`
hanyh
  • 浏览: 239003 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

mysql数据库插入原来这么快

阅读更多
看见在插入数据量近6000W的时候,还能达到1200条/秒左右
10W条插入所耗时间,插入条数记数(原来表中有1000W记录)
 12.2486999035,100000
12.2773001194,200000
12.2486000061,300000
12.071199894,400000
12.0887999535,500000
12.263600111,600000
12.8111000061,700000
12.8373999596,800000
12.901900053,900000
14.3822999001,1000000
14.4759001732,1100000
12.5479998589,1200000
12.6721999645,1300000
12.7108001709,1400000
12.6102998257,1500000
12.7771999836,1600000
13.2545001507,1700000
13.3555998802,1800000
13.4908001423,1900000
14.0559999943,2000000
14.8170998096,2100000
13.132600069,2200000
13.0569000244,2300000
13.0878999233,2400000
13.361700058,2500000
13.535599947,2600000
13.8598001003,2700000
14.0957000256,2800000
14.1975998878,2900000
14.082100153,3000000
14.7009999752,3100000
13.8789999485,3200000
14.0099000931,3300000
14.3070998192,3400000
14.5513000488,3500000
14.6245000362,3600000
14.6152999401,3700000
14.8347001076,3800000
14.7455999851,3900000
14.8991999626,4000000
15.0450000763,4100000
14.9217998981,4200000
14.9628000259,4300000
15.2028999329,4400000
15.2783000469,4500000
15.5104000568,4600000
15.4739000797,4700000
15.6339998245,4800000
15.7406001091,4900000
15.9275999069,5000000
16.4046001434,5100000
16.3574998379,5200000
16.1486001015,5300000
16.4531998634,5400000
16.5682001114,5500000
16.6905999184,5600000
16.6999001503,5700000
16.958799839,5800000
16.8580000401,5900000
16.9960999489,6000000
17.1826000214,6100000
17.203799963,6200000
17.4459002018,6300000
17.2922999859,6400000
17.5569000244,6500000
17.807199955,6600000
17.8497998714,6700000
17.9196000099,6800000
18.1556999683,6900000
18.4064002037,7000000
18.320499897,7100000
18.4403998852,7200000
18.6754000187,7300000
18.9267001152,7400000
19.0785999298,7500000
19.0410001278,7600000
19.2544999123,7700000
19.1266999245,7800000
19.5298001766,7900000
19.4387998581,8000000
19.4728000164,8100000
19.7027001381,8200000
20.0515999794,8300000
19.959800005,8400000
20.5871999264,8500000
20.2063000202,8600000
20.3708999157,8700000
20.3410999775,8800000
20.4716000557,8900000
20.5167999268,9000000
20.4343001842,9100000
20.7989997864,9200000
21.1456000805,9300000
20.8066999912,9400000
21.0187001228,9500000
21.2816998959,9600000
21.2311000824,9700000
21.4526998997,9800000
21.5680000782,9900000
21.656899929,10000000
21.6686999798,10100000
22.111000061,10200000
22.0908999443,10300000
21.929899931,10400000
22.1587002277,10500000
22.3671998978,10600000
22.6442000866,10700000
22.5406999588,10800000
22.2986998558,10900000
22.7825000286,11000000
22.7992999554,11100000
23.0840001106,11200000
23.0336999893,11300000
23.1243000031,11400000
23.0193998814,11500000
23.2432000637,11600000
23.2276000977,11700000
23.3639998436,11800000
23.7211000919,11900000
23.9835999012,12000000
23.7651000023,12100000
23.7512001991,12200000
23.8873000145,12300000
24.027299881,12400000
24.192800045,12500000
23.9718000889,12600000
24.4296000004,12700000
24.4260997772,12800000
24.546900034,12900000
24.5542001724,13000000
24.7776999474,13100000
24.6698999405,13200000
24.4569001198,13300000
24.6951999664,13400000
25.339099884,13500000
25.0239999294,13600000
25.0064001083,13700000
25.3452999592,13800000
25.204100132,13900000
25.6594998837,14000000
25.1654000282,14100000
25.9886000156,14200000
25.7527999878,14300000
26.1656000614,14400000
25.9951999187,14500000
25.7889001369,14600000
26.6344997883,14700000
26.6328001022,14800000
26.4196000099,14900000
26.6807999611,15000000
27.2302000523,15100000
26.7781000137,15200000
26.5967998505,15300000
26.8879001141,15400000
27.6101000309,15500000
27.2957000732,15600000
27.0910999775,15700000
27.6517000198,15800000
26.7947998047,15900000
