- 浏览: 41862 次
- 性别:
- 来自: 大连
最新评论
讨论一
什么是野指针?
一个母亲有两个小孩(两个指针),一个在厨房,一个在卧室,(属于不同的代码块,其生存期不同)母亲让在厨房的小孩带一块蛋糕(指针指向的对象)给在卧室的小孩,这样在卧室的孩子才肯写作业。但这个在厨房的小孩比较淘气,他在走出厨房时自己将蛋糕吃了,没能带出来。而在卧室的没有吃到蛋糕,所以不肯完成他的作业。结果母亲却不知道卧室的孩子没有吃到蛋糕,还以为作业完了。结果第二天她就被老师召唤到办公室了。事情麻烦了。
这样,那个在卧室的孩子就是野指针了,因为他没有得到应得的蛋糕,不能完成母亲交给他的作业。
这就是c中所讲的野指针。上面的小剧本不过演示了一种最基本的野指针的形成过程。更容易出现的情形是coder在编码时,大意之下使用了已经free过的指针。
对于年轻点的经验欠缺的coder来说是比较容易犯的错误,经验老到的程序员或者慎重采取成对编程的形式避免这种失误,或者使用引用计数器防止形成野指针。
总之,在c中,野指针也许性子野,但是控制起来也是有章可循。然而事情在c++中出现了变化。
coder们面临更大的麻烦了。c++程序员无可避免的要写很多这样那样的类。谁让c++是面向对象的呢?
我们在写类的时候难免要用new给类的数据成员分配内存。这本来没什么,动态分配内存是一种很常见的基本操作,我们在学数据结构时经常这么做,不是么?
但是伙计,事情并非这么简单。类是一种高级的用户自定义数据类型,看起来和结构、枚举这样的用户自定义类型没啥太大差别。如果你这样认为....?那你会死的很惨。类太复杂了,普通情况下使用类的对象并没有太大的问题,但是,当你要复制一个对象时,问题就来了。
比如我们知道,你要用一个对象初始化另一个对象时,c++是按位进行拷贝的,即在目标对象里创建了初始化对象的一个完全相同的拷贝。这在多数情况下已经足够了。但是,当你的类在创建时为每个对象分配内存,也就是说类中有new操作。当你的对象创建好后,类也为对象分配了一块内存。如果你用这个对象去初始化另一个对象时,被初始化的对象和初始化的对象完全一样。这意味着,他们使用同一块内存,而不是重新为被初始化的对象分配内存。
这样麻烦就大了。如果一个对象销毁了,那么分配的内存也就销毁了(别忘了,类是有析构函数的,它负责在对象销毁时,释放动态分配的内存。难道你说你不在类中写上析构部分?那么可怜的孩子,那你就走向了另一个深渊,当你的程序运行数小时之后,系统会告诉你,内存不够用了。想象一下把你的程序用在腾讯的服务器上),另一个对象就残缺不全了,这就像一对连体婴儿,他们共用了一部分器官,心脏或者肝脏。要救活一个,就牺牲了另一个。一个得病了,另一个也要遭殃。
可以说,这就是c++中更加变态的野指针。
什么?你说我不用对象初始化对象?那么我们会不会将一个对象作为变元传递给函数呢?我们很多时候都这样做。有时我们不得不将对象按值传递给一个函数,但是你要知道,按值传递是什么意思?它的意思就是,把实参的一个拷贝传递给函数。这和刚才的初始化没什么两样,按位拷贝,函数体内的对象与外面的对象共用一块内存,即便在函数中的对象没有对这块内存进行过操作,但是当函数结束时。。。。析构函数将会被调用......
