PL/SQL处理异常不同于其他程序语言的错误管理方法,PL/SQL的异常处理机制与ADA很相似,有一个处理错误的全包含方法。当发生错误时,程序无条件转到异常处理部分,这就要求代码要非常干净并把错误处理部分和程序的其它部分分开。oracle允许声明其他异常条件类型以扩展错误/异常处理。这种扩展使PL/SQL的异常处理非常灵活。
当一个运行时错误发生时,称为一个异常被抛出。PL/SQL程序编译时的错误不是能被处理得异常,只有在运行时的异常能被处理。在PL/SQL程序设计中异常的抛出和处理是非常重要的内容。
抛出异常
由三种方式抛出异常
. 通过PL/SQL运行时引擎
. 使用RAISE语句
. 调用RAISE_APPLICATION_ERROR存储过程
当数据库或PL/SQL在运行时发生错误时,一个异常被PL/SQL运行时引擎自动抛出。异常也可以通过RAISE语句抛出
RAISE exception_name;
显式抛出异常是程序员处理声明的异常的习惯用法,但RAISE不限于声明了的异常,它可以抛出任何任何异常。例如,你希望用TIMEOUT_ON_RESOURCE错误检测新的运行时异常处理器,你只需简单的在程序中使用下面的语句:
RAISE TIMEOUT_ON_RESOUCE;
下面看一个订单输入系统,当库存小于订单时抛出一个inventory_too_low异常。
DECLARE
inventory_too_low EXCEPTION;
---其他声明语句
BEGIN
.
.
IF order_rec.qty>inventory_rec.qty THEN
RAISE inventory_too_low;
END IF
.
.
EXCEPTION
WHEN inventory_too_low THEN
order_rec.staus:='backordered';
replenish_inventory(inventory_nbr=>
inventory_rec.sku,min_amount=>order_rec.qty-inventory_rec.qty);
END;
这里replenish_inventory是一个触发器。
处理异常
PL/SQL程序块的异常部分包含了程序处理错误的代码,当异常被抛出时,一个异常陷阱就自动发生,程序控制离开执行部分转入异常部分,一旦程序进入异常部分就不能再回到同一块的执行部分。下面是异常部分的一般语法:
EXCEPTION
WHEN exception_name THEN
Code for handing exception_name
[WHEN another_exception THEN
Code for handing another_exception]
[WHEN others THEN
code for handing any other exception.]
用户必须在独立的WHEN子串中为每个异常设计异常处理代码,WHEN OTHERS子串必须放置在最后面作为缺省处理器处理没有显式处理的异常。当异常发生时,控制转到异常部分,ORACLE查找当前异常相应的WHEN..THEN语句,捕捉异常,THEN之后的代码被执行,如果错误陷阱代码只是退出相应的嵌套块,那么程序将继续执行内部块END后面的语句。如果没有找到相应的异常陷阱,那么将执行WHEN OTHERS。在异常部分WHEN 子串没有数量限制。
EXCEPTION
WHEN inventory_too_low THEN
order_rec.staus:='backordered';
replenish_inventory(inventory_nbr=>
inventory_rec.sku,min_amount=>order_rec.qty-inventory_rec.qty);
WHEN discontinued_item THEN
--code for discontinued_item processing
WHEN zero_divide THEN
--code for zero_divide
WHEN OTHERS THEN
--code for any other exception
END;
当异常抛出后,控制无条件转到异常部分,这就意味着控制不能回到异常发生的位置,当异常被处理和解决后,控制返回到上一层执行部分的下一条语句。
BEGIN
DECLARE
bad_credit;
BEGIN
RAISE bad_credit;
--发生异常,控制转向;
EXCEPTION
WHEN bad_credit THEN
dbms_output.put_line('bad_credit');
END;
--bad_credit异常处理后,控制转到这里
EXCEPTION
WHEN OTHERS THEN
--控制不会从bad_credit异常转到这里
--因为bad_credit已被处理
END;
当异常发生时,在块的内部没有该异常处理器时,控制将转到或传播到上一层块的异常处理部分。
BEGIN
DECLARE ---内部块开始
bad_credit;
BEGIN
RAISE bad_credit;
--发生异常,控制转向;
EXCEPTION
