`
acen.chen
  • 浏览: 161086 次
  • 性别: Icon_minigender_1
  • 来自: 深圳
社区版块
存档分类
最新评论

JAVA笔试面试必考题系列(十一)——这些运算符你是否还记得?

阅读更多

JAVA面试题解惑系列(十一)——这些运算符你是否还记得?

关键字: java 面试题 自增 自减 位运算符

作者:臧圩人(zangweiren)
网址:http://zangweiren.iteye.com

>>>转载请注明出处!<<<

有些运算符在JAVA语言中存在着,但是在实际开发中我们或许很少用到它们,在面试题中却时常出现它们的身影,对于这些运算符的含义和用法,你是否还记得呢?

自增(++)和自减(--)运算符

我们先来回答几个问题吧:
Java代码 复制代码
  1. int i = 0;   
  2. int j = i++;   
  3. int k = --i;  
int i = 0;
int j = i++;
int k = --i;

这段代码运行后,i等于多少?j等于多少?k等于多少?太简单了?好,继续:
Java代码 复制代码
  1. int i = 0;   
  2. int j = i++ + ++i;   
  3. int k = --i + i--;  
int i = 0;
int j = i++ + ++i;
int k = --i + i--;

代码执行后i、j、k分别等于多少呢?还是很简单?好,再继续:
Java代码 复制代码
  1. int i=0;   
  2. System.out.println(i++);  
int i=0;
System.out.println(i++);

这段代码运行后输出结果是什么?0?1?
Java代码 复制代码
  1. float f=0.1F;   
  2. f++;   
  3. double d=0.1D;   
  4. d++;   
  5. char c='a';   
  6. c++;  
float f=0.1F;
f++;
double d=0.1D;
d++;
char c='a';
c++;

上面这段代码可以编译通过吗?为什么?如果你能顺利回答到这里,说明你对自增和自减运算符的掌握已经很好了。

为了分析出上面提出的几个问题,我们首先来回顾一下相关知识:
  • 自增(++):将变量的值加1,分前缀式(如++i)和后缀式(如i++)。前缀式是先加1再使用;后缀式是先使用再加1。
  • 自减(--):将变量的值减1,分前缀式(如--i)和后缀式(如i--)。前缀式是先减1再使用;后缀式是先使用再减1。

在第一个例子中,int j=i++;是后缀式,因此i的值先被赋予j,然后再自增1,所以这行代码运行后,i=1、j=0;而int k=--i;是前缀式,因此i先自减1,然后再将它的值赋予k,因此这行代码运行后,i=0、k=0。

在第二个例子中,对于int j=i++ + ++i;,首先运行i++,i的值0被用于加运算(+),之后i自增值变为1,然后运行++i,i先自增变为2,之后被用于加运算,最后将i两次的值相加的结果0+2=2赋给j,因此这行代码运行完毕后i=2、j=2;对于int k=--i + i--;用一样的思路分析,具体过程在此不再赘述,结果应该是i=0、k=2。

自增与自减运算符还遵循以下规律:
  1. 可以用于整数类型byte、short、int、long,浮点类型float、double,以及字符串类型char。
  2. 在Java5.0及以上版本中,它们可以用于基本类型对应的包装器类Byte、Short、Integer、Long、Float、Double、Character。
  3. 它们的运算结果的类型与被运算的变量的类型相同。

下面的这个例子验证以上列出的规律,它可以编译通过并执行。
Java代码 复制代码
  1. public class Test {   
  2.     public static void main(String[] args) {   
  3.         // 整型   
  4.         byte b = 0;   
  5.         b++;   
  6.         // 整型   
  7.         long l = 0;   
  8.         l++;   
  9.         // 浮点型   
  10.         double d = 0.0;   
  11.         d++;   
  12.         // 字符串   
  13.         char c = 'a';   
  14.         c++;   
  15.         // 基本类型包装器类   
  16.         Integer i = new Integer(0);   
  17.         i++;   
  18.     }   
  19. }  
public class Test {
	public static void main(String[] args) {
		// 整型
		byte b = 0;
		b++;
		// 整型
		long l = 0;
		l++;
		// 浮点型
		double d = 0.0;
		d++;
		// 字符串
		char c = 'a';
		c++;
		// 基本类型包装器类
		Integer i = new Integer(0);
		i++;
	}
}