还有一种与之相反的情况......, 当你想要把一个在函数内的对象值返回给外面的对象时,这时候,会自动产生一个临时对象,由它容纳函数的返回值,并在函数结束时把结果传给目标。那么这个临时对象迅速的被创建,并被迅速的释放。。。一块内存被释放了两次。其后果是不可预见的。
当你把一个对象的值赋给另一个对象时,如果你没有重载赋值运算符,那么也会导致按位拷贝。最终产生一个野指针(一个隐藏在类内的毒瘤),或者释放同一块内存多次。
看到了么?害怕了么?是不是感到C++到处都是陷阱呢?不但有陷阱,到处都是危险品。所有c中的疑难问题,到了c++就成了一般问题了。好了不废话了,我们继续讲讲解决之道。
对于最后的这种赋值的情况,我们只有通过重载赋值运算符才能解决,也就是避免按位拷贝。
至于前面的都属于初始化,概括下来就是三种情况:
1.当一个对象初始化另一个对象时,例如在声明中;
2.把所创建的对象拷贝(按值)传递给一个函数时;
3.生成临时对象时,最常见的就是函数的返回值。
解决初始化时的按位拷贝问题,我们通过创建拷贝构造函数来解决。
基本的拷贝构造函数形式为:
classname (const classname &o)
{
//body here
}
拷贝构造函数就是针对这个问题而设计的。
讨论二
野指针,也就是指向不可用内存区域的指针。通常对这种指针进行操作的话,将会使程序发生不可预知的错误。
“野指针”不是NULL指针,是指向“垃圾”内存的指针。人们一般不会错用NULL指针,因为用if语句很容易判断。但是“野指针”是很危险的,if语句对它不起作用。野指针的成因主要有两种:
(1)、指针变量没有被初始化。任何指针变量刚被创建时不会自动成为NULL指针,它的缺省值是随机的,它会乱指一气。所以,指针变量在创建的同时应当被初始化,要么将指针设置为NULL,要么让它指向合法的内存。
(2)、指针p被free或者delete之后,没有置为NULL,让人误以为p是个合法的指针。别看free和delete的名字恶狠狠的(尤其是delete),它们只是把指针所指的内存给释放掉,但并没有把指针本身干掉。通常会用语句if (p != NULL)进行防错处理。很遗憾,此时if语句起不到防错作用,因为即便p不是NULL指针,它也不指向合法的内存块。例:
char *p = (char *) malloc(100);
strcpy(p, “hello”);
free(p); // p 所指的内存被释放,但是p所指的地址仍然不变
if(p != NULL) // 没有起到防错作用
strcpy(p, “world”); // 出错
另外一个要注意的问题:不要返回指向栈内存的指针或引用,因为栈内存在函数结束时会被释放。
首先请诸位看以下一段“危险”的C++代码:
void function( void )
{
char* str = new char[100];
delete[] str;
// Do something
strcpy( str, "Dangerous!!" );
}
之所以说其危险,是因为这是一段完全合乎语法的代码,编译的时候完美得一点错误也不会有,然而当运行到strcpy一句的时候,问题就会出现,因为在这之前,str的空间已经被delete掉了,所以strcpy当然不会成功。对于这种类似的情况,在林锐博士的书中有过介绍,称其为“野指针”。
那么,诸位有没有见过安全的“野指针”呢?下面请看我的一段C++程序,灵感来自CSDN上的一次讨论。在此,我只需要C++的“类”,C++的其余一概不需要,因此我没有使用任何的C++标准库,连输出都是用printf完成的。
#include <stdio.h>
class CTestClass
{
public:
CTestClass( void );
int m_nInteger;
void Function( void );
};
CTestClass::CTestClass( void )
{
m_nInteger = 0;
}
void CTestClass::Function( void )
{
printf( "This is a test function.\n" );
}
void main( void )
{
CTestClass* p = new CTestClass;
delete p;
p->Function();
}
OK,程序到此为止,诸位可以编译运行一下看看结果如何。你也许会惊异地发现:没有任何的出错信息,屏幕上竟然乖乖地出现了这么一行字符串:
This is a test function.
奇怪吗?不要急,还有更奇怪的呢,你可以把主函数中加上一句更不可理喻的:
((CTestClass*)NULL)->Function();
这仍然没有问题!!