WHEN ZERO_DIVIDE THEN --不能处理bad_credite异常
dbms_output.put_line('divide by zero error');
END --结束内部块
--控制不能到达这里,因为异常没有解决;
--异常部分
EXCEPTION
WHEN OTHERS THEN
--由于bad_credit没有解决,控制将转到这里
END;
异常传播
没有处理的异常将沿检测异常调用程序传播到外面,当异常被处理并解决或到达程序最外层传播停止。
在声明部分抛出的异常将控制转到上一层的异常部分。
BEGIN
executable statements
BEGIN
today DATE:='SYADATE'; --ERRROR
BEGIN --内部块开始
dbms_output.put_line('this line will not execute');
EXCEPTION
WHEN OTHERS THEN
--异常不会在这里处理
END;--内部块结束
EXCEPTION
WHEN OTHERS THEN
处理异常
END
执行部分抛出的异常将首先传递到同一块的异常部分,如果在同一块的异常部分没有处理这个异常的处理器,那么异常将会传播到上一层的异常部分中,一直到最外层。
在异常部分抛出的异常将控制转到上一层的异常部分。
处理异常将停止异常的传播和解决。有时用户希望在错误发生时,程序仍然能执行一些动作,要达到这个目的,可以把希望执行的动作放在异常处理器中,然后执行不带参数的RAISE语句,RAISE语句将重新抛出出现的异常,允许他继续传播。
DECLARE
order_too_old EXCEPTION;
BEGIN
RAISE order_too_old;
EXCEPTION
WHEN order_too_old THEN
DECLARE
file_handle UTL_FILE.FILE_TYPE;
BEGIN
--open file
file_handle:=UTL_FILE.FOPEN
(location=>'/ora01/app/oracle/admin/test/utlsir'
,filename=>'error.log'
.open_mode=>'W');
--write error stack
UTL_FILE.PUT_LINE(filehandle,
DBMS_UTILITY.FORMAT_ERROR_STACK);
--write the call stack
UTL_FILE.PUT_LINE(filehandle,
DBMS_UTILITY.FORMAT_CALL_STACK);
--close error log
UTL_FILE.FCLOSE(file_handle);
RAISE; --re-raise the exception
END
END
如果从FORMAT_XXX_STACK输出一个很大的值,那么使用DBMS_OUTPUT或UTL_FILE显示错误或调用堆的异常部分自身也会抛出异常,这两个堆常规下最多能返回2000字节,但utl_file.put_line被限制在1000字节以内,而dbms_output.put_line限制在512字节内。如果使用前面的代码并且不允许这种可能性,那么在异常处理器中将抛出一个未处理的异常。
GOTO语句不能用于将控制从执行部分传递到异常部分或反之。
已命名异常
在PL/SQL块的异常部分只有已命名的异常才能被WHEN子串处理,ORACLE包含了一系列已命名的异常,这些异常都声明在STANDARD包中,这些内建异常在这里就不一一讲述,有兴趣的读者可以查阅有关资料。
PL/SQL处理异常不同于其他程序语言的错误管理方法,PL/SQL的异常处理机制与ADA很相似,有一个处理错误的全包含方法。当发生错误时,程序无条件转到异常处理部分,这就要求代码要非常干净并把错误处理部分和程序的其它部分分开。oracle允许声明其他异常条件类型以扩展错误/异常处理。这种扩展使PL/SQL的异常处理非常灵活。
当一个运行时错误发生时,称为一个异常被抛出。PL/SQL程序编译时的错误不是能被处理得异常,只有在运行时的异常能被处理。在PL/SQL程序设计中异常的抛出和处理是非常重要的内容。
抛出异常
由三种方式抛出异常
. 通过PL/SQL运行时引擎
. 使用RAISE语句
. 调用RAISE_APPLICATION_ERROR存储过程
当数据库或PL/SQL在运行时发生错误时,一个异常被PL/SQL运行时引擎自动抛出。异常也可以通过RAISE语句抛出
RAISE exception_name;
显式抛出异常是程序员处理声明的异常的习惯用法,但RAISE不限于声明了的异常,它可以抛出任何任何异常。例如,你希望用TIMEOUT_ON_RESOURCE错误检测新的运行时异常处理器,你只需简单的在程序中使用下面的语句:
RAISE TIMEOUT_ON_RESOUCE;
下面看一个订单输入系统,当库存小于订单时抛出一个inventory_too_low异常。
DECLARE
inventory_too_low EXCEPTION;
---其他声明语句
BEGIN
.
