转载自:http://klqingshui.blog.163.com/blog/static/149118222008102292455456/
对AI领域的会议的评点
The First Class:
tier-1的conferences, 其实基本上就是AI里面大家比较公认的top conference. 下面同分的按字母序排列.
IJCAI (1+): AI最好的综合性会议, 1969年开始, 每两年开一次, 奇数年开. 因为AI实在太大, 所以虽然每届基本上能录100多篇(现在已经到200多篇了),但分到每个领域就没几篇了,象machine learning、computer vision这么大的领域每次大概也就10篇左右, 所以难度很大. 不过从录用率上来看倒不太低,基本上20%左右, 因为内行人都会掂掂分量, 没希望的就别浪费reviewer的时间了. 最近中国大陆投往国际会议的文章象潮水一样, 而且因为国内很少有能自己把关的研究组, 所以很多会议都在complain说中国的低质量文章严重妨碍了PC的工作效率. 在这种情况下, 估计这几年国际会议的录用率都会降下去. 另外, 以前的IJCAI是没有poster的, 03年开始, 为了减少被误杀的好人, 增加了2页纸的poster.值得一提的是, IJCAI是由貌似一个公司的”IJCAI Inc.”主办的(当然实际上并不是公司, 实际上是个基金会), 每次会议上要发几个奖, 其中最重要的两个是IJCAI Research Excellence Award 和 Computer & Thoughts Award, 前者是终身成就奖, 每次一个人, 基本上是AI的最高奖(有趣的是, 以AI为主业拿图灵奖的6位中, 有2位还没得到这个奖), 后者是奖给35岁以下的青年科学家,每次一个人. 这两个奖的获奖演说是每次IJCAI的一个重头戏.另外, IJCAI 的 PC member 相当于其他会议的area chair, 权力很大, 因为是由PC member去找 reviewer 来审, 而不象一般会议的PC member其实就是 reviewer. 为了制约这种权力, IJCAI的审稿程序是每篇文章分配2位PC member, primary PC member去找3位reviewer, second PC member 找一位.
AAAI (1): 美国人工智能学会AAAI的年会. 是一个很好的会议, 但其档次不稳定, 可以给到1+, 也可以给到1-或者2+, 总的来说我给它”1″. 这是因为它的开法完全受IJCAI制约: 每年开, 但如果这一年的IJCAI在北美举行, 那么就停开. 所以, 偶数年里因为没有IJCAI, 它就是最好的AI综合性会议, 但因为号召力毕竟比IJCAI要小一些, 特别是欧洲人捧AAAI场的比IJCAI少得多(其实亚洲人也是), 所以比IJCAI还是要稍弱一点, 基本上在1和1+之间; 在奇数年, 如果IJCAI不在北美, AAAI自然就变成了比IJCAI低一级的会议(1-或2+), 例如2005年既有IJCAI又有AAAI, 两个会议就进行了协调, 使得IJCAI的录用通知时间比AAAI的deadline早那么几天, 这样IJCAI落选的文章可以投往AAAI.在审稿时IJCAI 的 PC chair也在一直催, 说大家一定要快, 因为AAAI那边一直在担心IJCAI的录用通知出晚了AAAI就麻烦了.
COLT (1):
这是计算学习理论最好的会议, ACM主办, 每年举行. 计算学习理论基本上可以看成理论计算机科学和机器学习的交叉, 所以这个会被一些人看成是理论计算机科学的会而不是AI的会. 我一个朋友用一句话对它进行了精彩的刻画: “一小群数学家在开会”. 因为COLT的领域比较小, 所以每年会议基本上都是那些人. 这里顺便提一件有趣的事, 因为最近国内搞的会议太多太滥, 而且很多会议都是LNCS/LNAI出论文集, LNCS/LNAI基本上已经被搞
臭了, 但很不幸的是, LNCS/LNAI中有一些很好的会议, 例如COLT.
CVPR (1): 计算机视觉和模式识别方面最好的会议之一, IEEE主办, 每年举行. 虽然题目上有计算机视觉, 但个人认为它的模式识别味道更重一些. 事实上它应该是模式识别最好的会议, 而在计算机视觉方面, 还有ICCV与之相当. IEEE一直有个倾向, 要把会办成”盛会”, 历史上已经有些会被它从quality很好的会办成”盛会”了. CVPR搞不好也要走这条路. 这几年录的文章已经不少了. 最近负责CVPR会议的TC的chair发信说, 对这个community来说, 让好人被误杀比被坏人漏网更糟糕, 所以我们是不是要减少好人被误杀的机会啊? 所以我估计明年或者后年的CVPR就要扩招了.