我这还有呢,哈哈。现在你在主函数中这么写,倘说上一句不可理喻,那么以下可以叫做无法无天了:
int i = 888;
CTestClass* p2 = (CTestClass*)&i;
p2->Function();
你看到了什么?是的,“This is a test function.”如约而至,没有任何的错误。
你也许要问为什么,但是在我解答你之前,请你在主函数中加入如下代码:
printf( "%d, %d", sizeof( CTestClass ), sizeof( int ) );
这时你就会看到真相了:输出结果是——得到的两个十进制数相等。对,由sizeof得到的CTestClass的大小其实就是它的成员m_nInteger的大小。亦即是说,对于CTestClass的一个实例化的对象(设为a)而言,只有a.m_nInteger是属于a这个对象的,而a.Function()却是属于CTestClass这个类的。所以以上看似危险的操作其实都是可行且无误的。
现在你明白为什么我的“野指针”是安全的了,那么以下我所列出的,就是在什么情况下,我的“野指针”不安全:
(1)在成员函数Function中对成员变量m_nInteger进行操作;
(2)将成员函数Function声明为虚函数(virtual)。
以上的两种情况,目的就是强迫野指针使用属于自己的东西导致不安全,比如第一种情况中操作本身的m_nInteger,第二种情况中变为虚函数的Function成为了属于对象的函数(这一点可以从sizeof看出来)。
其实,安全的野指针在实际的程序设计中是几乎毫无用处的。我写这一篇文章,意图并不是像孔乙己一样去琢磨回字有几种写法,而是想通过这个小例子向诸位写明白C++的对象实例化本质,希望大家不但要明白what和how,更要明白why。李马二零零三年二月二十日作于自宅。
关于成员函数CTestClass::Function的补充说明 :
(1)这个函数是一个普通的成员函数,它在编译器的处理下,会成为类似如下的代码:
void Function( const CTestClass * this ) // ①
{
printf("This is a test function.\n");
}
那么p->Function();一句将被编译器解释为:
Function( p );
这就是说,普通的成员函数必须经由一个对象来调用(经由this指针激活②)。那么由上例的delete之后,p指针将会指向一个无效的地址,然而p本身是一个有效的变量,因此编译能够通过。并且在编译通过之后,由于CTestClass::Function的函数体内并未对这个传入的this指针进行任何的操作,所以在这里,“野指针”便成了一个看似安全的东西。
然而若这样改写CTestClass::Function:
void CTestClass::Function( void )
{
m_nInteger = 0;
}
那么它将会被编译器解释为:
void Function( const CTestClass * this )
{
this->m_nInteger = 0;
}
你看到了,在p->Function();的时候,系统将会尝试在传入的这个无效地址中寻找m_nInteger成员并将其赋值为0,剩下的我不用说了——非法操作出现了。
至于virtual虚函数,如果在类定义之中将CTestClass声明为虚函数:
class CTestClass
{
public:
// ...
virtual void Function( void );
};
那么C++在构建CTestClass类的对象模型时,将会为之分配一个虚函数表vptr(可以从sizeof看出来)。vptr是一个指针,它指向一个函数指针的数组,数组中的成员即是在CTestClass中声明的所有虚函数。在调用虚函数的时候,必须经由这个vptr,这也就是为什么虚函数较之普通成员函数要消耗一些成本的缘故。以本例而言,p->Function();一句将被编译器解释为:
(*p->vptr[1])( p ); // 调用vptr表中索引号为1的函数(即Function)③
上面的代码已经说明了,如果p指向一个无效的地址,那么必然会有非法操作。
备注:
①关于函数的命名,我采用了原名而没有变化。事实上编译器为了避免函数重载造成的重名情况,会对函数的名字进行处理,使之成为独一无二的名称。
②将成员函数声明为static,可以使成员函数不经由this指针便可调用。
③vptr表中,索引号0为类的type_info。
讨论三:
先上代码,传说中的腾讯笔试题:
#include 'stdafx.h'
#include <iostream>
#include <string>
using std::cout;
using std::endl;
class Test
{
public:
Test()
{
a = 9;
delete this;
}
~Test()
{
cout<<'destructor called!'<<endl;
}
int a;
};
int _tmain(int argc, _TCHAR* argv[])
{
Test *mytest = new Test(); //mytest的值和this指针的值是一样一样的
cout<<mytest->a<<endl;
return 0;
}
请问运行结果如何?