按位运算符

你还能说出来按位运算符一共有哪几种吗?对比下面的列表看看,有没有从你的记忆中消失了的:
  1. 按位与运算(&):二元运算符。当被运算的两个值都为1时,运算结果为1;否则为0。
  2. 按位或运算(|):二元运算符。当被运算的两个值都为0时,运算结果为0;否则为1。
  3. 按位异或运算(^):二元运算符。当被运算的两个值中任意一个为1,另一个为0时,运算结果为1;否则为0。
  4. 按位非运算(~):一元运算符。当被运算的值为1时,运算结果为0;当被运算的值为0时,运算结果为1。

这里不像我们看到的逻辑运算符(与运算&&、或运算||、非运算!)操作的是布尔值true或false,或者是一个能产生布尔值的表达式;“按位运算符”所指的“位”就是二进制位,因此它操作的是二进制的0和1。在解释按位运算符的执行原理时,我们顺便说说它们和逻辑运算符的区别。

[list=1]
  • 逻辑运算符只能操作布尔值或者一个能产生布尔值的表达式;按位运算符能操作整型值,包括byte、short、int、long,但是不能操作浮点型值(即float和double),它还可以操作字符型(char)值。按位运算符不能够操作对象,但是在Java5.0及以上版本中,byte、short、int、long、char所对应的包装器类是个例外,因为JAVA虚拟机会自动将它们转换为对应的基本类型的数据。
    下面的例子验证了这条规律:
    Java代码 复制代码
    1. public class BitOperatorTest {   
    2.     public static void main(String[] args) {   
    3.         // 整型   
    4.         byte b1 = 10, b2 = 20;   
    5.         System.out.println("(byte)10 & (byte)20 = " + (b1 & b2));   
    6.         // 字符串型   
    7.         char c1 = 'a', c2 = 'A';   
    8.         System.out.println("(char)a | (char)A = " + (c1 | c2));   
    9.         // 基本类型的包装器类   
    10.         Long l1 = new Long(555), l2 = new Long(666);   
    11.         System.out.println("(Long)555 ^ (Long)666 = " + (l1 ^ l2));   
    12.         // 浮点型   
    13.         float f1 = 0.8F, f2 = 0.5F;   
    14.         // 编译报错,按位运算符不能用于浮点数类型   
    15.         // System.out.println("(float)0.8 & (float)0.5 = " + (f1 & f2));   
    16.     }   
    17. }  
    public class BitOperatorTest {
    	public static void main(String[] args) {
    		// 整型
    		byte b1 = 10, b2 = 20;
    		System.out.println("(byte)10 & (byte)20 = " + (b1 & b2));
    		// 字符串型
    		char c1 = 'a', c2 = 'A';
    		System.out.println("(char)a | (char)A = " + (c1 | c2));
    		// 基本类型的包装器类
    		Long l1 = new Long(555), l2 = new Long(666);
    		System.out.println("(Long)555 ^ (Long)666 = " + (l1 ^ l2));
    		// 浮点型
    		float f1 = 0.8F, f2 = 0.5F;
    		// 编译报错,按位运算符不能用于浮点数类型
    		// System.out.println("(float)0.8 & (float)0.5 = " + (f1 & f2));
    	}
    }
    

    运行结果:
    • (byte)10 & (byte)20 = 0
    • (char)a | (char)A = 97
    • (Long)555 ^ (Long)666 = 177
  • 逻辑运算符的运算遵循短路形式,而按位运算符则不是。所谓短路就是一旦能够确定运算的结果,就不再进行余下的运算。下面的例子更加直观地展现了短路与非短路的区别:
    Java代码 复制代码
    1. public class OperatorTest {   
    2.     public boolean leftCondition() {   
    3.         System.out.println("执行-返回值:false;方法:leftCondition()");   
    4.         return false;   
    5.     }   
    6.   
    7.     public boolean rightCondition() {   
    8.         System.out.println("执行-返回值:true;方法:rightCondition()");   
    9.         return true;   
    10.     }   
    11.   
    12.     public int leftNumber() {   
    13.         System.out.println("执行-返回值:0;方法:leftNumber()");   
    14.         return 0;   
    15.     }   
    16.   
    17.     public int rightNumber() {   
    18.         System.out.println("执行-返回值:1;方法:rightNumber()");   
    19.         return 1;   
    20.     }   
    21.   
    22.     public static void main(String[] args) {   
    23.         OperatorTest ot = new OperatorTest();   
    24.   
    25.         if (ot.leftCondition() && ot.rightCondition()) {   
    26.             // do something   
    27.         }   
    28.         System.out.println();   
    29.   
    30.         int i = ot.leftNumber() & ot.rightNumber();   
    31.     }   
    32. }  
    public class OperatorTest {
    	public boolean leftCondition() {
    		System.out.println("执行-返回值:false;方法:leftCondition()");
    		return false;
    	}
    
