public class Network implements Serializable{
/**
* The global error for the training.
*/
protected double globalError;
/**
* The number of input neurons.
*/
protected int inputCount;
/**
* The number of hidden neurons.
*/
protected int hiddenCount;
/**
* The number of output neurons
*/
protected int outputCount;
/**
* The total number of neurons in the network.
*/
protected int neuronCount;
/**
* The number of weights in the network.
*/
protected int weightCount;
/**
* The learning rate.
*/
protected double learnRate;
/**
* The outputs from the various levels.
*/
protected double fire[];
/**
* The weight matrix this, along with the thresholds can be
* thought of as the "memory" of the neural network.
*/
protected double matrix[];
/**
* The errors from the last calculation.
*/
protected double error[];
/**
* Accumulates matrix delta's for training.
*/
protected double accMatrixDelta[];
/**
* The thresholds, this value, along with the weight matrix
* can be thought of as the memory of the neural network.
*/
protected double thresholds[];
/**
* The changes that should be applied to the weight
* matrix.
*/
protected double matrixDelta[];
/**
* The accumulation of the threshold deltas.
*/
protected double accThresholdDelta[];
/**
* The threshold deltas.
*/
protected double thresholdDelta[];
/**
* The momentum for training.
*/
protected double momentum;
/**
* The changes in the errors.
*/
protected double errorDelta[];
/**
* Construct the neural network.
*
* @param inputCount The number of input neurons.
* @param hiddenCount The number of hidden neurons
* @param outputCount The number of output neurons
* @param learnRate The learning rate to be used when training.
* @param momentum The momentum to be used when training.
*/
public Network(int inputCount,
int hiddenCount,
int outputCount,
double learnRate,
double momentum) {
this.learnRate = learnRate;
this.momentum = momentum;
this.inputCount = inputCount;
this.hiddenCount = hiddenCount;
this.outputCount = outputCount;
neuronCount = inputCount + hiddenCount + outputCount;
weightCount = (inputCount * hiddenCount) + (hiddenCount * outputCount);
fire = new double[neuronCount];
matrix = new double[weightCount];
matrixDelta = new double[weightCount];
thresholds = new double[neuronCount];
errorDelta = new double[neuronCount];
error = new double[neuronCount];
accThresholdDelta = new double[neuronCount];
accMatrixDelta = new double[weightCount];
thresholdDelta = new double[neuronCount];
reset();
}
/**
* Returns the root mean square error for a complet training set.
*
* @param len The length of a complete training set.
* @return The current error for the neural network.
*/
public double getError(int len) {
double err = Math.sqrt(globalError / (len * outputCount));
globalError = 0; // clear the accumulator
return err;
}
/**
* The threshold method. You may wish to override this class to provide other
* threshold methods.
*
* @param sum The activation from the neuron.
* @return The activation applied to the threshold method.
*/
public double threshold(double sum) {
return 1.0 / (1 + Math.exp(-1.0 * sum));
}
/**
* Compute the output for a given input to the neural network.
*
* @param input The input provide to the neural network.
* @return The results from the output neurons.
*/
public double []computeOutputs(double input[]) {
int i, j;
final int hiddenIndex = inputCount;
final int outIndex = inputCount + hiddenCount;
for (i = 0; i < inputCount; i++) {
fire[i] = input[i];
}
// first layer
int inx = 0;
for (i = hiddenIndex; i < outIndex; i++) {
double sum = thresholds[i];
for (j = 0; j < inputCount; j++) {
sum += fire[j] * matrix[inx++];
}
fire[i] = threshold(sum);
}
// hidden layer
double result[] = new double[outputCount];
for (i = outIndex; i < neuronCount; i++) {
double sum = thresholds[i];
for (j = hiddenIndex; j < outIndex; j++) {
sum += fire[j] * matrix[inx++];
}
fire[i] = threshold(sum);
result[i-outIndex] = fire[i];
}
return result;
}
/**
* Calculate the error for the recogntion just done.
*
* @param ideal What the output neurons should have yielded.
