为了便于管理,先引入个基础类:
package algorithms;
/**
* @author yovn
*
*/
public abstract class Sorter<E extends Comparable<E>> {
public abstract void sort(E[] array,int from ,int len);
public final void sort(E[] array)
{
sort(array,0,array.length);
}
protected final void swap(E[] array,int from ,int to)
{
E tmp=array[from];
array[from]=array[to];
array[to]=tmp;
}
}
一 插入排序
该算法在数据规模小的时候十分高效,该算法每次插入第K+1到前K个有序数组中一个合适位置,K从0开始到N-1,从而完成排序:
package algorithms;
/**
* @author yovn
*/
public class InsertSorter<E extends Comparable<E>> extends Sorter<E> {
/* (non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
public void sort(E[] array, int from, int len) {
E tmp=null;
for(int i=from+1;i<from+len;i++)
{
tmp=array[i];
int j=i;
for(;j>from;j--)
{
if(tmp.compareTo(array[j-1])<0)
{
array[j]=array[j-1];
}
else break;
}
array[j]=tmp;
}
}
}
二 冒泡排序
这可能是最简单的排序算法了,算法思想是每次从数组末端开始比较相邻两元素,把第i小的冒泡到数组的第i个位置。i从0一直到N-1从而完成排序。(当然也可以从数组开始端开始比较相邻两元素,把第i大的冒泡到数组的第N-i个位置。i从0一直到N-1从而完成排序。)
package algorithms;
/**
* @author yovn
*
*/
public class BubbleSorter<E extends Comparable<E>> extends Sorter<E> {
private static boolean DWON=true;
public final void bubble_down(E[] array, int from, int len)
{
for(int i=from;i<from+len;i++)
{
for(int j=from+len-1;j>i;j--)
{
if(array[j].compareTo(array[j-1])<0)
{
swap(array,j-1,j);
}
}
}
}
public final void bubble_up(E[] array, int from, int len)
{
for(int i=from+len-1;i>=from;i--)
{
for(int j=from;j<i;j++)
{
if(array[j].compareTo(array[j+1])>0)
{
swap(array,j,j+1);
}
}
}
}
@Override
public void sort(E[] array, int from, int len) {
if(DWON)
{
bubble_down(array,from,len);
}
else
{
bubble_up(array,from,len);
}
}
}
三,选择排序
选择排序相对于冒泡来说,它不是每次发现逆序都交换,而是在找到全局第i小的时候记下该元素位置,最后跟第i个元素交换,从而保证数组最终的有序。
相对与插入排序来说,选择排序每次选出的都是全局第i小的,不会调整前i个元素了。
package algorithms;
/**
* @author yovn
*
*/
public class SelectSorter<E extends Comparable<E>> extends Sorter<E> {
/* (non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@Override
public void sort(E[] array, int from, int len) {
for(int i=0;i<len;i++)
{
int smallest=i;
int j=i+from;
for(;j<from+len;j++)
{
if(array[j].compareTo(array[smallest])<0)
{
smallest=j;
}
}
swap(array,i,smallest);
}
}
}
四 Shell排序
Shell排序可以理解为插入排序的变种,它充分利用了插入排序的两个特点:
1)当数据规模小的时候非常高效
2)当给定数据已经有序时的时间代价为O(N)
所以,Shell排序每次把数据分成若个小块,来使用插入排序,而且之后在这若个小块排好序的情况下把它们合成大一点的小块,继续使用插入排序,不停的合并小块,知道最后成一个块,并使用插入排序。
这里每次分成若干小块是通过“增量” 来控制的,开始时增量交大,接近N/2,从而使得分割出来接近N/2个小块,逐渐的减小“增量“最终到减小到1。
一直较好的增量序列是2^k-1,2^(k-1)-1,.....7,3,1,这样可使Shell排序时间复杂度达到O(N^1.5)
所以我在实现Shell排序的时候采用该增量序列
package algorithms;
/**
* @author yovn
*/
public class ShellSorter<E extends Comparable<E>> extends Sorter<E> {
/* (non-Javadoc)
* Our delta value choose 2^k-1,2^(k-1)-1,.7,3,1.