    	public boolean rightCondition() {
    		System.out.println("执行-返回值:true;方法:rightCondition()");
    		return true;
    	}
    
    	public int leftNumber() {
    		System.out.println("执行-返回值:0;方法:leftNumber()");
    		return 0;
    	}
    
    	public int rightNumber() {
    		System.out.println("执行-返回值:1;方法:rightNumber()");
    		return 1;
    	}
    
    	public static void main(String[] args) {
    		OperatorTest ot = new OperatorTest();
    
    		if (ot.leftCondition() && ot.rightCondition()) {
    			// do something
    		}
    		System.out.println();
    
    		int i = ot.leftNumber() & ot.rightNumber();
    	}
    }
    

    运行结果:
    • 执行-返回值:false;方法:leftCondition()
    • 执行-返回值:0;方法:leftNumber()
    • 执行-返回值:1;方法:rightNumber()

    运行结果已经很明显地显示了短路和非短路的区别,我们一起来分析一下产生这个运行结果的原因。当运行“ot.leftCondition() && ot.rightCondition()”时,由于方法leftCondition()返回了false,而对于“&&”运算来说,必须要运算符两边的值都为true时,运算结果才为true,因此这时候就可以确定,不论rightCondition()的返回值是什么,“ot.leftCondition() && ot.rightCondition()”的运算值已经可以确定是false,由于逻辑运算符是短路的形式,因此在这种情况下,rightCondition()方法就不再被运行了。
    而对于“ot.leftNumber() & ot.rightNumber()”,由于“leftNumber()”的返回值是0,对于按位运算符“&”来说,必须要运算符两边的值都是1时,运算结果才是1,因此这时不管“rightNumber()”方法的返回值是多少,“ot.leftNumber() & ot.rightNumber()”的运算结果已经可以确定是0,但是由于按位运算符是非短路的,所以rightNumber()方法还是被执行了。这就是短路与非短路的区别。
    [/list]
    移位运算符

    移位运算符和按位运算符一样,同属于位运算符,因此移位运算符的位指的也是二进制位。它包括以下几种:
    1. 左移位(<<):将操作符左侧的操作数向左移动操作符右侧指定的位数。移动的规则是在二进制的低位补0。
    2. 有符号右移位(>>):将操作符左侧的操作数向右移动操作符右侧指定的位数。移动的规则是,如果被操作数的符号为正,则在二进制的高位补0;如果被操作数的符号为负,则在二进制的高位补1。
    3. 无符号右移位(>>>):将操作符左侧的操作数向右移动操作符右侧指定的位数。移动的规则是,无论被操作数的符号是正是负,都在二进制位的高位补0。

    注意,移位运算符不存在“无符号左移位(<<<)”一说。与按位运算符一样,移位运算符可以用于byte、short、int、long等整数类型,和字符串类型char,但是不能用于浮点数类型float、double;当然,在Java5.0及以上版本中,移位运算符还可用于byte、short、int、long、char对应的包装器类。我们可以参照按位运算符的示例写一个测试程序来验证,这里就不再举例了。

    与按位运算符不同的是,移位运算符不存在短路不短路的问题。

    写到这里就不得不提及一个在面试题中经常被考到的题目:
    引用
    请用最有效率的方法计算出2乘以8等于几?

    这里所谓的最有效率,实际上就是通过最少、最简单的运算得出想要的结果,而移位是计算机中相当基础的运算了,用它来实现准没错了。左移位“<<”把被操作数每向左移动一位,效果等同于将被操作数乘以2,而2*8=(2*2*2*2),就是把2向左移位3次。因此最有效率的计算2乘以8的方法就是“2<<3”。

    最后,我们再来考虑一种情况,当要移位的位数大于被操作数对应数据类型所能表示的最大位数时,结果会是怎样呢?比如,1<<35=?呢?