常见的回答,程序会报错,通不过编译。或者说编译通过,运行时报错,因为居然Test类的构造函数删除了this指针,相当于调用了Test类的析构函数,对象不再存在,所以访问成员变量a的时候出错。
实际的结果是,程序可以通过编译,运行时不报错,只不过打印出a的值不是9,而是内存中一个随机垃圾值。
如果想让程序运行时出错,可以这样写main函数:
Test mytest;
cout<<mytest.a<<endl;
return 0;
这样mytest是局部对象,内存在栈上分配,delete this试图释放栈上的内存,因此会报错。
下面的代码演示了这种情况。
int a = 6;
delete &a; //运行时报错
继续上面的讨论,野指针是指在delete了一个指向动态对象的指针后,没有及时置为NULL,如果对该指针进行解除引用,就会产生垃圾值。
一个铁的纪律,彻底杜绝野指针(这道题没办法,this不能做左值,况且即使改了this,mytest也是改不了的,不再考虑范围)delete了一个指向动态对象的指针后,及时置为NULL。相应的,对指针进行解除引用前,判断指针是否为NULL。
什么是野指针?
一个母亲有两个小孩(两个指针),一个在厨房,一个在卧室,(属于不同的代码块,其生存期不同)母亲让在厨房的小孩带一块蛋糕(指针指向的对象)给在卧室的小孩,这样在卧室的孩子才肯写作业。但这个在厨房的小孩比较淘气,他在走出厨房时自己将蛋糕吃了,没能带出来。而在卧室的没有吃到蛋糕,所以不肯完成他的作业。结果母亲却不知道卧室的孩子没有吃到蛋糕,还以为作业完了。结果第二天她就被老师召唤到办公室了。事情麻烦了。
这样,那个在卧室的孩子就是野指针了,因为他没有得到应得的蛋糕,不能完成母亲交给他的作业。
这就是c中所讲的野指针。上面的小剧本不过演示了一种最基本的野指针的形成过程。更容易出现的情形是coder在编码时,大意之下使用了已经free过的指针。
对于年轻点的经验欠缺的coder来说是比较容易犯的错误,经验老到的程序员或者慎重采取成对编程的形式避免这种失误,或者使用引用计数器防止形成野指针。
总之,在c中,野指针也许性子野,但是控制起来也是有章可循。然而事情在c++中出现了变化。
coder们面临更大的麻烦了。c++程序员无可避免的要写很多这样那样的类。谁让c++是面向对象的呢?
我们在写类的时候难免要用new给类的数据成员分配内存。这本来没什么,动态分配内存是一种很常见的基本操作,我们在学数据结构时经常这么做,不是么?
但是伙计,事情并非这么简单。类是一种高级的用户自定义数据类型,看起来和结构、枚举这样的用户自定义类型没啥太大差别。如果你这样认为....?那你会死的很惨。类太复杂了,普通情况下使用类的对象并没有太大的问题,但是,当你要复制一个对象时,问题就来了。
比如我们知道,你要用一个对象初始化另一个对象时,c++是按位进行拷贝的,即在目标对象里创建了初始化对象的一个完全相同的拷贝。这在多数情况下已经足够了。但是,当你的类在创建时为每个对象分配内存,也就是说类中有new操作。当你的对象创建好后,类也为对象分配了一块内存。如果你用这个对象去初始化另一个对象时,被初始化的对象和初始化的对象完全一样。这意味着,他们使用同一块内存,而不是重新为被初始化的对象分配内存。
这样麻烦就大了。如果一个对象销毁了,那么分配的内存也就销毁了(别忘了,类是有析构函数的,它负责在对象销毁时,释放动态分配的内存。难道你说你不在类中写上析构部分?那么可怜的孩子,那你就走向了另一个深渊,当你的程序运行数小时之后,系统会告诉你,内存不够用了。想象一下把你的程序用在腾讯的服务器上),另一个对象就残缺不全了,这就像一对连体婴儿,他们共用了一部分器官,心脏或者肝脏。要救活一个,就牺牲了另一个。一个得病了,另一个也要遭殃。
可以说,这就是c++中更加变态的野指针。
什么?你说我不用对象初始化对象?那么我们会不会将一个对象作为变元传递给函数呢?我们很多时候都这样做。有时我们不得不将对象按值传递给一个函数,但是你要知道,按值传递是什么意思?它的意思就是,把实参的一个拷贝传递给函数。这和刚才的初始化没什么两样,按位拷贝,函数体内的对象与外面的对象共用一块内存,即便在函数中的对象没有对这块内存进行过操作,但是当函数结束时。。。。析构函数将会被调用......
