String是一个类,但却是不可变的,所以String创建的算是一个字符串常量,StringBuffer和StringBuilder都是可变的。所以每次修改String对象的值都是新建一个对象再指向这个对象。而使用StringBuffer则是对StringBuffer对象本身进行操作。所以在字符串j经常改变的情况下,使用StringBuffer要快得多。
但在某些情况下:
String S1 = “Who” + “ is” + “ faster?”;
StringBuffer Stb = new StringBuilder(“Who”).append(“ is”).append(“ faster?”);
S1的素对会比Stb快得多, 是因为JVM把String对象的拼接解释成了StringBuffer对象的拼接,其实在JVM就是:
String S1="Who is faster?";
不过如果,字符串是来自其他对象,如:
String s1="Who";
String s2=" is";
String s3=" faster?";
String st=s1+s2+s3;
这个时候,String的速度就比不上StringBuffer了。
StringBuffer和StringBuilder
在操作字符串对象,StringBuiler是最快的,StringBuffer次之,String最慢。
public final class StringBuffer
extends AbstractStringBuilder
implements java.io.Serializable, CharSequence
public final class StringBuilder
extends AbstractStringBuilder
implements java.io.Serializable, CharSequence
可以看到StringBuffer和StringBuilder都继承继承了同一个抽象类。
Java.lang.StringBuffer线程安全的可变字符序列。一个类似于 String 的字符串缓冲区,但不能修改。虽然在任意时间点上它都包含某种特定的字符序列,但通过某些方法调用可以改变该序列的长度和内容。
可将字符串缓冲区安全地用于多个线程。可以在必要时对这些方法进行同步,因此任意特定实例上的所有操作就好像是以串行顺序发生的,该顺序与所涉及的每个线程进行的方法调用顺序一致。
每个字符串缓冲区都有一定的容量。只要字符串缓冲区所包含的字符序列的长度没有超出此容量,就无需分配新的内部缓冲区数组。如果内部缓冲区溢出,则此容量自动增大。
StringBuffer 上的主要操作是 append 和 insert 方法,可重载这些方法,以接受任意类型的数据。每个方法都能有效地将给定的数据转换成字符串,然后将该字符串的字符追加或插入到字符串缓冲区中。append 方法始终将这些字符添加到缓冲区的末端;而 insert 方法则在指定的点添加字符。
java.lang.StringBuilder一个可变的字符序列是5.0新增的。此类提供一个与 StringBuffer 兼容的 API,但不保证同步, StringBuilder的速度比StringBuffer快。该类被设计用作 StringBuffer 的一个简易替换,用在字符串缓冲区被单个线程使用的时候(这种情况很普遍)。两者的方法基本相同。
如果要多次操作字符串,使用StringBuffer和StringBuilder会提高效率,但至少在数量级超过百万时,StringBuilder的速度才会体现出来。
分享到:
相关推荐
pandas whl安装包,对应各个python版本和系统(具体看资源名字),找准自己对应的下载即可! 下载后解压出来是已.whl为后缀的安装包,进入终端,直接pip install pandas-xxx.whl即可,非常方便。 再也不用担心pip联网下载网络超时,各种安装不成功的问题。
基于java的大学生兼职信息系统答辩PPT.pptx
基于java的乐校园二手书交易管理系统答辩PPT.pptx
tornado-6.4-cp38-abi3-musllinux_1_1_i686.whl
Android Studio Ladybug 2024.2.1(android-studio-2024.2.1.10-mac.dmg)适用于macOS Intel系统,文件使用360压缩软件分割成两个压缩包,必须一起下载使用: part1: https://download.csdn.net/download/weixin_43800734/89954174 part2: https://download.csdn.net/download/weixin_43800734/89954175