    这里就涉及到移位运算的另外一些规则:
    1. byte、short、char在做移位运算之前,会被自动转换为int类型,然后再进行运算。
    2. byte、short、int、char类型的数据经过移位运算后结果都为int型。
    3. long经过移位运算后结果为long型。
    4. 在左移位(<<)运算时,如果要移位的位数大于被操作数对应数据类型所能表示的最大位数,那么先将要求移位数对该类型所能表示的最大位数求余后,再将被操作数移位所得余数对应的数值,效果不变。比如1<<35=1<<(35%32)=1<<3=8。
    5. 对于有符号右移位(>>)运算和无符号右移位(>>>)运算,当要移位的位数大于被操作数对应数据类型所能表示的最大位数时,那么先将要求移位数对该类型所能表示的最大位数求余后,再将被操作数移位所得余数对应的数值,效果不变。。比如100>>35=100>>(35%32)=100>>3=12。

    下面的测试代码验证了以上的规律:
    Java代码 复制代码
    1. public abstract class Test {   
    2.     public static void main(String[] args) {   
    3.         System.out.println("1 << 3 = " + (1 << 3));   
    4.         System.out.println("(byte) 1 << 35 = " + ((byte1 << (32 + 3)));   
    5.         System.out.println("(short) 1 << 35 = " + ((short1 << (32 + 3)));   
    6.         System.out.println("(char) 1 << 35 = " + ((char1 << (32 + 3)));   
    7.         System.out.println("1 << 35 = " + (1 << (32 + 3)));   
    8.         System.out.println("1L << 67 = " + (1L << (64 + 3)));   
    9.         // 此处需要Java5.0及以上版本支持   
    10.         System.out.println("new Integer(1) << 3 = " + (new Integer(1) << 3));   
    11.         System.out.println("10000 >> 3 = " + (10000 >> 3));   
    12.         System.out.println("10000 >> 35 = " + (10000 >> (32 + 3)));   
    13.         System.out.println("10000L >>> 67 = " + (10000L >>> (64 + 3)));   
    14.     }   
    15. }  
    public abstract class Test {
    	public static void main(String[] args) {
    		System.out.println("1 << 3 = " + (1 << 3));
    		System.out.println("(byte) 1 << 35 = " + ((byte) 1 << (32 + 3)));
    		System.out.println("(short) 1 << 35 = " + ((short) 1 << (32 + 3)));
    		System.out.println("(char) 1 << 35 = " + ((char) 1 << (32 + 3)));
    		System.out.println("1 << 35 = " + (1 << (32 + 3)));
    		System.out.println("1L << 67 = " + (1L << (64 + 3)));
    		// 此处需要Java5.0及以上版本支持
    		System.out.println("new Integer(1) << 3 = " + (new Integer(1) << 3));
    		System.out.println("10000 >> 3 = " + (10000 >> 3));
    		System.out.println("10000 >> 35 = " + (10000 >> (32 + 3)));
    		System.out.println("10000L >>> 67 = " + (10000L >>> (64 + 3)));
    	}
    }
    

    运行结果:
    1. 1 << 3 = 8
    2. (byte) 1 << 35 = 8
    3. (short) 1 << 35 = 8
    4. (char) 1 << 35 = 8
    5. 1 << 35 = 8
    6. 1L << 67 = 8
    7. new Integer(1) << 3 = 8
    8. 10000 >> 3 = 1250
    9. 10000 >> 35 = 1250
    10. 10000L >>> 67 = 1250


    下一期预告:JAVA面试题解惑系列(十二)——你真的了解数组吗?
  • 分享到:
    评论

    相关推荐

      北京衮雪技术有限公司Java笔试面试题

      【标题】"北京衮雪技术有限公司Java笔试面试题"揭示了这是一份针对应聘该公司Java开发岗位的考生准备的考题集。这份资料可能包含了Java编程的基础知识、进阶概念以及实际问题解决能力的考察。 【描述】"北京衮雪...

      sun认证SCJP——大企业笔试题来源

      ### sun认证SCJP——大企业笔试题来源 #### 背景介绍 在IT行业中,Sun Microsystems曾经是一家非常重要的公司,特别是在Java编程领域。Sun Microsystems提供了多种认证项目,包括Sun Certified Java Programmer ...