还有一种与之相反的情况......, 当你想要把一个在函数内的对象值返回给外面的对象时,这时候,会自动产生一个临时对象,由它容纳函数的返回值,并在函数结束时把结果传给目标。那么这个临时对象迅速的被创建,并被迅速的释放。。。一块内存被释放了两次。其后果是不可预见的。
当你把一个对象的值赋给另一个对象时,如果你没有重载赋值运算符,那么也会导致按位拷贝。最终产生一个野指针(一个隐藏在类内的毒瘤),或者释放同一块内存多次。
看到了么?害怕了么?是不是感到C++到处都是陷阱呢?不但有陷阱,到处都是危险品。所有c中的疑难问题,到了c++就成了一般问题了。好了不废话了,我们继续讲讲解决之道。
对于最后的这种赋值的情况,我们只有通过重载赋值运算符才能解决,也就是避免按位拷贝。
至于前面的都属于初始化,概括下来就是三种情况:
1.当一个对象初始化另一个对象时,例如在声明中;
2.把所创建的对象拷贝(按值)传递给一个函数时;
3.生成临时对象时,最常见的就是函数的返回值。
解决初始化时的按位拷贝问题,我们通过创建拷贝构造函数来解决。
基本的拷贝构造函数形式为:
classname (const classname &o)
{
//body here
}
拷贝构造函数就是针对这个问题而设计的。
讨论二
野指针,也就是指向不可用内存区域的指针。通常对这种指针进行操作的话,将会使程序发生不可预知的错误。
“野指针”不是NULL指针,是指向“垃圾”内存的指针。人们一般不会错用NULL指针,因为用if语句很容易判断。但是“野指针”是很危险的,if语句对它不起作用。野指针的成因主要有两种:
(1)、指针变量没有被初始化。任何指针变量刚被创建时不会自动成为NULL指针,它的缺省值是随机的,它会乱指一气。所以,指针变量在创建的同时应当被初始化,要么将指针设置为NULL,要么让它指向合法的内存。
(2)、指针p被free或者delete之后,没有置为NULL,让人误以为p是个合法的指针。别看free和delete的名字恶狠狠的(尤其是delete),它们只是把指针所指的内存给释放掉,但并没有把指针本身干掉。通常会用语句if (p != NULL)进行防错处理。很遗憾,此时if语句起不到防错作用,因为即便p不是NULL指针,它也不指向合法的内存块。例:
char *p = (char *) malloc(100);
strcpy(p, “hello”);
free(p); // p 所指的内存被释放,但是p所指的地址仍然不变
if(p != NULL) // 没有起到防错作用
strcpy(p, “world”); // 出错
另外一个要注意的问题:不要返回指向栈内存的指针或引用,因为栈内存在函数结束时会被释放。
首先请诸位看以下一段“危险”的C++代码:
void function( void )
{
char* str = new char[100];
delete[] str;
// Do something
strcpy( str, "Dangerous!!" );
}
之所以说其危险,是因为这是一段完全合乎语法的代码,编译的时候完美得一点错误也不会有,然而当运行到strcpy一句的时候,问题就会出现,因为在这之前,str的空间已经被delete掉了,所以strcpy当然不会成功。对于这种类似的情况,在林锐博士的书中有过介绍,称其为“野指针”。
那么,诸位有没有见过安全的“野指针”呢?下面请看我的一段C++程序,灵感来自CSDN上的一次讨论。在此,我只需要C++的“类”,C++的其余一概不需要,因此我没有使用任何的C++标准库,连输出都是用printf完成的。
#include <stdio.h>
class CTestClass
{
public:
CTestClass( void );
int m_nInteger;
void Function( void );
};
CTestClass::CTestClass( void )
{
m_nInteger = 0;
}
void CTestClass::Function( void )
{
printf( "This is a test function.\n" );
}
void main( void )
{
CTestClass* p = new CTestClass;
delete p;
p->Function();
}
OK,程序到此为止,诸位可以编译运行一下看看结果如何。你也许会惊异地发现:没有任何的出错信息,屏幕上竟然乖乖地出现了这么一行字符串:
This is a test function.
奇怪吗?不要急,还有更奇怪的呢,你可以把主函数中加上一句更不可理喻的:
((CTestClass*)NULL)->Function();
这仍然没有问题!!
