定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。
当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。
我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。
此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。
“大 O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。
这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。
O(1)
Temp=i;i=j;j=temp;
以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。
O(n^2)
2.1. 交换i和j的内容
sum=0; (一次)
for(i=1;i<=n;i++) (n次 )
for(j=1;j<=n;j++) (n^2次 )
sum++; (n^2次 )
解:T(n)=2n^2+n+1 =O(n^2)
2.2.
for (i=1;i<n;i++)
{
y=y+1; ①
for (j=0;j<=(2*n);j++)
x++; ②
}
解: 语句1的频度是n-1
语句2的频度是(n-1)*(2n+1)=2n^2-n-1
f(n)=2n^2-n-1+(n-1)=2n^2-2
该程序的时间复杂度T(n)=O(n^2).
O(n)
2.3.
a=0;
b=1; ①
for (i=1;i<=n;i++) ②
{
s=a+b; ③
b=a; ④
a=s; ⑤
}
解: 语句1的频度:2,
语句2的频度: n,
语句3的频度: n-1,
语句4的频度:n-1,
语句5的频度:n-1,
T(n)=2+n+3(n-1)=4n-1=O(n).
O(log2n )
2.4.
i=1; ①
while (i<=n)
i=i*2; ②
解: 语句1的频度是1,
设语句2的频度是f(n), 则:2^f(n)<=n;f(n)<=log2n
取最大值f(n)= log2n,
T(n)=O(log2n )
O(n^3)
2.5.
for(i=0;i<n;i++)
{
for(j=0;j<i;j++)
{
for(k=0;k<j;k++)
x=x+2;
}
}
解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3).
我们还应该区分算法的最坏情况的行为和期望行为。如快速排序的最 坏情况运行时间是 O(n^2),但期望时间是 O(nlogn)。通过每次都仔细地选择基准值,我们有可能把平方情况 (即O(n^2)情况)的概率减小到几乎等于 0。在实际中,精心实现的快速排序一般都能以 (O(nlogn)时间运行。
下面是一些常用的记法:
访问数组中的元素是常数时间操作,或说O(1)操作。一个算法如果能在每个步骤去掉一半数据元素,如二分检索,通常它就取 O(logn)时间。用strcmp比较两个具有n个字符的串需要O(n)时间。常规的矩阵乘算法是O(n^3),因为算出每个元素都需要将n对 元素相乘并加到一起,所有元素的个数是n^2。
指数时间算法通常来源于需要求出所有可能结果。例如,n个元 素的集合共有2n个子集,所以要求出所有子集的算法将是O(2n)的。指数算法一般说来是太复杂了,除非n的值非常小,因为,在 这个问题中增加一个元素就导致运行时间加倍。不幸的是,确实有许多问题 (如著名的“巡回售货员问题” ),到目前为止找到的算法都是指数的。如果我们真的遇到这种情况, 通常应该用寻找近似最佳结果的算法替代之。
分享到:
相关推荐
算法时间复杂度的计算 算法时间复杂度的计算是计算机科学中一个非常重要的概念,它描述了算法执行时间随着输入规模的变化而增长的速度。时间复杂度通常用大 O 记法表示,即 O(f(n)),其中 f(n) 是问题规模 n 的函数...
根据给定文件的信息,我们可以详细地探讨“算法时间复杂度”的相关知识点。时间复杂度是衡量算法运行时间随输入规模增长而变化的函数,它在计算机科学与编程领域扮演着至关重要的角色。接下来,我们将围绕以下几个...
关于递归算法时间复杂度分析的探讨,是一个深入理解算法效率和优化的关键议题。递归,作为解决问题的一种强大工具,其本质是将复杂问题分解为更简单的子问题,通过求解这些子问题来达到最终解决方案的目的。然而,...
### 排序算法时间复杂度的研究 #### 引言 排序是计算机科学中的基础操作之一,主要用于对数据集中的元素按照特定的顺序进行排列。排序算法的效率直接关系到计算机程序的整体性能。根据数据是否完全加载到内存中,...
### 算法的时间复杂度与空间复杂度详解 #### 一、算法复杂度概述 在计算机科学领域,算法的时间复杂度与空间复杂度是衡量一个算法效率的重要指标。时间复杂度关注的是算法执行时间的增长速率,而空间复杂度则侧重...
以下是对选择排序、冒泡排序、归并排序、快速排序和插入排序这五种常见排序算法的详细介绍,以及如何分析它们的时间复杂度。 1. **选择排序(Selection Sort)** - 原理:选择排序是一种简单直观的排序算法,它...
应用马尔科夫链模型证明了遗传禁忌搜索算法是以概率1收敛到全局最优解的,并应用求解随机算法时间复杂度的方法,即求解算法的期望收敛时间,估算了该算法的时间复杂度,结果证明该算法的时间复杂度与所得解的多样性、...
本资料包"分析算法时间复杂度.zip"可能是为了深入探讨这个主题,包含了可能用于教学或研究的不同文件。 "app"、"gradle"、"gradle.properties"、"settings.gradle"、"gradlew.bat"这些文件是Android开发环境中的...
在这个"分析算法时间复杂度java.zip"文件中,我们可以预期包含的是关于如何在Java中分析和理解各种算法时间复杂度的相关资源,比如数据结构的实现及其时间复杂度分析。 数据结构是存储和组织数据的特定方式,它们对...
算法时间复杂度的计算方法 时间复杂度是衡量算法性能的重要指标,它描述了算法执行时间与问题规模之间的关系。时间复杂度是算法的渐近性质,它定义了算法的执行时间与问题规模之间的关系。 时间复杂度的计算方法...
算法时间复杂度的实验测试 时间复杂度是算法分析中的一个重要概念,它是衡量算法性能的重要指标。时间复杂度是指算法执行的时间与输入规模之间的关系。通过实验测试,我们可以分析算法的时间复杂度,从而了解算法的...
这个压缩包文件"算法-数据结构和算法-1-算法的引入和算法时间复杂度.rar"主要探讨了这两个概念的入门知识,特别是关注算法的时间复杂度分析。 首先,我们需要理解什么是算法。算法是一系列明确的步骤或指令,用于...
多段图算法时间复杂度图像
在计算机科学领域,算法的时间复杂度是对算法运行所需计算工作量的度量,它反映了算法执行效率与输入数据规模之间的关系。本实验测试的主题聚焦于堆排序算法的时间复杂度分析,由胡书晗进行研究。堆排序是一种基于...
所有算法时间复杂度对比、图表形式、函数关系
1. 首先产生要进行排序的整形数组(可以保存在文件中...2. 调用各种排序方法对数组排序,并记录花费时间 对于更多更高级的排序算法,以后会实现,另外,对于复杂字符串排序,这些简单排序并不适合,请采用更高效的方法
### 排序算法时间复杂度的研究 #### 引言 排序是计算机科学中的基础操作之一,在数据处理与分析中占据着重要地位。排序算法的好坏直接影响到计算机程序的执行效率,尤其是在处理大规模数据集时更为明显。根据数据...