28.0234999657,16000000
27.4553000927,16100000
28.0745000839,16200000
28.2358000278,16300000
27.3213000298,16400000
28.6037998199,16500000
28.0062000751,16600000
28.3991000652,16700000
28.1582999229,16800000
32.2086000443,16900000
28.7537000179,17000000
29.0751998425,17100000
29.1440000534,17200000
29.3770999908,17300000
29.4169001579,17400000
29.6337997913,17500000
30.0696001053,17600000
30.6554000378,17700000
29.4310998917,17800000
30.3331000805,17900000
30.3801000118,18000000
30.7383999825,18100000
30.2995998859,18200000
33.7615001202,18300000
31.6524000168,18400000
30.5258998871,18500000
34.0257999897,18600000
34.9193999767,18700000
33.0338001251,18800000
34.0789000988,18900000
33.1794998646,19000000
31.6475000381,19100000
32.1933999062,19200000
33.4735000134,19300000
31.7174999714,19400000
33.2877001762,19500000
32.1487998962,19600000
33.2555000782,19700000
32.7623000145,19800000
33.1905999184,19900000
34.0055000782,20000000
33.1561999321,20100000
35.1417000294,20200000
33.367399931,20300000
35.7843999863,20400000
36.7400000095,20500000
33.1805000305,20600000
36.9372000694,20700000
34.1338000298,20800000
35.1993999481,20900000
35.8675999641,21000000
36.9663999081,21100000
34.8279001713,21200000
35.6563999653,21300000
35.8894000053,21400000
36.3938999176,21500000
38.5266001225,21600000
36.6399998665,21700000
37.6226000786,21800000
38.1543998718,21900000
38.5796000957,22000000
38.3436999321,22100000
39.1947000027,22200000
37.6328999996,22300000
39.6203000546,22400000
39.4546000957,22500000
38.6617000103,22600000
39.0267999172,22700000
37.9974999428,22800000
38.3812999725,22900000
39.940100193,23000000
39.7571997643,23100000
41.2875001431,23200000
41.5404999256,23300000
40.7610001564,23400000
41.8004999161,23500000
42.1679000854,23600000
41.9339997768,23700000
41.7352001667,23800000
43.3998000622,23900000
42.4329998493,24000000
39.1254999638,24100000
44.9327001572,24200000
41.6333999634,24300000
43.3292000294,24400000
41.7788999081,24500000
43.5234000683,24600000
42.070800066,24700000
41.0221998692,24800000
43.4491000175,24900000
46.4379000664,25000000
41.7186999321,25100000
46.831799984,25200000
44.2395999432,25300000
43.4153001308,25400000
44.6652998924,25500000
43.9562001228,25600000
46.3626999855,25700000
44.1856000423,25800000
45.0042998791,25900000
46.057199955,26000000
45.6150000095,26100000
47.9551000595,26200000
47.8659999371,26300000
46.943500042,26400000
43.3299999237,26500000
48.3272001743,26600000
48.5866999626,26700000
45.5722999573,26800000
47.7732000351,26900000
48.0304999352,27000000
48.5861001015,27100000
47.2967998981,27200000
48.1663000584,27300000
50.4007999897,27400000
45.4955000877,27500000
48.2566998005,27600000
47.2832000256,27700000
50.2713999748,27800000
50.3858001232,27900000
49.4679999352,28000000
47.540199995,28100000
48.1375000477,28200000
48.6847999096,28300000
49.0120000839,28400000
49.0631000996,28500000
50.8278999329,28600000
48.1701998711,28700000
51.5357999802,28800000
50.6555001736,28900000
53.1036000252,29000000
52.1669998169,29100000
49.3230001926,29200000
50.9656999111,29300000
49.7874999046,29400000
50.7863001823,29500000
49.8136999607,29600000
51.9593999386,29700000
50.0864999294,29800000
51.81580019,29900000
52.5038998127,30000000
51.1518001556,30100000
52.9553999901,30200000
51.9770998955,30300000
53.882600069,30400000
52.2116999626,30500000
51.6082999706,30600000
53.7332000732,30700000
52.3059999943,30800000
54.3629999161,30900000
53.8654000759,31000000
54.0276999474,31100000
53.6031000614,31200000
56.0248000622,31300000
57.5386998653,31400000
55.9721999168,31500000
52.6082000732,31600000
56.8238999844,31700000
56.5429000854,31800000
53.3559000492,31900000
