初涉数据挖掘
对于数据挖掘,其实我脑海里只有寥寥无几的个词:大数据,机器学习,搜索;作为一个只听过几节公开课的小白,我希望能够和大家一起进步;
首先我先将我找到的机器学习资料连接分享给大家:
http://www.52ml.net/我爱机器学习网,我最主要的学习网站,里面的资料很全很多;
http://v.163.com/special/opencourse/machinelearning.html网易的公开课,听着觉得还不错;
http://v.163.com/special/opencourse/learningfromdata.html这个也不错,不过感觉教授讲得不够生动,虽然看着觉得这个老教授很厉害的样子;
目前,我最主要的学习方式还是阅读一些文献,将自己的心得体会分享,给大家,同时,使用相关的知识,模拟一个需求做出一个小的demo,同时,也跟大家多交流;
以上是我关于如何学习数据挖掘这一新领域的方法,希望大家多多指正;
文章阅读:(蓝色字体为原文摘抄)
信息抽取的关键技术和挑战http://www.52ml.net/16181.html
InfoQ: 能否介绍一下您的研究方向,及其应用领域?
韩先培:我的主要研究方向是信息抽取和知识库构建,具体来说就是研究如何从文本中抽取结构化知识(例如从句子“苹果发布了新编程语言Swift”中抽取 IS-A(编程语言, Swift), 发布(苹果公司,Swift)等等语义关系),分析这些知识之间的结构,并将这些知识与现有的知识库进行集成。
信息抽取技术有许多不同的用途。一种典型的应用是使用信息抽取技术构建面向特定任务的知识库(如学术论文库、商品库、旅游景点库、电影库、音乐库等等),并在此基础上实现智能知识服务(如垂直搜索引擎)。另外一种典型应用是特定目标信息的发现和识别(如发现所有与“编程语言Swift”相关的新闻)。在现在的Web中,相关的信息往往被无关的信息淹没。而信息抽取技术可以发现并整合蕴含在海量信息中的特定目标信息,为正确决策提供大量的相关情报,大大降低其中需要的人工。
名词解释:
信息抽取:是把文本里包含的信息进行结构化处理,变成表格一样的组织形式。输入信息抽取系统的是原始文本,输出的是固定格式的信息点。信息点从各种各样的文档中被抽取出来,然后以统一的形式集成在一起。这就是信息抽取的主要任务。(爬虫?)
我认为信息抽取的一大重要工具就是爬虫。我之前的博客也有介绍,感兴趣的同学可以看看,顺便附上一些比较好的爬虫框架连接;
我的博客:
http://448230305.iteye.com/blog/2151691
http://448230305.iteye.com/blog/2145296
Webmagic框架官方文档:
http://webmagic.io/docs/zh/posts/ch2-install/with-maven.html
知识库:
知识库的概念来自两个不同的领域,一个是人工智能及其分支-知识工程领域,另一个是传统的数据库领域。由人工智能(AI)和数据库(DB)两项计算机技术的有机结合,促成了知识库系统的产生和发展。
维基百科的解释(简单多了):用于知识管理的一种特殊的数据库,以便于有关领域知识的采集、整理以及提取。知识库中的知识源于领域专家,它是求解问题所需领域知识的集合,包括基本事实、规则和其它有关信息。
垂直搜索引擎:说到垂直搜索引擎,就不得不提及其他两个搜索引擎:全文搜索引擎、元搜索引擎;
全文搜索引擎:是名副其实的搜索引擎,通过从互联网上提取各个网站的信息(以网页文字为主)而创建的数据库。检索与用户查询条件匹配的相关记录,然后按一定的排列顺序将结果返回给用户(百度、谷歌)
垂直搜索引擎:是针对某一个行业的专业搜索引擎,是搜索引擎的细分和延伸,是对网页库中的某类专门的信息进行一次集成,定向分字段抽取出需要的数据进行处理后再以某种形式返回给用户。(百度图片,今日头条等)
元搜索引擎:在接受用户查询请求时,同时在其他多个引擎上进行搜索,并将结果返回给用户(就是搜索搜索引擎的搜索引擎)
InfoQ: 目前这个领域最关键的技术是什么?
韩先培:目前信息抽取领域最核心的技术还是基于统计的结构化模型,如隐马尔科夫模型(HMM),条件随机场模型(CRF),马尔科夫逻辑网络(MLN)等等。
由于这块比较深,所以暂时先只是提供一些相关方面的连接,;以后咱们在慢慢看:
隐马尔科夫模型(HMM)
http://www.cnblogs.com/chuanlong/archive/2013/05/05/3061476.html(比较简单易懂)
http://blog.csdn.net/likelet/article/details/7056068(比较理论,比较长,图文并茂)
条件随机场模型(CRF):无向图模型,首选要看隐马尔科夫模型
http://sy95122.blog.163.com/blog/static/360161592010102243643894/(偏数学)
马尔科夫逻辑网络(MLN):大多数资料都是英文版的,找到一个材料是中文翻译与大家分享一下
http://zfgis.blog.163.com/blog/static/82500945201082793552538/
InfoQ: 研究过程中遇到了哪些技术挑战?有没有解决方案?