我这还有呢,哈哈。现在你在主函数中这么写,倘说上一句不可理喻,那么以下可以叫做无法无天了:
int i = 888;
CTestClass* p2 = (CTestClass*)&i;
p2->Function();
你看到了什么?是的,“This is a test function.”如约而至,没有任何的错误。
你也许要问为什么,但是在我解答你之前,请你在主函数中加入如下代码:
printf( "%d, %d", sizeof( CTestClass ), sizeof( int ) );
这时你就会看到真相了:输出结果是——得到的两个十进制数相等。对,由sizeof得到的CTestClass的大小其实就是它的成员m_nInteger的大小。亦即是说,对于CTestClass的一个实例化的对象(设为a)而言,只有a.m_nInteger是属于a这个对象的,而a.Function()却是属于CTestClass这个类的。所以以上看似危险的操作其实都是可行且无误的。
现在你明白为什么我的“野指针”是安全的了,那么以下我所列出的,就是在什么情况下,我的“野指针”不安全:
(1)在成员函数Function中对成员变量m_nInteger进行操作;
(2)将成员函数Function声明为虚函数(virtual)。
以上的两种情况,目的就是强迫野指针使用属于自己的东西导致不安全,比如第一种情况中操作本身的m_nInteger,第二种情况中变为虚函数的Function成为了属于对象的函数(这一点可以从sizeof看出来)。
其实,安全的野指针在实际的程序设计中是几乎毫无用处的。我写这一篇文章,意图并不是像孔乙己一样去琢磨回字有几种写法,而是想通过这个小例子向诸位写明白C++的对象实例化本质,希望大家不但要明白what和how,更要明白why。李马二零零三年二月二十日作于自宅。
关于成员函数CTestClass::Function的补充说明 :
(1)这个函数是一个普通的成员函数,它在编译器的处理下,会成为类似如下的代码:
void Function( const CTestClass * this ) // ①
{
printf("This is a test function.\n");
}
那么p->Function();一句将被编译器解释为:
Function( p );
这就是说,普通的成员函数必须经由一个对象来调用(经由this指针激活②)。那么由上例的delete之后,p指针将会指向一个无效的地址,然而p本身是一个有效的变量,因此编译能够通过。并且在编译通过之后,由于CTestClass::Function的函数体内并未对这个传入的this指针进行任何的操作,所以在这里,“野指针”便成了一个看似安全的东西。
然而若这样改写CTestClass::Function:
void CTestClass::Function( void )
{
m_nInteger = 0;
}
那么它将会被编译器解释为:
void Function( const CTestClass * this )
{
this->m_nInteger = 0;
}
你看到了,在p->Function();的时候,系统将会尝试在传入的这个无效地址中寻找m_nInteger成员并将其赋值为0,剩下的我不用说了——非法操作出现了。
至于virtual虚函数,如果在类定义之中将CTestClass声明为虚函数:
class CTestClass
{
public:
// ...
virtual void Function( void );
};
那么C++在构建CTestClass类的对象模型时,将会为之分配一个虚函数表vptr(可以从sizeof看出来)。vptr是一个指针,它指向一个函数指针的数组,数组中的成员即是在CTestClass中声明的所有虚函数。在调用虚函数的时候,必须经由这个vptr,这也就是为什么虚函数较之普通成员函数要消耗一些成本的缘故。以本例而言,p->Function();一句将被编译器解释为:
(*p->vptr[1])( p ); // 调用vptr表中索引号为1的函数(即Function)③
上面的代码已经说明了,如果p指向一个无效的地址,那么必然会有非法操作。
备注:
①关于函数的命名,我采用了原名而没有变化。事实上编译器为了避免函数重载造成的重名情况,会对函数的名字进行处理,使之成为独一无二的名称。
②将成员函数声明为static,可以使成员函数不经由this指针便可调用。
③vptr表中,索引号0为类的type_info。
讨论三:
先上代码,传说中的腾讯笔试题:
#include 'stdafx.h'
#include <iostream>
#include <string>
using std::cout;
using std::endl;
class Test
{
public:
Test()
{
a = 9;
delete this;
}
~Test()
{
cout<<'destructor called!'<<endl;
}
int a;
};
int _tmain(int argc, _TCHAR* argv[])
{
Test *mytest = new Test(); //mytest的值和this指针的值是一样一样的
cout<<mytest->a<<endl;
return 0;
}
请问运行结果如何?