有学生和教师两种角色 登录和注册模块 考场信息模块 考试信息模块 点我收藏 功能 监考安排模块 考场类型模块 系统公告模块 个人中心模块: 1、修改个人信息,可以上传图片 2、我的收藏列表 账号管理模块 服务模块 eclipse或者idea 均可以运行 jdk1.8 apache-maven-3.6 mysql5.7及以上 tomcat 8.0及以上版本
tornado-6.1b2-cp38-cp38-macosx_10_9_x86_64.whl
Android Studio Ladybug 2024.2.1(android-studio-2024.2.1.10-mac.dmg)适用于macOS Intel系统,文件使用360压缩软件分割成两个压缩包,必须一起下载使用: part1: https://download.csdn.net/download/weixin_43800734/89954174 part2: https://download.csdn.net/download/weixin_43800734/89954175
matlab
基于java的毕业生就业信息管理系统答辩PPT.pptx
随着高等教育的普及和毕业设计的日益重要,为了方便教师、学生和管理员进行毕业设计的选题和管理,我们开发了这款基于Web的毕业设计选题系统。 该系统主要包括教师管理、院系管理、学生管理等多个模块。在教师管理模块中,管理员可以新增、删除教师信息,并查看教师的详细资料,方便进行教师资源的分配和管理。院系管理模块则允许管理员对各个院系的信息进行管理和维护,确保信息的准确性和完整性。 学生管理模块是系统的核心之一,它提供了学生选题、任务书管理、开题报告管理、开题成绩管理等功能。学生可以在此模块中进行毕业设计的选题,并上传任务书和开题报告,管理员和教师则可以对学生的报告进行审阅和评分。 此外,系统还具备课题分类管理和课题信息管理功能,方便对毕业设计课题进行分类和归档,提高管理效率。在线留言功能则为学生、教师和管理员提供了一个交流互动的平台,可以就毕业设计相关问题进行讨论和解答。 整个系统设计简洁明了,操作便捷,大大提高了毕业设计的选题和管理效率,为高等教育的发展做出了积极贡献。
这个数据集来自世界卫生组织(WHO),包含了2000年至2015年期间193个国家的预期寿命和相关健康因素的数据。它提供了一个全面的视角,用于分析影响全球人口预期寿命的多种因素。数据集涵盖了从婴儿死亡率、GDP、BMI到免疫接种覆盖率等多个维度,为研究者提供了丰富的信息来探索和预测预期寿命。 该数据集的特点在于其跨国家的比较性,使得研究者能够识别出不同国家之间预期寿命的差异,并分析这些差异背后的原因。数据集包含22个特征列和2938行数据,涉及的变量被分为几个大类:免疫相关因素、死亡因素、经济因素和社会因素。这些数据不仅有助于了解全球健康趋势,还可以辅助制定公共卫生政策和社会福利计划。 数据集的处理包括对缺失值的处理、数据类型转换以及去重等步骤,以确保数据的准确性和可靠性。研究者可以使用这个数据集来探索如教育、健康习惯、生活方式等因素如何影响人们的寿命,以及不同国家的经济发展水平如何与预期寿命相关联。此外,数据集还可以用于预测模型的构建,通过回归分析等统计方法来预测预期寿命。 总的来说,这个数据集是研究全球健康和预期寿命变化的宝贵资源,它不仅提供了历史数据,还为未来的研究和政策制
基于微信小程序的高校毕业论文管理系统小程序答辩PPT.pptx
基于java的超市 Pos 收银管理系统答辩PPT.pptx
基于java的网上报名系统答辩PPT.pptx
基于java的网上书城答辩PPT.pptx
婚恋网站 SSM毕业设计 附带论文 启动教程:https://www.bilibili.com/video/BV1GK1iYyE2B
基于java的戒烟网站答辩PPT.pptx
基于微信小程序的“健康早知道”微信小程序答辩PPT.pptx
Capital Bikeshare 数据集是一个包含从2020年5月到2024年8月的自行车共享使用情况的数据集。这个数据集记录了华盛顿特区Capital Bikeshare项目中自行车的租赁模式,包括了骑行的持续时间、开始和结束日期时间、起始和结束站点、使用的自行车编号、用户类型(注册会员或临时用户)等信息。这些数据可以帮助分析和预测自行车共享系统的需求模式,以及了解用户行为和偏好。 数据集的特点包括: 时间范围:覆盖了四年多的时间,提供了长期的数据观察。 细节丰富:包含了每次骑行的详细信息,如日期、时间、天气条件、季节等,有助于深入分析。 用户分类:数据中区分了注册用户和临时用户,可以分析不同用户群体的使用习惯。 天气和季节因素:包含了天气情况和季节信息,可以研究这些因素对骑行需求的影响。 通过分析这个数据集,可以得出关于自行车共享使用模式的多种见解,比如一天中不同时间段的使用高峰、不同天气条件下的使用差异、季节性变化对骑行需求的影响等。这些信息对于城市规划者、交通管理者以及自行车共享服务提供商来说都是非常宝贵的,可以帮助他们优化服务、提高效率和满足用户需求。同时,这个数据集也