57.1378998756,32000000
56.682199955,32100000
55.3266000748,32200000
54.7256000042,32300000
57.0369000435,32400000
55.9660000801,32500000
56.8484997749,32600000
57.5836000443,32700000
56.4453999996,32800000
59.7303001881,32900000
58.4358999729,33000000
55.7349998951,33100000
57.4081001282,33200000
60.8865997791,33300000
56.9210000038,33400000
57.0472002029,33500000
59.6772999763,33600000
59.4013998508,33700000
61.0856001377,33800000
59.5011999607,33900000
58.1245000362,34000000
56.8032999039,34100000
57.9897999763,34200000
61.4467000961,34300000
59.3474998474,34400000
61.5369000435,34500000
62.6307001114,34600000
59.2035000324,34700000
62.1108000278,34800000
60.6574997902,34900000
60.7944002151,35000000
61.9622998238,35100000
61.9018001556,35200000
62.8722999096,35300000
61.0866000652,35400000
61.5144000053,35500000
60.3595998287,35600000
63.6665999889,35700000
59.234400034,35800000
59.0834000111,35900000
63.1390001774,36000000
60.8925998211,36100000
62.8141000271,36200000
64.6373000145,36300000
62.5455000401,36400000
64.0552999973,36500000
65.4214000702,36600000
65.1696000099,36700000
60.9802999496,36800000
63.6466999054,36900000
63.2336001396,37000000
64.0469999313,37100000
64.6075999737,37200000
63.606400013,37300000
67.9556999207,37400000
65.7712001801,37500000
66.1088998318,37600000
65.1012001038,37700000
64.3677999973,37800000
68.0092999935,37900000
64.5852000713,38000000
66.5604000092,38100000
64.8236999512,38200000
66.9061000347,38300000
65.8600997925,38400000
64.2164001465,38500000
67.7976000309,38600000
65.4519999027,38700000
65.6717000008,38800000
65.9098000526,38900000
65.5327999592,39000000
64.948800087,39100000
67.7074999809,39200000
68.8580999374,39300000
68.4841001034,39400000
69.5140998363,39500000
69.2734999657,39600000
68.4520001411,39700000
67.8055000305,39800000
68.0646998882,39900000
70.339400053,40000000
66.9813001156,40100000
67.7600998878,40200000
69.3273999691,40300000
69.9965999126,40400000
69.4271001816,40500000
69.6394000053,40600000
70.5745999813,40700000
70.6203999519,40800000
72.4144999981,40900000
69.5153999329,41000000
71.078400135,41100000
70.5827999115,41200000
71.0317001343,41300000
69.0655999184,41400000
68.2876999378,41500000
70.3619999886,41600000
71.8556001186,41700000
71.0929000378,41800000
71.5339999199,41900000
73.1438999176,42000000
70.9713001251,42100000
71.9715998173,42200000
69.0513000488,42300000
72.617000103,42400000
71.3059999943,42500000
70.3457000256,42600000
74.6914999485,42700000
72.9921000004,42800000
72.4965000153,42900000
74.6779999733,43000000
71.793200016,43100000
72.5945000648,43200000
73.5264999866,43300000
74.3315999508,43400000
74.0174000263,43500000
73.7207999229,43600000
71.5483000278,43700000
74.5278000832,43800000
70.5735998154,43900000
72.9801001549,44000000
70.3861000538,44100000
76.1578998566,44200000
74.9391000271,44300000
74.238699913,44400000
76.2427999973,44500000
74.2488000393,44600000
73.1296000481,44700000
75.1103000641,44800000
76.4396998882,44900000
75.4574000835,45000000
76.2295000553,45100000
75.5018999577,45200000
78.0773999691,45300000
73.2374000549,45400000
75.1116998196,45500000
78.1565001011,45600000
75.5194001198,45700000
74.2967998981,45800000
77.8838999271,45900000
73.4882001877,46000000
76.2270998955,46100000
77.8396000862,46200000
76.1662998199,46300000
76.1633000374,46400000
78.557500124,46500000
74.4247000217,46600000
76.2005999088,46700000
78.2168998718,46800000
76.527200222,46900000
77.2237999439,47000000
78.0637998581,47100000
78.5652000904,47200000
75.3833999634,47300000
75.9161999226,47400000
79.5389001369,47500000
77.780600071,47600000
80.0218999386,47700000
75.6284000874,47800000
79.8923997879,47900000
77.7213001251,48000000