ICCV (1): 介绍CVPR的时候说过了, 计算机视觉方面最好的会之一. IEEE主办, 每年举行.
ICML (1): 机器学习方面最好的会议之一. 现在是IMLS主办, 每年举行. 参见关于NIPS的介绍.
NIPS (1): 神经计算方面最好的会议之一, NIPS主办, 每年举行. 值得注意的是, 这个会每年的举办地都是一样的, 以前是美国丹佛, 现在是加拿大温哥华; 而且它是年底开会,会开完后第2年才出论文集, 也就是说, NIPS’05的论文集是06年出. 会议的名字是”Advances in Neural Information Processing Systems”, 所以, 与ICML\ECML这样的”标准的”机器学习会议不同, NIPS里有相当一部分神经科学的内容, 和机器学习有一定的距离. 但由于会议的主体内容是机器学习, 或者说与机器学习关系紧密, 所以不少人把NIPS看成是机器学习方面最好的会议之一. 这个会议基本上控制在ichael Jordan的徒子徒孙手中, 所以对Jordan系的人来说, 发NIPS并不是难事, 一些未必很强的工作也能发上去, 但对这个圈子之外的人来说, 想发一篇实在很难, 因为留给”外人”的口子很小. 所以对Jordan系以外的人来说, 发NIPS的难度比ICML更大. 换句话说,ICML比较开放, 小圈子的影响不象NIPS那么大, 所以北美和欧洲人都认, 而NIPS则有些人(
特别是一些欧洲人, 包括一些大家)坚决不投稿. 这对会议本身当然并不是好事, 但因为Jordan系很强大, 所以它似乎也不太care. 最近IMLS(国际机器学习学会)改选理事, 有资格提名的人包括近三年在ICML\ECML\COLT发过文章的人, NIPS则被排除在外了. 无论如何, 这是一个非常好的会.
ACL (1-): 计算语言学/自然语言处理方面最好的会议, ACL (Association of Computational Linguistics) 主办, 每年开.
KR (1-): 知识表示和推理方面最好的会议之一, 实际上也是传统AI(即基于逻辑的AI)最好的会议之一. KR Inc.主办, 现在是偶数昕?
SIGIR (1-): 信息检索方面最好的会议, ACM主办, 每年开. 这个会现在小圈子气越来越重. 信息检索应该不算AI, 不过因为这里面用到机器学习越来越多, 最近几年甚至有点机器学习应用会议的味道了, 所以把它也列进来.
SIGKDD (1-): 数据挖掘方面最好的会议, ACM主办, 每年开. 这个会议历史比较短, 毕竟, 与其他领域相比,数据挖掘还只是个小弟弟甚至小侄儿. 在几年前还很难把它列在tier-1里面, 一方面是名声远不及其他的top conference响亮, 另一方面是相对容易被录用. 但现在它被列在tier-1应该是毫无疑问的事情了. 另: 参见sir和lucky的介绍.
UAI (1-): 名字叫”人工智能中的不确定性”, 涉及表示\推理\学习等很多方面, AUAI(Association of UAI) 主办, 每年开.
The Second Class:
AAMAS (2+): agent方面最好的会议. 但是现在agent已经是一个一般性的概念, 几乎所有AI有关的会议上都有这方面的内容, 所以AAMAS下降的趋势非常明显.
ECCV (2+): 计算机视觉方面仅次于ICCV的会议, 因为这个领域发展很快, 有可能升级到1-去.
ECML (2+): 机器学习方面仅次于ICML的会议, 欧洲人极力捧场, 一些人认为它已经是1-了. 我保守一点, 仍然把它放在2+. 因为机器学习发展很快, 这个会议的reputation上升非常明显.
ICDM (2+): 数据挖掘方面仅次于SIGKDD的会议, 目前和SDM相当. 这个会只有5年历史, 上升速度之快非常惊人. 几年前ICDM还比不上PAKDD, 现在已经拉开很大距离了.
SDM (2+): 数据挖掘方面仅次于SIGKDD的会议, 目前和ICDM相当. SIAM的底子很厚, 但在CS里面的影响比ACM和IEEE还是要小, SDM眼看着要被ICDM超过了, 但至少目前还是相当的.