常见的回答,程序会报错,通不过编译。或者说编译通过,运行时报错,因为居然Test类的构造函数删除了this指针,相当于调用了Test类的析构函数,对象不再存在,所以访问成员变量a的时候出错。
实际的结果是,程序可以通过编译,运行时不报错,只不过打印出a的值不是9,而是内存中一个随机垃圾值。
如果想让程序运行时出错,可以这样写main函数:
Test mytest;
cout<<mytest.a<<endl;
return 0;
这样mytest是局部对象,内存在栈上分配,delete this试图释放栈上的内存,因此会报错。
下面的代码演示了这种情况。
int a = 6;
delete &a; //运行时报错
继续上面的讨论,野指针是指在delete了一个指向动态对象的指针后,没有及时置为NULL,如果对该指针进行解除引用,就会产生垃圾值。
一个铁的纪律,彻底杜绝野指针(这道题没办法,this不能做左值,况且即使改了this,mytest也是改不了的,不再考虑范围)delete了一个指向动态对象的指针后,及时置为NULL。相应的,对指针进行解除引用前,判断指针是否为NULL。
发表评论
-
c++操作符优先级总结
2013-12-03 14:47 791优先级从上到下依次递减,最上面具有最高的优先级,逗号操作符具有 ... -
Qt状态机实例
2013-12-03 14:01 1096#include <QApplication> ... -
c++数据类型的隐形转换
2013-09-02 09:51 1676(1)隐式转换发生的时机:当传递给操作符或者函数的参数与指定类 ... -
STL学习(转)
2012-08-28 15:38 1438STL就是Standard Template Libr ... -
STL详解
2012-08-28 14:33 1746STL概述 STL的一个重要 ... -
c++的三种继承(转)
2012-08-23 18:47 1078http://blog.csdn.net/wang_lime ... -
MFC OpenGL标签云 (转)
2012-08-22 11:21 1262初识标签云是在去年年末,一看到这个应用我就特别感兴趣。还记 ... -
MFC中ADO方式操作数据库实例(转)
2012-08-22 11:12 2439连接ACCESS为例: //头文件 #pragma on ... -
派生类的构造函数(转)
2012-08-20 18:05 986派生类的数据成员由所 ... -
元算符重载时友元函数和成员函数的选择
2012-08-18 20:14 1409一般情况下,单目运算符最好重载为类的成员函数;双目运算符则最好 ... -
C++面试题(转)
2012-08-16 17:25 8141.是不是一个父类写了一个virtual 函数,如果子类覆盖它 ... -
8皇后问题c++的递归实现
2012-08-16 16:18 1493最近用C++递归形式实现了8皇后问题,可能效率有点低 #i ... -
c++实现的一些排序算法
2012-08-15 11:37 1381最近用c++简单实现了一些排序算法,记下来,以便以后用到 ... -
mfc 常用控件使用方法及常见数据类型转换
2012-04-18 20:31 2093最近做了几个mfc小程序,想把我们经常用到而又经常忘记的的小知 ...
相关推荐
### C野指针处理 #### 一、野指针的概念 野指针,是指向不可用内存区域的指针。这种指针的操作可能导致程序发生不可预知的错误,例如程序崩溃、数据损坏等严重后果。 #### 二、野指针与NULL指针的区别 野指针...
杜绝野指针.docx杜绝野指针.docx
### NULL指针、零指针、野指针定义及区别 #### 一、空指针、NULL指针、零指针 ##### 1.1 什么是空指针常量 在计算机编程中,特别是C/C++语言中,空指针常量是指一系列表示“无指向”或“未指向任何有效地址”的值...
然而,不当的指针使用也会导致程序中的错误,其中最常见的就是野指针问题。本文将详细探讨野指针的定义、产生的原因以及如何避免这些问题。 #### 二、野指针定义 野指针是指向不确定或无效内存区域的指针。与NULL...