*/
public void calcError(double ideal[]) {
int i, j;
final int hiddenIndex = inputCount;
final int outputIndex = inputCount + hiddenCount;
// clear hidden layer errors
for (i = inputCount; i < neuronCount; i++) {
error[i] = 0;
}
// layer errors and deltas for output layer
for (i = outputIndex; i < neuronCount; i++) {
error[i] = ideal[i - outputIndex] - fire[i];
globalError += error[i] * error[i];
errorDelta[i] = error[i] * fire[i] * (1 - fire[i]);
}
// hidden layer errors
int winx = inputCount * hiddenCount;
for (i = outputIndex; i < neuronCount; i++) {
for (j = hiddenIndex; j < outputIndex; j++) {
accMatrixDelta[winx] += errorDelta[i] * fire[j];
error[j] += matrix[winx] * errorDelta[i];
winx++;
}
accThresholdDelta[i] += errorDelta[i];
}
// hidden layer deltas
for (i = hiddenIndex; i < outputIndex; i++) {
errorDelta[i] = error[i] * fire[i] * (1 - fire[i]);
}
// input layer errors
winx = 0; // offset into weight array
for (i = hiddenIndex; i < outputIndex; i++) {
for (j = 0; j < hiddenIndex; j++) {
accMatrixDelta[winx] += errorDelta[i] * fire[j];
error[j] += matrix[winx] * errorDelta[i];
winx++;
}
accThresholdDelta[i] += errorDelta[i];
}
}
/**
* Modify the weight matrix and thresholds based on the last call to
* calcError.
*/
public void learn() {
int i;
// process the matrix
for (i = 0; i < matrix.length; i++) {
matrixDelta[i] = (learnRate * accMatrixDelta[i]) + (momentum * matrixDelta[i]);
matrix[i] += matrixDelta[i];
accMatrixDelta[i] = 0;
}
// process the thresholds
for (i = inputCount; i < neuronCount; i++) {
thresholdDelta[i] = learnRate * accThresholdDelta[i] + (momentum * thresholdDelta[i]);
thresholds[i] += thresholdDelta[i];
accThresholdDelta[i] = 0;
}
}
/**
* Reset the weight matrix and the thresholds.
*/
public void reset() {
int i;
for (i = 0; i < neuronCount; i++) {
thresholds[i] = 0.5 - (Math.random());
thresholdDelta[i] = 0;
accThresholdDelta[i] = 0;
}
for (i = 0; i < matrix.length; i++) {
matrix[i] = 0.5 - (Math.random());
matrixDelta[i] = 0;
accMatrixDelta[i] = 0;
}
}
public File saveToFile(File file){
try{
ObjectOutputStream outputStream = new ObjectOutputStream(new FileOutputStream(file));
outputStream.writeObject(this);
outputStream.close();
}catch(Exception e){
throw new RuntimeException(e.getMessage() , e.getCause());
}
return file;
}
public static Network readFromFile(File file){
Network network = null;
try{
ObjectInputStream inputStream = new ObjectInputStream(new FileInputStream(file));
network = (Network) inputStream.readObject();
inputStream.close();
}catch(Exception e){
throw new RuntimeException(e.getMessage() , e.getCause());
}
return network;
}
}
public class XorExample extends JFrame implements
ActionListener,Runnable {
/**
* The train button.
*/
JButton btnTrain;
/**
* The run button.
*/
JButton btnRun;
/**
* The quit button.
*/
JButton btnQuit;
/**
* The status line.
*/
JLabel status;
/**
* The background worker thread.
*/
protected Thread worker = null;
/**
* The number of input neurons.
*/
protected final static int NUM_INPUT = 2;
/**
* The number of output neurons.
*/
protected final static int NUM_OUTPUT = 1;
/**
* The number of hidden neurons.
*/
protected final static int NUM_HIDDEN = 3;
/**
* The learning rate.
*/
protected final static double RATE = 0.5;
/**
* The learning momentum.
*/
protected final static double MOMENTUM = 0.7;
/**
* The training data that the user enters.
* This represents the inputs and expected
* outputs for the XOR problem.
*/
protected JTextField data[][] = new JTextField[4][4];
/**
* The neural network.
*/
protected Network network;
/**
* Constructor. Setup the components.