ICAPS (2): 人工智能规划方面最好的会议, 是由以前的国际和欧洲规划会议合并来的. 因为这个领域逐渐变冷清, 影响比以前已经小了.
ICCBR (2): Case-Based Reasoning方面最好的会议. 因为领域不太大, 而且一直半冷不热, 所以总是停留在2上.
COLLING (2): 计算语言学/自然语言处理方面仅次于ACL的会, 但与ACL的差距比ICCV-ECCV
ICML-ECML大得多.
ECAI (2): 欧洲的人工智能综合型会议, 历史很久, 但因为有IJCAI/AAAI压着, 很难往上升.
ALT (2-): 有点象COLT的tier-2版, 但因为搞计算学习理论的人没多少, 做得好的数来数去就那么些group, 基本上到COLT去了, 所以ALT里面有不少并非计算学习理论的内容.
EMNLP (2-): 计算语言学/自然语言处理方面一个不错的会. 有些人认为与COLLING相当, 但我觉得它还是要弱一点.
ILP (2-): 归纳逻辑程序设计方面最好的会议. 但因为很多其他会议里都有ILP方面的内容, 所以它只能保住2-的位置了.
PKDD (2-): 欧洲的数据挖掘会议, 目前在数据挖掘会议里面排第4. 欧洲人很想把它抬起来, 所以这些年一直和ECML一起捆绑着开, 希望能借ECML把它带起来. 但因为ICDM和SDM, 这已经不太可能了. 所以今年的PKDD和ECML虽然还是一起开, 但已经独立审稿了(以前是可以同时投两个会, 作者可以声明优先被哪个会考虑, 如果ECML中不了还可以被PKDD接受).
The Third Class:
列得很不全. 另外, 因为AI的相关会议非常多, 所以能列在tier-3也算不错了, 基本上能进
到所有AI会议中的前30%吧
ACCV (3+): 亚洲的计算机视觉会议, 在亚太级别的会议里算很好的了.
DS (3+): 日本人发起的一个接近数据挖掘的会议.
ECIR (3+): 欧洲的信息检索会议, 前几年还只是英国的信息检索会议.
ICTAI (3+): IEEE最主要的人工智能会议, 偏应用, 是被IEEE办烂的一个典型. 以前的quality还是不错的, 但是办得越久声誉反倒越差了, 糟糕的是似乎还在继续下滑, 现在其实3+已经不太呆得住了.
PAKDD (3+): 亚太数据挖掘会议, 目前在数据挖掘会议里排第5.
ICANN (3+): 欧洲的神经网络会议, 从quality来说是神经网络会议中最好的, 但这个领域的人不重视会议,在该领域它的重要性不如IJCNN.
AJCAI (3): 澳大利亚的综合型人工智能会议, 在国家/地区级AI会议中算不错的了.
CAI (3): 加拿大的综合型人工智能会议, 在国家/地区级AI会议中算不错的了.
CEC (3): 进化计算方面最重要的会议之一, 盛会型. IJCNN/CEC/FUZZ-IEEE这三个会议是计算智能或者说软计算方面最重要的会议, 它们经常一起开, 这时就叫WCCI (World Congress on Computational Intelligence). 但这个领域和CS其他分支不太一样, 倒是和其他学科相似, 只重视journal, 不重视会议, 所以录用率经常在85%左右, 所录文章既有
quality非常高的论文, 也有入门新手的习作.
FUZZ-IEEE (3): 模糊方面最重要的会议, 盛会型, 参见CEC的介绍.
GECCO (3): 进化计算方面最重要的会议之一, 与CEC相当,盛会型.
ICASSP (3): 语音方面最重要的会议之一, 这个领域的人也不很care会议.
ICIP (3): 图像处理方面最著名的会议之一, 盛会型.
ICPR (3): 模式识别方面最著名的会议之一, 盛会型.
IEA/AIE (3): 人工智能应用会议. 一般的会议提名优秀论文的通常只有几篇文章, 被提名就已经是很高的荣誉了, 这个会很有趣, 每次都搞1、20篇的优秀论文提名, 专门搞几个session做被提名论文报告, 倒是很热闹.
IJCNN (3): 神经网络方面最重要的会议, 盛会型, 参见CEC的介绍.
IJNLP (3): 计算语言学/自然语言处理方面比较著名的一个会议.
PRICAI (3): 亚太综合型人工智能会议, 虽然历史不算短了, 但因为比它好或者相当的综合型会议太多, 所以很难上升.