内存泄漏和野指针是C/C++编程中两个常见的错误,理解它们可以帮助程序员编写更高效、更稳定的程序。 **内存泄漏** 内存泄漏是指程序在动态分配内存后,未能正确地释放不再使用的内存区域。当一个内存块被分配但...
5. **空指针和野指针**:理解NULL指针的含义和使用,避免野指针导致的程序错误。 6. **指针的类型安全**:如何通过类型安全的方式使用指针,避免类型不匹配引发的问题。 7. **指针与C++的差异**:对比C++中的指针...
C程序中可怕的野指针图文详解 本文主要介绍了C程序中可怕的野指针的相关知识点,通过实例代码和详细的解释,帮助读者了解野指针的危险性和避免方法。 一、疑问点:指针是C语言一个很强大的功能,同时也是很容易让...
### 野指针的意义与应用 #### 一、引言 ...野指针是C语言中一个常见的问题,它会导致程序不稳定甚至崩溃。通过理解和遵循上述建议,开发者可以有效地避免野指针的产生,提高程序的质量和可靠性。
3. 野指针:当指向的内存已被释放,但指针仍保留了该地址,称为野指针,使用野指针可能导致未知错误。 4. 内存泄漏:忘记释放不再使用的动态内存会导致资源浪费。 理解并避免这些陷阱是掌握C指针的关键。只有深入...
《C指针与陷阱》是一本深入探讨C语言中指针使用技巧与常见问题的经典书籍。在C语言中,指针是其核心特性之一,它赋予了程序员直接操控内存的能力,但同时也带来了许多潜在的陷阱。这篇内容我们将深入讨论C语言中的...
在实际编程中,理解并熟练掌握野指针和内存操作是确保C程序稳定性和效率的关键。通过学习和实践,开发者能够编写出更健壮、更高效的应用程序,避免因内存问题导致的诸多困扰。因此,本课程"第32课 - 野指针和内存...
指针在使用过程中需谨慎,因为指针错误会引发严重的程序崩溃,尤其是当指针错误指向未分配的内存地址时,这种情况下的指针被称为野指针。野指针是指向了无效或未知内存区域的指针,它们通常是由于指针没有被正确初始...
在C语言中,指针是一种存储...最后,需要注意的是,在使用指向指针的指针时,一定要确保对指针进行适当的初始化和检查,避免野指针(即未指向任何有效内存区域的指针)的出现,这样可以防止程序出现不可预测的错误。
问题在于,当vector扩容时,原有的B对象的地址发生了变化,而C类中的handle_仍然保存着原来的指针,这些指针已经变成了野指针,对这些指针的任何操作都会引起程序崩溃。尤其是当这些指针作为this指针使用时,更是...
- 未正确初始化的指针被称为野指针,可能会导致程序崩溃。 - 建议初始化指针变量为 `NULL` 或有效地址。 2. **类型匹配** - 指针变量的类型必须与所指向的变量类型相匹配,否则可能导致程序运行错误。 - 示例...
在C语言的编程实践中,指针是核心概念之一,它在内存中存储的是变量的地址。正确使用指针可以提高程序的效率,但是不当的使用也会造成程序的不稳定和安全问题。本文将详细解析C语言中指针的使用技巧,以及如何通过...
在C语言编程中,野指针是一个非常重要的概念,因为它可能导致程序运行时出现不可预知的错误。野指针并非NULL指针,而是指那些指向已被释放或未初始化内存的指针。这些指针没有指向有效的数据,而是指向了“垃圾”...
7. 安全性问题:指针操作涉及到内存管理,如果指针操作不当,可能会引发内存泄漏、野指针错误等问题。因此在教学中还要引导学生学会如何安全地使用指针。 在上述教学探索中,教师应该结合理论与实践,使用例子和...
2. **野指针**:指向已释放内存的指针称为野指针。使用野指针可能导致程序崩溃或其他不可预料的结果。 - **示例**:分配内存后忘记释放,之后尝试再次使用这块内存。 - **解决方法**:使用完毕后及时释放内存,并...
7. **指针陷阱与安全**:指针未初始化、空指针解引用、野指针等问题可能导致程序崩溃或安全隐患。书中会特别强调避免这些陷阱的方法和良好的编程习惯。 8. **实践应用**:通过丰富的示例和练习,帮助读者将理论知识...