* complexity is O(n^1.5)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@Override
public void sort(E[] array, int from, int len) {
//1.calculate the first delta value;
int value=1;
while((value+1)*2<len)
{
value=(value+1)*2-1;
}
for(int delta=value;delta>=1;delta=(delta+1)/2-1)
{
for(int i=0;i<delta;i++)
{
modify_insert_sort(array,from+i,len-i,delta);
}
}
}
private final void modify_insert_sort(E[] array, int from, int len,int delta) {
if(len<=1)return;
E tmp=null;
for(int i=from+delta;i<from+len;i+=delta)
{
tmp=array[i];
int j=i;
for(;j>from;j-=delta)
{
if(tmp.compareTo(array[j-delta])<0)
{
array[j]=array[j-delta];
}
else break;
}
array[j]=tmp;
}
}
}
五 快速排序
快速排序是目前使用可能最广泛的排序算法了。
一般分如下步骤:
1)选择一个枢纽元素(有很对选法,我的实现里采用去中间元素的简单方法)
2)使用该枢纽元素分割数组,使得比该元素小的元素在它的左边,比它大的在右边。并把枢纽元素放在合适的位置。
3)根据枢纽元素最后确定的位置,把数组分成三部分,左边的,右边的,枢纽元素自己,对左边的,右边的分别递归调用快速排序算法即可。
快速排序的核心在于分割算法,也可以说是最有技巧的部分。
package algorithms;
/**
* @author yovn
*
*/
public class QuickSorter<E extends Comparable<E>> extends Sorter<E> {
/* (non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@Override
public void sort(E[] array, int from, int len) {
q_sort(array,from,from+len-1);
}
private final void q_sort(E[] array, int from, int to) {
if(to-from<1)return;
int pivot=selectPivot(array,from,to);
pivot=partion(array,from,to,pivot);
q_sort(array,from,pivot-1);
q_sort(array,pivot+1,to);
}
private int partion(E[] array, int from, int to, int pivot) {
E tmp=array[pivot];
array[pivot]=array[to];//now to's position is available
while(from!=to)
{
while(from<to&&array[from].compareTo(tmp)<=0)from++;
if(from<to)
{
array[to]=array[from];//now from's position is available
to--;
}
while(from<to&&array[to].compareTo(tmp)>=0)to--;
if(from<to)
{
array[from]=array[to];//now to's position is available now
from++;
}
}
array[from]=tmp;
return from;
}
private int selectPivot(E[] array, int from, int to) {
return (from+to)/2;
}
}
还有归并排序,堆排序,桶式排序,基数排序,见
Java实现排序算法(二): 归并排序,堆排序,桶式排序,基数排序。
原文网址:
http://www.blogjava.net/javacap/archive/2007/12/14/167618.html
分享到:
相关推荐
本文将详细探讨标题所提及的几种排序算法:合并排序、插入排序、希尔排序、快速排序、冒泡排序以及桶排序,并结合Java语言的实现进行解析。 1. **合并排序(Merge Sort)**: 合并排序是一种基于分治策略的排序算法...
这里我们主要探讨的是五种不同的排序算法:插入排序、选择排序、快速排序、希尔排序以及冒泡排序,它们都有对应的链表实现。让我们逐一深入理解这些算法。 1. 插入排序(Insertion Sort) 插入排序是一种简单直观...
以下是关于Java实现的七种排序算法的详细说明: 1. **冒泡排序(Bubble Sort)**: 冒泡排序是一种简单的排序算法,通过不断交换相邻两个元素的位置来逐步将较大的元素推向数组的后部。它的主要思想是重复遍历数组...
Java作为广泛应用的编程语言,提供了一种高效的方式来实现各种排序算法。本文将深入探讨Java中实现的两种主要排序类型:插入排序和交换排序。 插入排序是一种简单直观的排序算法,它的工作原理类似于我们日常生活中...