Combined List:
说明: 纯属个人看法, 仅供参考. tier-1的列得较全, tier-2的不太全, tier-3的很不全.
同分的按字母序排列. 不很严谨地说, tier-1是可以令人羡慕的, tier-2是可以令人尊敬的
,由于AI的相关会议非常多, 所以能列进tier-3的也是不错的
tier-1:
IJCAI (1+): International Joint Conference on Artificial Intelligence
AAAI (1): National Conference on Artificial Intelligence
COLT (1): Annual Conference on Computational Learning Theory
CVPR (1): IEEE International Conference on Computer Vision and Pattern Recognition
ICCV (1): IEEE International Conference on Computer Vision
ICML (1): International Conference on Machine Learning
NIPS (1): Annual Conference on Neural Information Processing Systems
ACL (1-): Annual Meeting of the Association for Computational Linguistics
KR (1-): International Conference on Principles of Knowledge Representation and Reasoning
SIGIR (1-): Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
SIGKDD (1-): ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
UAI (1-): International Conference on Uncertainty in Artificial Intelligence
tier-2:
AAMAS (2+): International Joint Conference on Autonomous Agents and Multiagent Systems
ECCV (2+): European Conference on Computer Vision
ECML (2+): European Conference on Machine Learning
ICDM (2+): IEEE International Conference on Data Mining
SDM (2+): SIAM International Conference on Data Mining
ICAPS (2): International Conference on Automated Planning and Scheduling
ICCBR (2): International Conference on Case-Based Reasoning
COLLING (2): International Conference on Computational Linguistics
ECAI (2): European Conference on Artificial Intelligence
ALT (2-): International Conference on Algorithmic Learning Theory
EMNLP (2-): Conference on Empirical Methods in Natural Language Processing
ILP (2-): International Conference on Inductive Logic Programming
PKDD (2-): European Conference on Principles and Practice of Knowledge Discovery in Databases
tier-3:
ACCV (3+): Asian Conference on Computer Vision
DS (3+): International Conference on Discovery Science
ECIR (3+): European Conference on IR Research
ICTAI (3+): IEEE International Conference on Tools with Artificial Intelligence
PAKDD (3+): Pacific-Asia Conference on Knowledge Discovery and Data Mining
ICANN (3+): International Conference on Artificial Neural Networks
AJCAI (3): Australian Joint Conference on Artificial Intelligence
CAI (3): Canadian Conference on Artificial Intelligence
CEC (3): IEEE Congress on Evolutionary Computation
FUZZ-IEEE (3): IEEE International Conference on Fu Systems
GECCO (3): Genetic and Evolutionary Computation Conference
ICASSP (3): International Conference on Acoustics, Speech, and Signal Processing
ICIP (3): International Conference on Image Processing
ICPR (3): International Conference on Pattern Recognition
IEA/AIE (3): International Conference on Industrial and Engineering
Applications of Artificial Intelligence and Expert Systems
IJCNN (3): International Joint Conference on Neural Networks
IJNLP (3): International Joint Conference on Natural Language Processing
PRICAI (3): Pacific-Rim International Conference on Artificial Intelligence
发表评论
-
搜狗实验室新闻素材整理
2009-03-25 14:33 1272先把数据库的截图发一下,明天再写总结。 sohu_new ... -
关于构建新闻关键词知识库的一点想法
2009-03-28 03:48 767昨天和周师兄等人一起聊了些本体和语义的话题。结合着我们目前在做 ... -
TF/IDF算法(转载)
2009-04-02 04:00 2116—— 一直说TF-IDF,终 ... -
讨论:TF-IDF算法的优劣
2009-04-06 12:30 3843前几天转载了TF-IDF算法 ... -
算法改进的可行方向_20090413
2009-04-13 07:50 773可能改进的方向和参数: *1、不同频道 2、单词在文本中的 ... -
基于频道相关性的IDF计算_小结
2009-04-19 05:08 1166由于项目需要改进关键 ... -
召回率和准确率,关键词算法的评价讨论
2009-05-05 11:35 4101关于如何评价关键词算法的效率,师姐建议采用借用搜索引擎的召回率 ... -
Stanford中文分词包批量处理的一个示例
2009-06-26 02:28 5835抱怨了很久的分词问题,后来发现Stanford的一个中文分词软 ... -
wordnet数据文件整理小结
2009-07-29 12:04 3306为了不被wordnet的API所限 ... -
基于wordnet多关系最短路径算法的词语相似度计算
2009-07-29 14:11 1997基本算法思路:WORDNET相似度计算算法 1、使用关系 ...