*/
public XorExample()
{
setTitle("XOR Solution");
network = new Network(
NUM_INPUT,
NUM_HIDDEN,
NUM_OUTPUT,
RATE,
MOMENTUM);
Container content = getContentPane();
GridBagLayout gridbag = new GridBagLayout();
GridBagConstraints c = new GridBagConstraints();
content.setLayout(gridbag);
c.fill = GridBagConstraints.NONE;
c.weightx = 1.0;
// Training input label
c.gridwidth = GridBagConstraints.REMAINDER; //end row
c.anchor = GridBagConstraints.NORTHWEST;
content.add(
new JLabel(
"Enter training data:"),c);
JPanel grid = new JPanel();
grid.setLayout(new GridLayout(5,4));
grid.add(new JLabel("IN1"));
grid.add(new JLabel("IN2"));
grid.add(new JLabel("Expected OUT "));
grid.add(new JLabel("Actual OUT"));
for ( int i=0;i<4;i++ ) {
int x = (i&1);
int y = (i&2)>>1;
grid.add(data[i][0] = new JTextField(""+y));
grid.add(data[i][1] = new JTextField(""+x));
grid.add(data[i][2] = new JTextField(""+(x^y)));
grid.add(data[i][3] = new JTextField("??"));
data[i][0].setEditable(false);
data[i][1].setEditable(false);
data[i][3].setEditable(false);
}
content.add(grid,c);
// the button panel
JPanel buttonPanel = new JPanel(new FlowLayout());
buttonPanel.add(btnTrain = new JButton("Train"));
buttonPanel.add(btnRun = new JButton("Run"));
buttonPanel.add(btnQuit = new JButton("Quit"));
btnTrain.addActionListener(this);
btnRun.addActionListener(this);
btnQuit.addActionListener(this);
// Add the button panel
c.gridwidth = GridBagConstraints.REMAINDER; //end row
c.anchor = GridBagConstraints.CENTER;
content.add(buttonPanel,c);
// Training input label
c.gridwidth = GridBagConstraints.REMAINDER; //end row
c.anchor = GridBagConstraints.NORTHWEST;
content.add(
status = new JLabel("Click train to begin training..."),c);
// adjust size and position
pack();
Toolkit toolkit = Toolkit.getDefaultToolkit();
Dimension d = toolkit.getScreenSize();
setLocation(
(int)(d.width-this.getSize().getWidth())/2,
(int)(d.height-this.getSize().getHeight())/2 );
setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
setResizable(false);
btnRun.setEnabled(false);
}
/**
* The main function, just display the JFrame.
*
* @param args No arguments are used.
*/
public static void main(String args[])
{
(new XorExample()).show(true);
}
/**
* Called when the user clicks one of the three
* buttons.
*
* @param e The event.
*/
public void actionPerformed(ActionEvent e)
{
if ( e.getSource()==btnQuit )
System.exit(0);
else if ( e.getSource()==btnTrain )
train();
else if ( e.getSource()==btnRun )
evaluate();
}
/**
* Called when the user clicks the run button.
*/
protected void evaluate()
{
double xorData[][] = getGrid();
int update=0;
for (int i=0;i<4;i++) {
NumberFormat nf = NumberFormat.getInstance();
double d[] = network.computeOutputs(xorData[i]);
data[i][3].setText(nf.format(d[0]));
}
}
/**
* Called when the user clicks the train button.
*/
protected void train()
{
if ( worker != null )
worker = null;
worker = new Thread(this);
worker.setPriority(Thread.MIN_PRIORITY);
worker.start();
}
/**
* The thread worker, used for training
*/
public void run()
{
double xorData[][] = getGrid();
double xorIdeal[][] = getIdeal();
int update=0;
int max = 10000;
for (int i=0;i<max;i++) {
for (int j=0;j<xorData.length;j++) {
network.computeOutputs(xorData[j]);
network.calcError(xorIdeal[j]);
network.learn();
}
update++;
if (update==100) {
status.setText( "Cycles Left:" + (max-i) + ",Error:" + network.getError(xorData.length) );
update=0;
}
}
btnRun.setEnabled(true);
}
/**
* Called to generate an array of doubles based on
* the training data that the user has entered.
*
* @return An array of doubles
*/
double [][]getGrid()
{
double array[][] = new double[4][2];
for ( int i=0;i<4;i++ ) {
array[i][0] =
Float.parseFloat(data[i][0].getText());
array[i][1] =
Float.parseFloat(data[i][1].getText());
}
return array;
}
/**
* Called to the the ideal values that that the neural network
* should return for each of the grid training values.
*
* @return The ideal results.
*/
double [][]getIdeal()
{
double array[][] = new double[4][1];
for ( int i=0;i<4;i++ ) {
array[i][0] =
Float.parseFloat(data[i][2].getText());
}
return array;
}
}
分享到:
相关推荐
本文将详细介绍BP神经网络如何解决经典的XOR问题,并通过源代码进行解析。 XOR(异或)问题是一个典型的二分类问题,它的输出只有两个可能的结果:0或1。对于输入对(0,0)、(0,1)、(1,0)和(1,1),XOR的逻辑关系为: ...