韩先培:主要的技术挑战来自于两方面:第一是自然语言本身的复杂性,第二是信息抽取任务的开放属性。
自然语言本身的复杂性主要指的是:1)自然语言的歧义性,也就是一个自然语言表达在不同的上下文中通常有不同的意义(例如“苹果”在“我买了一斤苹果”和“我买了一台苹果”中有不同的意义,前面的“苹果”指的是吃的苹果,而后面的“苹果”指的是苹果电脑);2)自然语言的多样性,也就是一个意思可以以不同的说法进行表达(例如“苹果发布了新编程语言Swift”和“苹果公开了其新语言Swift”表达的是同样的意思);3)自然语言句子具有内在的语法结构,而现有自然语言技术难于完美的发现自然语言句子的内在语法结构。
信息抽取任务本身的开放性指的是:1)信息抽取面向的任务是多种多样的。例如,我们抽取的可以是药名、电影名、导演和电影之间的关系等等不同的对象; 2)信息抽取使用的网页的开放性。例如,信息抽取可以从Amazon上利用后台数据库自动生成的页面上抽取知识,也可能从百度百科这样半结构化的页面上抽取知识,当然也经常从搜狐新闻这样完全非结构化的文章上抽取知识。对不同类别的网页,使用的信息抽取技术往往并不相同。
个人理解:往往从不同网站上抓取的指向同一类事务的信息往往有所不同,所以有可能会产生歧义
上述问题的解决是一个长期的研究问题。目前主要的解决方案是使用弱监督或无监督技术。其中的代表性工作包括Bootstrapping技术和Distant Supervision技术。Bootstrapping技术可以从很少的种子知识出发自动抽取目标知识,而Distant Supervision技术则可以充分利用大规模知识库(如Freebase,谷歌的知识图谱等等)中的非直接监督知识构建大规模信息抽取系统。
弱监督技术、无监督技术:半监督学习(Semi-supervised Learning)是模式识别和机器学习领域研究的重点问题,是监督学习与无监督学习相结合的一种学习方法。它主要考虑如何利用少量的标注样本和大量的未标注样本进行训练和分类的问题。主要算法有五类:基于概率的算法;在现有监督算法基础上作修改的方法;直接依赖于聚类假设的方法;基于多试图的方法;基于图的方法。
相关资料地址:
http://cs.nju.edu.cn/zhouzh/(南京大学周志华老师,他是这个方面的泰斗,大家可以看看,很不错的)
http://blog.sina.com.cn/s/blog_4a08244901012j9e.html(这篇博客很不错,没有让人头疼的数学公式,语言通俗易懂)
InfoQ:大数据对信息抽取有何影响?
韩先培:对信息抽取任务来说,大数据主要的影响是“冗余性”。冗余性可以带来有两方面的好处:
1) 首先,由于冗余性的存在,一条知识会以多种不同的方式表达。这样信息抽取技术就可以专注于抽取以简单方式表达的知识,而忽略掉那些以复杂方式表达的知识;
2) 其次,冗余性可以用来验证知识。一条正确的知识通常会比错误的知识出现更多次,因此知识出现的次数就可以用来作为知识准确性的一个度量。
InfoQ:实体链接系统的如何构建?当前有没有一些比较成熟的模型?
韩先培:实体链接系统主要包括三部分:1)从名字到候选实体的对照表;2)实体的上下文知识模型;3)基于上下文知识模型的链接推理算法。目前已经有一些比较成熟的模型。
名字到候选实体的对照表包含一个名字所有可能指向的实体,例如“苹果”这个名字可能指向水果苹果,苹果公司,苹果电脑,电影苹果等等不同的实体。
实体的上下文通常表示为一个词的分布,例如苹果公司的上下文知识可以被表示为{P(iPhone) = 0.1, P(iPad)=0.1, P(乔布斯)=0.05,…},其中P(iPhone) = 0.1表示iPhone这个词出现在苹果公司上下文中的概率为10%,而P(乔布斯)=0.05表示乔布斯出现在苹果公司周围的概率是5%,等等。
最后,推理算法确定一段文本中的名字到底指向哪一个实体。通常推理算法使用上下文的匹配程度来做决定。例如“苹果发布了iPad mini”这句话与“苹果公司”的上下文比“水果苹果”的上下文匹配程度更高,那么推理算法就确定“苹果公司”是上述句子中苹果所表达的实体。
InfoQ:您下一步的研究重点是什么?