相关推荐
AI顶级会议列表 & ACL相关 tier-1的conferences, 其实基本上就是AI里面大家比较公认的top conference. 下面同分的按字母序排列.
人工智能顶级会议的知识点主要围绕着人工智能领域的国际学术期刊投稿信息。本文档详细列出了中国计算机学会推荐的A类和B类人工智能期刊列表,这些期刊被分为两个级别,反映了其在人工智能领域内的权威性和学术影响力...
这表明会议涵盖的主题广泛,不仅限于传统通信技术,还包含了人工智能、信号处理等前沿技术。 标签“会议目录”表明该文档的作用是作为一份目录,为查找和参考相关会议提供了方便。标签简单直接,反映了文档的核心...
本文将详细介绍人工智能和模式识别领域的几个顶级会议,按照A、B、C三个等级进行分类。 首先,A类会议代表了人工智能研究的最高水平,汇聚了全球顶尖的研究成果。其中,AAAI(AAAI Conference on Artificial ...
例如,IJCAI(International Joint Conference on Artificial Intelligence,国际人工智能联合会议)就是AI领域内一个备受推崇的顶级会议,它每两年举办一次,奇数年举行。由于人工智能领域的宽广,尽管IJCAI的录用...
1. IJCAI会议:IJCAI是AI领域的顶级会议,每两年举行一次,奇数年开。IJCAI Inc.是一个基金会,每次会议上都会颁发奖项,如IJCAI Research Excellence Award和Computer & Thoughts Award。IJCAI的PC member相当于...
《2020年人工智能几个重点领域顶级国际学术会议分析报告》...尽管中国在某些方面表现突出,但在顶级会议的最佳论文上仍有提升空间。未来,人工智能领域的竞争将更加激烈,国际合作与跨领域合作将是推动研究进步的关键。
这是人工智能领域的顶级会议之一,每年举办一次。2018年的会议在美国新奥尔良举行,时间是2月2日至7日。会议的官方网址为***。AAAI是展现人工智能最新发展趋势的重要平台,受到业界与学界的广泛关注。 2. ICASSP...
2. AAAI(美国人工智能协会年会):AAAI是另一个备受关注的AI会议,专注于人工智能的各个方面。与IJCAI相比,AAAI可能更加注重理论和技术的深度探讨。 3. COLT(计算学习理论会议):COLT专注于机器学习的理论基础...
下面将详细介绍各个学术研究领域的国际顶级会议和期刊杂志,特别关注人工智能与模式识别领域的顶级刊物。 首先,人工智能与模式识别是计算机科学中的一个核心领域,它包括机器学习、计算机视觉、自然语言处理等多个...
标题中的“人工智能和机器学习 国际顶级会议NeurIPS2019”指的是神经信息处理系统大会(Neural Information Processing Systems),这是一个全球知名的、高度影响力的人工智能和机器学习领域的年度会议。NeurIPS每年...
2020年人工智能几个重点领域顶级国际学术会议分析报告 (1).pdf
- **模式识别与人工智能**:总被引频次为332,影响因子为0.230,在EI(核心)收录。 - **软件学报**:总被引频次为2743,影响因子为1.436,在EI(核心)收录。 - **系统仿真学报**:总被引频次为1937,影响因子为0....
2月AAAI 2020会议名称:人工智能促进协会会议地点:纽约Hilton Midtown,纽约,美国截稿时间: 2019.09.05庆祝时间: 2020.02.07〜2020.02.20会议官网: : H指数: 56RSS 2020会议名称:机器人技术-科学与系统会议...
在本文中,我们将详细介绍计算机视觉领域中的三大顶级会议,即ICCV、ECCV和CVPR。 ICCV ICCV即IEEE International Conference on Computer Vision,是国际计算机视觉大会议,是计算机视觉领域最顶级的会议之一。...
本文件提到的中期策略报告,主要围绕AI(人工智能)算法的发展、顶级学术会议的成果以及各大科技公司在AI领域的竞争和合作关系展开。以下是根据文件内容总结的知识点。 首先,文件中提到了在国际顶级会议ICLR...
人工智能学习总结成果,希望可以帮到大家,有疑问欢迎随时沟通~ 人工智能学习总结成果,希望可以帮到大家,有疑问欢迎随时沟通~ 人工智能学习总结成果,希望可以帮到大家,有疑问欢迎随时沟通~ 人工智能学习总结...