RBF神经网络(Radial Basis Function,径向基函数神经网络)...通过熟练掌握这些知识点,可以有效地利用RBF神经网络解决各种分类问题。在实际应用中,要注重理论与实践的结合,不断尝试和调整,以达到最佳的分类效果。
在本文中,我们将深入探讨如何使用Python编程语言和神经网络模型来解决经典的逻辑运算问题——抑或(XOR)问题。XOR问题之所以经典,是因为它不能被简单的线性模型解决,而需要非线性的处理能力,这正是神经网络的...
应用人工神经网络的方法实现xor问题的求解,对xor问题的求解有很大的帮助
解决疑惑问题简单的神经网络,根据自定义迭代次数和自定义的学习效率解决(0,1)以及(0,1,0)的输入问题:基本的方式严格按照神经网络标准进行,是合格的python代码。
总的来说,BP神经网络解决异或问题展示了神经网络在解决非线性问题上的优势。通过理解和实现这一过程,你可以深化对神经网络、误差反向传播算法以及数字图像模式识别的理解,为进一步学习更复杂的深度学习模型打下...
通过BP网络可以解决XOR问题,XOR问题就是如何用神经网络实现异或逻辑关系,即 Y=A XOR B。多层神经网络可以解决这个问题,因为多层网络引入了中间隐含层,每个隐含神经元可以按不同的方法来划分输入空间抽取输入空间...
在这个案例中,我们将探讨如何使用BP神经网络解决经典的异或(XOR)问题。 异或问题是一个二元逻辑运算,其输出只有两个可能的结果:0或1。对于输入A和B,当A和B相同时输出为0,不同时输出为1。异或问题的非线性...
在这个例子中,我们使用了一个隐含层,因为异或问题可以通过一个隐含层的神经网络解决。每个神经元包含一个加权求和的操作,接着是一个非线性激活函数,如sigmoid: \[ f(x) = \frac{1}{1+e^{-x}} \] **训练过程**...
5. **代码注释**:在提供的程序中,详细的注释有助于理解每个部分的功能,这对于初学者来说非常重要,能够帮助他们快速掌握神经网络的实现过程。 6. **可视化**:MATLAB还提供了绘制网络结构和训练过程曲线的功能,...
MATLAB是实现神经网络的一个强大平台,提供了神经网络工具箱,使得创建、训练和评估神经网络变得更加便捷。工具箱可能包括了预定义的网络结构、训练函数、可视化工具等,使得理解BP算法和调试代码变得更加直观。 在...
本资源包含的是用C语言编写的神经网络源代码,这对于那些想要深入理解神经网络工作原理,或者需要在实际项目中应用神经网络的开发者来说,是一份非常有价值的资料。 首先,我们要理解神经网络的基本构成。神经网络...
bp解决xor问题 BP网络是目前前馈式神经网络中应用最广泛的网络之一,实现BP算法训练神经网络完成XOR的分类问题。 设计要求: (1) 能够设置网络的输入节点数、隐节点数、网络层数、学习常数等各项参数; (2) 能够...
本文探讨了三元XOR问题的神经网络学习问题,讨论了神经网络学习单隐层前馈神经网络(SLFN)的结构误差问题,并提出了解决该问题的一种方法。该方法结合分组思想和隐函数定理,讨论了如何确定输入层与隐层的连接权...
本资料包“MATLAB神经网络.zip”包含了多个关于神经网络的学习资源,特别是BP神经网络、MATLAB中的感知机解决XOR问题以及单层神经网络的相关实现。 **BP神经网络**(Backpropagation Neural Network)是模拟人脑...
3. "XOR.m"很可能包含了实现神经网络解决XOR问题的主要代码,包括定义网络结构、初始化权重、前向传播、反向传播、更新权重等步骤。 在MATLAB中,实现神经网络通常会使用`neuralnet`或者`patternnet`函数。用户可能...
在压缩包内的文件"遗传算法优化神经网络XOR"可能包含了实现遗传算法优化神经网络解决XOR问题的具体代码文件。这些文件可能包括了数据预处理、神经网络模型定义、遗传算法的实现、训练与测试过程,以及可能的可视化...
BP神经网络解决异或逻辑的两种方法,matlab的源代码程序文件,这是初学BP神经网络会碰到的一个比较棘手的问题,本代码提供了两种不同的方法实现BP神经网络解决异或逻辑,可能比较基础,方法也不是很牛逼,纯自己瞎玩...