插入的文章见:
http://hanyh.iteye.com/admin/blogs/434077

1,机器为4核16G内存,脚本和数据库在同一机器上跑,插入的速度还能快更多。
2,mysql为5.1.30


回复要先做题,太麻烦了,直接改原贴。
对1楼的回复,需要说明几个问题
1,oracle版本和基本配置(oracle所用的内存,缓冲是多大?)
2,所在的硬件环境

---------------
3,我的相关文章注明了,插入脚本和数据库是在同一个机器上,为了模拟真实的负载,100个并发连接全是单独直接连接数据库,并没有把全部硬件资源用在数据库上,mysqld的配置也有限
4,即使oracle在大数据量快一点也是正常的,但是这足够证明mysql不慢!!!单表这个插入速度的量对绝大部分应用足够了。
分享到:
评论
2 楼 若水上善 2009-09-21  
mysql插入响应速度是很快的,但是并发查询似乎不是很快。如果有这么多条的话,还是建议用oracle或者mysql集群,否则硬盘的速度跟不上的。
1 楼 seujacky 2009-07-29  
看见在插入数据量近6000W的时候,还能达到1200条/秒左右



这个也叫快?前天我插入的速度是1万条每秒。数据库是oracle的。java程序。数据还是从文件中解析出来的文件有300多个数据量是6千多万条。

相关推荐

    一个基于Qt Creator(qt,C++)实现中国象棋人机对战

    qt 一个基于Qt Creator(qt,C++)实现中国象棋人机对战.

    热带雨林自驾游自然奇观探索.doc

    热带雨林自驾游自然奇观探索

    冰川湖自驾游冰雪交融景象.doc

    冰川湖自驾游冰雪交融景象

    C51 单片机数码管使用 Keil项目C语言源码

    C51 单片机数码管使用 Keil项目C语言源码

    基于智能算法的无人机路径规划研究 附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    前端分析-2023071100789s12

    前端分析-2023071100789s12

    Delphi 12.3控件之Laz-制作了一些窗体和对话框样式.7z

    Laz_制作了一些窗体和对话框样式.7z

    ocaml-docs-4.05.0-6.el7.x64-86.rpm.tar.gz

    1、文件内容:ocaml-docs-4.05.0-6.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/ocaml-docs-4.05.0-6.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊

    学习笔记-沁恒第六讲-米醋

    学习笔记-沁恒第六讲-米醋

    工业机器人技术讲解【36页】.pptx

    工业机器人技术讲解【36页】

    基于CentOS 7和Docker环境下安装和配置Elasticsearch数据库

    内容概要:本文档详细介绍了在 CentOS 7 上利用 Docker 容器化环境来部署和配置 Elasticsearch 数据库的过程。首先概述了 Elasticsearch 的特点及其主要应用场景如全文检索、日志和数据分析等,并强调了其分布式架构带来的高性能与可扩展性。之后针对具体的安装流程进行了讲解,涉及创建所需的工作目录,准备docker-compose.yml文件以及通过docker-compose工具自动化完成镜像下载和服务启动的一系列命令;同时对可能出现的问题提供了应对策略并附带解决了分词功能出现的问题。 适合人群:从事IT运维工作的技术人员或对NoSQL数据库感兴趣的开发者。 使用场景及目标:该教程旨在帮助读者掌握如何在一个Linux系统中使用现代化的应用交付方式搭建企业级搜索引擎解决方案,特别适用于希望深入了解Elastic Stack生态体系的个人研究与团队项目实践中。 阅读建议:建议按照文中给出的具体步骤进行实验验证,尤其是要注意调整相关参数配置适配自身环境。对于初次接触此话题的朋友来说,应该提前熟悉一下Linux操作系统的基础命令行知识和Docker的相关基础知识

    基于CNN和FNN的进化神经元模型的快速响应尖峰神经网络 附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    网络小说的类型创新、情节设计与角色塑造.doc

    网络小说的类型创新、情节设计与角色塑造

    毕业设计-基于springboot+vue开发的学生考勤管理系统【源码+sql+可运行】50311.zip

    毕业设计_基于springboot+vue开发的学生考勤管理系统【源码+sql+可运行】【50311】.zip 全部代码均可运行,亲测可用,尽我所能,为你服务; 1.代码压缩包内容 代码:springboo后端代码+vue前端页面代码 脚本:数据库SQL脚本 效果图:运行结果请看资源详情效果图 2.环境准备: - JDK1.8+ - maven3.6+ - nodejs14+ - mysql5.6+ - redis 3.技术栈 - 后台:springboot+mybatisPlus+Shiro - 前台:vue+iview+Vuex+Axios - 开发工具: idea、navicate 4.功能列表 - 系统设置:用户管理、角色管理、资源管理、系统日志 - 业务管理:班级信息、学生信息、课程信息、考勤记录、假期信息、公告信息 3.运行步骤: 步骤一:修改数据库连接信息(ip、port修改) 步骤二:找到启动类xxxApplication启动 4.若不会,可私信博主!!!

