRegexCapabilities();
private Term term;
而且SpanRegexQuery实现了RegexQueryCapable接口:
public class SpanRegexQuery extends SpanQuery implements RegexQueryCapable
如果你想使用SpanRegexQuery实现跨度搜索,可以研究一下与SpanRegexQuery相关的JavaUtilRegexCapabilities类,在JavaUtilRegexCapabilities中涉及到了java.util.regex.Pattern,它可不是Lucene定义的,是第三方提供的。
发表评论
-
全文检索的基本原理
2010-02-25 10:22 877一、总论 根据http://lucene.apache.or ... -
lucene 分组 bobo-Browse 排序的问题
2010-02-01 16:18 2224今天碰到了一个问题,用bobo分组后对价格升序 居然100 ... -
开源搜索引擎
2010-02-01 14:31 1695开放源代码搜索引擎为 ... -
lucene中的filter器群组及其缓存大盘点
2010-01-20 23:18 1202lucene中的filter其实并不起眼,大家对其对性能的影响 ... -
利用bobo-browse 实现lucene的分组统计功能
2010-01-18 17:50 2940bobo-browse 是一用java写的lucene扩展组件 ... -
lucene Field部分参数设置含义
2009-11-07 17:51 1249<script type="text/ja ... -
刚下载,开始学习lucene时看的文章
2009-09-04 18:43 1433Lucene 2.0.0下载安装及测试 【下载】 下载链接 ... -
Lucene-2.3.1 阅读学习(42)
2009-09-04 18:42 946关于Hits类。 这个Hits类 ... -
Lucene 2.3.1 阅读学习(41)
2009-09-04 18:42 1413当执行Hits htis = search(query);这一 ... -
Lucene-2.3.1 源代码阅读学习(40)
2009-09-04 18:41 990关于Lucene检索结果的排序问题。 已经知道,Lucene ... -
Lucene-2.3.1 源代码阅读学习(39)
2009-09-04 18:41 1156关于Lucene得分的计算。 在IndexSearcher类 ... -
Lucene-2.3.1 源代码阅读学习(39)
2009-09-04 18:38 565关于Lucene得分的计算。 在IndexSearcher类 ... -
Lucene-2.3.1 源代码阅读学习(38)
2009-09-04 18:38 922关于QueryParser。 QueryParser是用来解 ... -
Lucene-2.3.1 源代码阅读学习(37)
2009-09-04 18:37 631关于MultiTermQuery查询。 这里研究继承自Mul ... -
Lucene-2.3.1 源代码阅读学习(36)
2009-09-04 18:37 808关于MultiTermQuery查询。 ... -
Lucene-2.3.1 源代码阅读学习(35)
2009-09-04 18:36 845关于MultiPhraseQuery(多短语查询)。 Mul ... -
Lucene-2.3.1 源代码阅读学习(34)
2009-09-04 18:36 640关于PhraseQuery。 PhraseQuery查询是将 ... -
Lucene-2.3.1 源代码阅读学习(33)
2009-09-04 18:35 871关于范围查询RangeQuery。 ... -
Lucene-2.3.1 源代码阅读学习(31)
2009-09-04 18:34 874关于前缀查询PrefixQuery(前缀查询)。 准备工作就 ... -
Lucene-2.3.1 源代码阅读学习(30)
2009-09-04 18:34 1065关于Query的学习。 主要使用TermQuery和Bool ...
相关推荐
《Lucene-2.3.1 源代码阅读学习》 Lucene是Apache软件基金会的一个开放源码项目,它是一个高性能、全文本搜索库,为开发者提供了在Java应用程序中实现全文检索功能的基础架构。本篇文章将深入探讨Lucene 2.3.1版本...
总而言之,Lucene 2.3.1作为一款经典的搜索引擎框架,它的源代码不仅提供了学习信息检索理论的机会,也是实践和掌握Java编程、数据结构和算法的宝贵资源。通过对压缩包中的文件进行分析,开发者可以深入了解Lucene的...
通过深入学习和理解这些源代码文件,开发者可以更好地掌握 Lucene.Net 的核心功能,如索引构建、查询解析、搜索排序、分词和性能优化。这有助于在实际项目中实现高效、精确的全文搜索引擎。同时,研究源码也能提升对...
4.其中src文件夹内为全部源代码,WebRoot为web应用部署文件 5.本系统的最小有效组件集合为:(约定:以下“*.*”均表示目录下的所有单独文件,不包括文件夹,而“/s”则表示所有的文件夹及其内部内容) src\*.* /s ...
### Lucene+Solor知识点概述 #### 一、搜索引擎基础理论 **1.1 Google神话** - **起源与发展:** - Google成立于1998年,由Larry Page和Sergey Brin创立。 - 初期以PageRank算法为核心,有效解决了当时互联网...
- **开源协议**:使用Apache License 2.0协议,源代码完全开源,没有商业限制。 - **技术栈成熟**:使用当前最主流的J2EE开发框架和技术,易于学习和维护。 - **数据库支持广泛**:支持多种数据库,如MySQL、Oracle...
- **1.4.1 目录结构说明**:Solr项目的目录结构清晰,主要包括src/main/java下的源代码、src/main/resources下的资源文件等。 - **1.4.2 Solrhome说明**:Solrhome是Solr实例的工作目录,包含了索引数据、配置文件等...
- **1.4.1 目录结构说明**:Solr的核心源码主要由几个关键部分组成,如`src/main/java`包含Java源代码,`src/main/resources`存放配置文件等。 - **1.4.2 Solrhome说明**:Solrhome是Solr运行时使用的根目录,包含了...
CAS (Central Authentication Service) 是一种开放源代码的单点登录协议和服务实现,主要用于Web应用的安全身份验证。CAS支持跨域的身份验证管理,允许用户通过一个中心服务进行一次登录即可访问多个应用系统。 **...
2.3.1. 保存 ACL 数据确保持久性 2.3.2. 使用声明(Assert)来编写条件性的 ACL 规则 3. Zend_Auth 3.1. 简介 3.1.1. 适配器 3.1.2. 结果 3.1.3. 身份的持久(Persistence) 3.1.3.1. 在PHP Session 中的缺省...