      北京第一纪信息技术有限公司Java笔试题

      【标题】:“北京第一纪信息技术有限公司Java笔试题”通常指的是该公司在招聘Java开发人员时使用的考试题目集,旨在测试应聘者的Java编程技能、基础知识以及问题解决能力。这类试题可能涵盖面向对象编程、数据结构与...

      java应聘人员考题

      Java应聘人员考题通常会涵盖广泛的...通过这两个文档——"奥尊JAVA开发人员招聘考题(笔试部分).doc"和"奥尊JAVA开发人员招聘考题(机试部分).doc",应聘者可以深入理解和实践这些Java核心概念,提升自己的竞争力。

      软件工程第三章实验报告.docx

      软件工程第三章实验报告.docx

      第三章-第八节通信礼仪.ppt

      第三章-第八节通信礼仪.ppt

      智能家居股份合作协议.docx

      智能家居股份合作协议.docx

      西门子S7-1200 PLC双轴定位控制在电池焊接中的应用与优化

      内容概要:本文详细介绍了基于西门子S7-1200 PLC的双轴定位控制系统在电池焊接项目中的应用。主要内容涵盖双轴定位算法的设计与实现,包括使用SCL语言编写的运动控制函数块,以及梯形图用于处理IO互锁和焊接时序控制。文中还讨论了威纶通触摸屏的界面设计,如动态元素映射、宏指令的应用,以及电气图纸的安全回路设计。此外,文章分享了多个调试技巧和注意事项,如加速度参数设置、伺服驱动器订货号核对、BOM清单管理等。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是熟悉PLC编程和触摸屏界面设计的专业人士。 使用场景及目标:适用于需要深入了解PLC编程、运动控制算法、触摸屏界面设计及电气图纸绘制的工程项目。目标是提高双轴定位控制系统的精度和稳定性,确保电池焊接的质量和安全性。 其他说明:文中提供了完整的工程文件包下载链接,并强调了在实际应用中需要注意的具体事项,如硬件配置检查、参数调整等。

      Simulink与Carsim联合仿真:基于PID与MPC的自适应巡航控制系统设计与实现

      内容概要:本文详细介绍了如何利用Simulink和Carsim进行联合仿真,实现基于PID(比例-积分-微分)和MPC(模型预测控制)的自适应巡航控制系统。首先阐述了Carsim参数设置的关键步骤,特别是cpar文件的配置,包括车辆基本参数、悬架系统参数和转向系统参数的设定。接着展示了Matlab S函数的编写方法,分别针对PID控制和MPC控制提供了详细的代码示例。随后讨论了Simulink中车辆动力学模型的搭建,强调了模块间的正确连接和参数设置的重要性。最后探讨了远程指导的方式,帮助解决仿真过程中可能出现的问题。 适合人群:从事汽车自动驾驶领域的研究人员和技术人员,尤其是对Simulink和Carsim有一定了解并希望深入学习联合仿真的从业者。 使用场景及目标:适用于需要验证和优化自适应巡航控制、定速巡航及紧急避撞等功能的研究和开发项目。目标是提高车辆行驶的安全性和舒适性,确保控制算法的有效性和可靠性。 其他说明:文中不仅提供了理论知识,还有大量实用的代码示例和避坑指南,有助于读者快速上手并应用于实际工作中。此外,还提到了远程调试技巧,进一步提升了仿真的成功率。

      基于MATLAB/Simulink的变压器励磁涌流仿真模型构建与应用

      内容概要:本文深入探讨了利用MATLAB/Simulink搭建变压器励磁涌流仿真模型的方法和技术。首先介绍了空载合闸励磁涌流仿真模型的搭建步骤,包括选择和配置电源模块、变压器模块以及设置相关参数。文中详细讲解了如何通过代码生成交流电压信号和设置变压器的变比,同时强调了铁芯饱和特性和合闸角控制的重要性。此外,还讨论了电源简化模型的应用及其优势,如使用受控电压源替代复杂电源模块。为了更好地理解和分析仿真结果,文章提供了绘制励磁涌流曲线的具体方法,并展示了如何提取和分析涌流特征量,如谐波含量和谐波畸变率。最后,文章指出通过调整电源和变压器参数,可以实现针对不同应用场景的定制化仿真,从而为实际工程应用提供理论支持和技术指导。 适合人群:从事电力系统研究、变压器设计及相关领域的科研人员、工程师和技术爱好者。 使用场景及目标:适用于希望深入了解变压器励磁涌流特性的研究人员,旨在帮助他们掌握MATLAB/Simulink仿真工具的使用技巧,提高对励磁涌流现象的理解和预测能力,进而优化继电保护系统的设计。 其他说明:文中不仅提供了详细的建模步骤和代码示例,还分享了一些实用的经验和技巧,如考虑磁滞效应对涌流的影响、避免理想断路器带来的误差等。这些内容有助于读者在实践中获得更加准确可靠的仿真结果。