八种排序算法原理及Java实现是排序算法中的一种,包括冒泡排序、快速排序、直接插入排序、希尔排序、选择排序、归并排序和基数排序等。 冒泡排序是八种排序算法中的一种,属于交换排序。冒泡排序的基本思想是重复...
本篇将详细介绍标题和描述中提到的几种排序算法,包括冒泡排序、选择排序、插入排序、基数排序、归并排序、计数排序、堆排序、快速排序以及Shell排序。 1. **冒泡排序**:这是一种简单的排序算法,通过重复遍历待...
在提供的文件中,我们可以看到有四种经典的排序算法的Java实现:插入排序、冒泡排序、选择排序以及希尔排序。 **插入排序**: 插入排序是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据...
本文将详述Java语言实现的六种经典排序算法:冒泡排序、选择排序、插入排序、归并排序、希尔排序以及快速排序。这些排序算法各有特点,适用于不同的场景。 1. 冒泡排序(Bubble Sort) 冒泡排序是一种简单的排序...
这里我们将深入探讨快速排序、归并排序、希尔排序、冒泡排序、选择排序以及插入排序这六种经典的排序算法,并通过Java语言来实现它们。 1. **快速排序**:由C.A.R. Hoare在1960年提出,是基于分治策略的一种高效...
在本文中,我们将深入探讨Java实现的八个经典排序算法,包括它们的工作原理、时间复杂度以及如何用Java代码实现。 1. **插入排序(Insertion Sort)** 插入排序是一种简单直观的排序算法,它的工作原理是通过构建...
冒泡排序是一种简单的排序算法,通过重复遍历数组,比较相邻元素并交换位置来实现排序。如果前一个元素大于后一个元素,它们的位置就会互换。这个过程会一直重复,直到没有更多的交换,表明数组已经排序完成。冒泡...
在Java中,这些排序算法都可以用代码实现,可以通过`java.util.Arrays.sort()`方法使用内置的快速排序或归并排序,也可以自定义排序逻辑。在`AllSort`这个压缩包中,可能包含了这八种排序算法的Java实现代码,通过...
这里我们将深入探讨八大排序算法,并结合Java语言来理解它们的实现原理。 1. 冒泡排序(Bubble Sort) 冒泡排序是一种简单的交换式排序算法。它通过重复遍历待排序的元素列表,比较相邻元素并根据需要交换它们,...
除了插入排序和希尔排序,压缩包中还可能包含了其他几种常见的排序算法的Java实现,如冒泡排序、快速排序、选择排序、归并排序和堆排序等。每种排序算法都有其特定的适用场景和性能特点。例如,冒泡排序虽然简单,但...
在这里,我们将深入探讨Java实现的八大排序算法,包括冒泡排序、选择排序、插入排序、希尔排序、快速排序、归并排序、堆排序以及计数排序。 1. **冒泡排序(Bubble Sort)**:冒泡排序是一种简单直观的排序算法,...
快速排序: 在Java中,快速排序通常采用分治策略实现。它选取一个基准元素,将数组分为两部分,一部分所有元素都比基准小,另一部分所有元素都比基准大,然后递归地对这两部分进行快速排序。 ```java package org....
根据提供的文件信息,我们可以总结出该文档主要涉及了五种基于Java实现的排序算法:插入排序(Insert Sort)、冒泡排序(Bubble Sort)、选择排序(Selection Sort)、希尔排序(Shell Sort)以及快速排序(Quick ...
### 常用排序算法分析与实现(Java版) #### 插入排序 **1. 直接插入排序** 直接插入排序是一种简单的排序方法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并...
本文将深入探讨在Java中实现的一些常见排序算法,包括冒泡排序、选择排序、Shell排序、快速排序以及归并排序。 1. **冒泡排序(Bubble Sort)**: 冒泡排序是一种简单的交换排序,通过不断比较相邻元素并交换位置...