韩先培:下一步主要研究关系抽取技术和自然语言文本上的语义推理技术。
结语:虽然一篇文章中,有很多名词很陌生,但是一一查找之后,文章的思想还是吸收了不少,同时,这样子下来下一步要做什么事情就慢慢清晰了,这篇文章虽然只是访谈性质的,但这样简单平实的文章不是更适合初学者么?歪打正着选了一篇很好的文章,希望我的学习过程能够对大家今后的学习有所帮助;
<!--EndFragment-->
相关推荐
Java数据挖掘工具包JDMP 0.1.1是一个专门针对数据挖掘任务的软件库,主要面向Java...总之,Java数据挖掘工具包JDMP 0.1.1是Java开发人员进行数据挖掘任务的理想选择,无论他们是初涉此领域还是寻求提升现有项目的效率。
《交通时空大数据分析挖掘系统-数据》是一个专为学生初涉大数据分析领域设计的实践项目。这个项目聚焦于城市公共交通,特别是公交和地铁的出行数据,提供了丰富的信息资源,包括原始数据集和静态数据,使得数据处理...
通过实际操作演示,我们将带领读者一步步构建起从简单页面抓取到复杂网站数据挖掘的全能爬虫系统。 教程首先从基础入手,详解HTTP协议、HTML结构以及正则表达式等核心概念,为后续的实战打下坚实基础。随后,我们...
《SPSS数据分析软件基础 中级教程 - 聚类分析与判别分析》是一份深入讲解统计学中两种...无论你是初涉数据分析,还是希望深化理解,这份资料都将提供宝贵的指导,帮助你在实践中更好地理解和运用这两种强大的统计工具。
《Python库mincepy-0.6.5-py2.py3-...无论你是初涉数据分析的新手,还是经验丰富的数据科学家,这个库都能成为你强大的工具。通过深入理解并熟练运用micepy,我们可以更好地驾驭数据,让数据驱动的决策更加精准和高效。
对于初涉高频数据的研究者,理解如何从中提取有价值的信息是一个挑战。《Liquidity, information, and infrequently traded stocks》这篇论文,虽然针对的是纽约证券交易所的市场环境,但其对知情交易概率的建模和...
《有效的稀疏学习工具包——探索深度学习与数据挖掘的新境界》 在现代的数据科学领域,稀疏学习作为机器学习的一个重要分支,已经成为理解和解决复杂问题的关键技术之一。叶杰平教授,一位在信息技术领域享有盛誉的...
- **建议**: 对于初涉神经科学领域的研究者来说,是一个不错的起点。 #### 6. **《数据挖掘与知识发现》(Data Mining and Knowledge Discovery)** - **ISSN**: 1384-5810 - **影响因子**: 2.95 - **级别**: 第2...
《20newsbydate.zip:一个经典机器学习数据集...无论你是初涉机器学习的新手,还是经验丰富的从业者,这个数据集都值得你投入时间和精力去探索和研究,因为它提供的不仅仅是数据,更是一个检验和提升你技能的宝贵平台。
- **低端企业**:初涉零售行业,信息化认知初步形成,需逐步探索并优化业务流程与信息系统。 #### 软件功能与特色 百威9000V6商业管理软件不仅覆盖了零售行业全链条管理,还融入了先进的技术与理念: - **业务...
博士研究生的道路充满了挑战和不确定性,尤其对于初涉此领域的人来说,可能会感到迷茫和困惑。"How to Get Your PhD: A Handbook for the Journey"是英国曼彻斯特大学机器学习教授Gavin Brown为解决这一问题提供的...
《TMBD-Movies:深度探索电影大数据》 在当今数字化时代,数据已经成为各行各业不可或缺的资源,特别是在娱乐产业,如电影行业。...无论你是初涉数据分析,还是经验丰富的数据科学家,这个数据集都值得你一探究竟。
对于初涉CRM的新用户来说,这是一个很好的学习平台,能够帮助他们快速理解并掌握客户关系管理系统的使用方法。 总的来说,CRM系统是现代企业不可或缺的工具,它能够整合企业内部的各个部门,形成以客户为中心的协同...
- 社区大数据:挖掘数据价值,为决策提供依据,优化社区服务。 5. **涉众需求** - 开发商:降低成本,提升品牌形象,转型升级。 - 物业:提高管理效率,降低人工成本,增加增值服务。 - 业主:享受安全、便捷、...
不同的公司有不同的特点,例如政府、大型国企、国内知名企业、区域领先的企业、初涉产业的门外汉等。我们需要了解汇报对象关注哪个层次、哪个方面的解决方案(战略、策略等)。 在汇报前的准备工作中,我们需要充分...
针对这些现状,改造目标聚焦于提升八大能力:增强全城路网态势监控,建立集成指挥平台,改进交通数据中心,提升数据分析智能化,加强涉牌违法车辆打击,提高应急指挥协作,优化道路管理和信号配时,提升智能交通系统...
无论你是初涉嵌入式领域的学习者,还是已经在该领域有一定经验的专业人士,这套资料都将是你宝贵的参考资料。通过深入研究这些文档,你将能够充分挖掘MIMXRT1020的潜力,实现各种创新的项目设计。