      三菱FX3U PLC与Factory IO通讯仿真PID液位调节程序:低成本高效学习PID控制

      内容概要:本文详细介绍了利用三菱FX3U PLC与Factory IO通讯仿真进行PID液位调节的方法,旨在降低学习PID控制的成本和难度。文中首先指出了传统硬件学习PID控制面临的高昂成本和复杂接线问题,随后介绍了仿真程序的优势,包括PID配置参数、调节参数、自整定和手动整定的学习方法。接着阐述了所需的设备和软件环境,以及具体的代码示例和寄存器配置。最后,通过实例展示了如何通过仿真环境进行PID参数调整和测试,验证了该方案的有效性和实用性。 适合人群:初学者和有一定PLC基础的技术人员,特别是那些希望通过低成本方式学习PID控制的人群。 使用场景及目标:适用于希望在不购买昂贵硬件的情况下,快速掌握PID控制原理和技术的应用场景。目标是通过仿真环境,熟悉PID参数配置和调整,最终能够应用于实际工业控制系统中。 其他说明:本文不仅提供了理论指导,还给出了详细的实践步骤和代码示例,使读者能够在实践中更好地理解和掌握PID控制技术。同时,强调了仿真环境与实际项目的相似性,便于知识迁移。

      智慧城市树木二维码智能管理系统概述.docx

      智慧城市树木二维码智能管理系统概述.docx

      .NET框架下基于Oracle数据库的大型MES生产制造管理系统源码解析与应用

      内容概要:本文详细介绍了基于.NET框架和Oracle数据库构建的大型MES(制造执行系统)生产制造管理系统的源码结构及其技术特点。该系统采用了BS架构,适用于Web端和WPF客户端,涵盖了从数据库设计、业务逻辑处理到前端展示等多个方面。文中不仅提供了具体的代码示例,还深入剖析了系统的技术难点,如Oracle数据库的高效连接方式、多线程处理、实时数据推送以及高级特性(如分区表、压缩技术和批量操作)的应用。此外,作者还分享了一些关于系统部署和维护的经验。 适合人群:主要面向拥有五年以上.NET开发经验的专业人士,特别是那些对Oracle数据库有一定了解并且参与过大中型项目开发的技术人员。 使用场景及目标:①帮助开发者深入了解MES系统的工作原理和技术实现;②为现有的MES系统提供优化思路;③作为学习资料,用于掌握.NET框架与Oracle数据库的最佳实践。 其他说明:尽管缺少完整的安装说明和数据库备份文件,但凭借丰富的代码片段和技术细节,这套源码仍然是一个宝贵的学习资源。同时,文中提到的一些技术点也可以应用于其他类型的工业控制系统或企业管理信息系统。

      lesson6_点阵.zip

      lesson6_点阵.zip

      jicmp(OpenNMS所需重要组件)

      ‌OpenNMS 依赖组件 jicmp 的完整解析与安装指南‌ ‌一、jicmp 的核心作用‌ ‌ICMP 协议支持‌ jicmp(Java Interface for ICMP)是 OpenNMS 实现网络设备可达性检测(如 Ping)的关键组件,通过原生代码高效处理 ICMP 报文,替代纯 Java 实现的性能瓶颈17。 ‌依赖版本要求‌:OpenNMS 33.1.5 需 jicmp >= 3.0.0,以支持 IPv6 及多线程优化7。 ‌与 jicmp6 的协同‌ jicmp6 是 jicmp 的扩展组件,专用于 IPv6 网络环境检测,二者共同构成 OpenNMS 网络监控的底层通信基础78。 ‌二、jicmp 安装问题的根源‌ ‌仓库版本不匹配‌ OpenNMS 官方旧版仓库(如 opennms-repo-stable-rhel6)仅提供 jicmp-2.0.5 及更早版本,无法满足新版 OpenNMS 的依赖需求78。 ‌典型错误‌:Available: jicmp-2.0.5-1.el6.i386,但 Requires: jicmp >= 3.0.07。 ‌手动编译未注册到包管理器‌ 手动编译的 jicmp 未生成 RPM 包,导致 yum 无法识别已安装的依赖,仍尝试从仓库拉取旧版本57。 ‌三、解决方案:正确安装 jicmp 3.0‌ ‌通过源码编译生成 RPM 包‌ bash Copy Code # 安装编译工具链 yum install -y rpm-build checkinstall gcc-c++ autoconf automake libtool # 编译并生成 jicmp-3.0.0 RPM wget https://sourceforge.net/projects/opennms/files/JICMP/stable-3.x/j