    57页-智慧办公园区智能化设计方案.pdf

    在智慧城市建设的大潮中,智慧园区作为其中的璀璨明珠,正以其独特的魅力引领着产业园区的新一轮变革。想象一下,一个集绿色、高端、智能、创新于一体的未来园区,它不仅融合了科技研发、商业居住、办公文创等多种功能,更通过深度应用信息技术,实现了从传统到智慧的华丽转身。 智慧园区通过“四化”建设——即园区运营精细化、园区体验智能化、园区服务专业化和园区设施信息化,彻底颠覆了传统园区的管理模式。在这里,基础设施的数据收集与分析让管理变得更加主动和高效,从温湿度监控到烟雾报警,从消防水箱液位监测到消防栓防盗水装置,每一处细节都彰显着智能的力量。而远程抄表、空调和变配电的智能化管控,更是在节能降耗的同时,极大地提升了园区的运维效率。更令人兴奋的是,通过智慧监控、人流统计和自动访客系统等高科技手段,园区的安全防范能力得到了质的飞跃,让每一位入驻企业和个人都能享受到“拎包入住”般的便捷与安心。 更令人瞩目的是,智慧园区还构建了集信息服务、企业服务、物业服务于一体的综合服务体系。无论是通过园区门户进行信息查询、投诉反馈,还是享受便捷的电商服务、法律咨询和融资支持,亦或是利用云ERP和云OA系统提升企业的管理水平和运营效率,智慧园区都以其全面、专业、高效的服务,为企业的发展插上了腾飞的翅膀。而这一切的背后,是大数据、云计算、人工智能等前沿技术的深度融合与应用,它们如同智慧的大脑,让园区的管理和服务变得更加聪明、更加贴心。走进智慧园区,就像踏入了一个充满无限可能的未来世界,这里不仅有科技的魅力,更有生活的温度,让人不禁对未来充满了无限的憧憬与期待。

    一种欠定盲源分离方法及其在模态识别中的应用 附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    Matlab实现基于BO贝叶斯优化Transformer结合GRU门控循环单元时间序列预测的详细项目实例(含完整的程序,GUI设计和代码详解)

    内容概要:本文介绍了使用 Matlab 实现基于 BO(贝叶斯优化)的 Transformer 结合 GRU 门控循环单元时间序列预测的具体项目案例。文章首先介绍了时间序列预测的重要性及其现有方法存在的限制,随后深入阐述了该项目的目标、挑战与特色。重点描述了项目中采用的技术手段——结合 Transformer 和 GRU 模型的优点,通过贝叶斯优化进行超参数调整。文中给出了模型的具体实现步骤、代码示例以及完整的项目流程。同时强调了数据预处理、特征提取、窗口化分割、超参数搜索等关键技术点,并讨论了系统的设计部署细节、可视化界面制作等内容。 适合人群:具有一定机器学习基础,尤其是熟悉时间序列预测与深度学习的科研工作者或从业者。 使用场景及目标:适用于金融、医疗、能源等多个行业的高精度时间序列预测。该模型可通过捕捉长时间跨度下的复杂模式,提供更为精准的趋势预判,辅助相关机构作出合理的前瞻规划。 其他说明:此项目还涵盖了从数据采集到模型发布的全流程讲解,以及GUI图形用户界面的设计实现,有助于用户友好性提升和技术应用落地。此外,文档包含了详尽的操作指南和丰富的附录资料,包括完整的程序清单、性能评价指标等,便于读者动手实践。

    漫画与青少年教育关系.doc

    漫画与青少年教育关系

    励志图书的成功案例分享、人生智慧提炼与自我提升策略.doc

    励志图书的成功案例分享、人生智慧提炼与自我提升策略

    人工智能在食品安全与检测中的应用.doc

    人工智能在食品安全与检测中的应用

Global site tag (gtag.js) - Google Analytics