      机械CAD零件图.ppt

      机械CAD零件图.ppt

      制冷站智能群控管理系统的技术实现与优化

      内容概要:本文详细介绍了制冷站智能群控管理系统的构成及其核心技术实现。首先阐述了系统的四大组成部分:环境感知模块、数据处理模块、决策控制模块以及设备控制模块。接着通过具体的Python代码示例展示了如何利用MQTT协议进行设备间的通信,实现了温度控制等功能。此外,文中还探讨了数据处理中的噪声过滤方法、设备控制中的状态锁定机制、以及采用强化学习进行能效优化的具体案例。最后展望了未来的发展方向,如引入能量管理和AI集成等。 适合人群:从事制冷站自动化控制领域的工程师和技术人员,尤其是对智能群控管理系统感兴趣的从业者。 使用场景及目标:适用于希望提升制冷站自动化水平的企业和个人。目标在于提高系统的稳定性和效率,减少人为干预,实现节能减排。 其他说明:文章不仅提供了理论性的介绍,还有大量的实战经验和代码片段分享,有助于读者更好地理解和应用相关技术。

      CNN卷积神经网络FPGA加速器实现:从软件到硬件的深度学习部署

      内容概要:本文详细介绍了将卷积神经网络(CNN)从软件到硬件的全过程部署,特别是在FPGA上的实现方法。首先,作者使用TensorFlow 2构建了一个简单的CNN模型,并通过Python代码实现了模型的训练和权值导出。接着,作者用Verilog手写了CNN加速器的硬件代码,展示了如何通过参数化配置优化加速效果。硬件部分采用了滑动窗口和流水线结构,确保高效执行卷积操作。此外,文中还讨论了硬件调试过程中遇到的问题及其解决方案,如ReLU激活函数的零值处理和权值存储顺序的对齐问题。最后,作者强调了参数化设计的重要性,使得硬件可以在速度和面积之间灵活调整。 适合人群:对深度学习和FPGA感兴趣的开发者,尤其是有一定编程基础和技术背景的研究人员。 使用场景及目标:适用于希望深入了解CNN算法硬件实现的人群,目标是掌握从软件到硬件的完整部署流程,以及如何通过FPGA加速深度学习任务。 其他说明:文中提供了详细的代码片段和调试经验,有助于读者更好地理解和实践。同时,项目代码可在GitHub上获取,方便进一步研究和改进。

      无人驾驶车辆高速MPC控制:基于MATLAB与CarSim的双移线场景复现

      内容概要:本文详细介绍了无人驾驶车辆高速MPC(模型预测控制)控制系统的复现过程,主要涉及MATLAB和CarSim软件工具的应用。作者通过调整caraim文件、构建Simulink控制逻辑以及优化MPC算法,将原有的直线跟车场景成功转换为双移线场景。文中不仅展示了具体的技术实现步骤,如路径点设置、权重矩阵调整、采样时间对齐等,还分享了调试过程中遇到的问题及其解决方案,如参数不匹配、模型不收敛等。最终实现了车辆在虚拟环境中按预定双移线轨迹行驶的目标。 适合人群:从事无人驾驶车辆研究和技术开发的专业人士,尤其是对MPC控制算法感兴趣的工程师。 使用场景及目标:适用于需要深入了解无人驾驶车辆控制系统的设计与实现的研究人员和技术开发者。目标是帮助读者掌握如何利用MATLAB和CarSim进行无人驾驶车辆的模拟实验,特别是在高速场景下的双移线控制。 其他说明:文章强调了MPC在高速场景下的挑战性和调参技巧,提供了宝贵的实践经验。同时提醒读者注意环境配置、控制器核心代码解析以及联合仿真可能出现的问题。

      监控场景下基于CLIP的细粒度目标检测方法.pdf

      监控场景下基于CLIP的细粒度目标检测方法.pdf

    Global site tag (gtag.js) - Google Analytics