.
IF order_rec.qty>inventory_rec.qty THEN
RAISE inventory_too_low;
END IF
.
.
EXCEPTION
WHEN inventory_too_low THEN
order_rec.staus:='backordered';
replenish_inventory(inventory_nbr=>
inventory_rec.sku,min_amount=>order_rec.qty-inventory_rec.qty);
END;
这里replenish_inventory是一个触发器。
处理异常
PL/SQL程序块的异常部分包含了程序处理错误的代码,当异常被抛出时,一个异常陷阱就自动发生,程序控制离开执行部分转入异常部分,一旦程序进入异常部分就不能再回到同一块的执行部分。下面是异常部分的一般语法:
EXCEPTION
WHEN exception_name THEN
Code for handing exception_name
[WHEN another_exception THEN
Code for handing another_exception]
[WHEN others THEN
code for handing any other exception.]
用户必须在独立的WHEN子串中为每个异常设计异常处理代码,WHEN OTHERS子串必须放置在最后面作为缺省处理器处理没有显式处理的异常。当异常发生时,控制转到异常部分,ORACLE查找当前异常相应的WHEN..THEN语句,捕捉异常,THEN之后的代码被执行,如果错误陷阱代码只是退出相应的嵌套块,那么程序将继续执行内部块END后面的语句。如果没有找到相应的异常陷阱,那么将执行WHEN OTHERS。在异常部分WHEN 子串没有数量限制。
EXCEPTION
WHEN inventory_too_low THEN
order_rec.staus:='backordered';
replenish_inventory(inventory_nbr=>
inventory_rec.sku,min_amount=>order_rec.qty-inventory_rec.qty);
WHEN discontinued_item THEN
--code for discontinued_item processing
WHEN zero_divide THEN
--code for zero_divide
WHEN OTHERS THEN
--code for any other exception
END;
当异常抛出后,控制无条件转到异常部分,这就意味着控制不能回到异常发生的位置,当异常被处理和解决后,控制返回到上一层执行部分的下一条语句。
BEGIN
DECLARE
bad_credit;
BEGIN
RAISE bad_credit;
--发生异常,控制转向;
EXCEPTION
WHEN bad_credit THEN
dbms_output.put_line('bad_credit');
END;
--bad_credit异常处理后,控制转到这里
EXCEPTION
WHEN OTHERS THEN
--控制不会从bad_credit异常转到这里
--因为bad_credit已被处理
END;
当异常发生时,在块的内部没有该异常处理器时,控制将转到或传播到上一层块的异常处理部分。
BEGIN
DECLARE ---内部块开始
bad_credit;
BEGIN
RAISE bad_credit;
--发生异常,控制转向;
EXCEPTION
WHEN ZERO_DIVIDE THEN --不能处理bad_credite异常
dbms_output.put_line('divide by zero error');
END --结束内部块
--控制不能到达这里,因为异常没有解决;
--异常部分
EXCEPTION
WHEN OTHERS THEN
--由于bad_credit没有解决,控制将转到这里
END;
异常传播
没有处理的异常将沿检测异常调用程序传播到外面,当异常被处理并解决或到达程序最外层传播停止。
在声明部分抛出的异常将控制转到上一层的异常部分。
BEGIN
executable statements
BEGIN
today DATE:='SYADATE'; --ERRROR
BEGIN --内部块开始
dbms_output.put_line('this line will not execute');
EXCEPTION
WHEN OTHERS THEN
--异常不会在这里处理
END;--内部块结束
EXCEPTION
WHEN OTHERS THEN
处理异常
END
执行部分抛出的异常将首先传递到同一块的异常部分,如果在同一块的异常部分没有处理这个异常的处理器,那么异常将会传播到上一层的异常部分中,一直到最外层。
在异常部分抛出的异常将控制转到上一层的异常部分。
处理异常将停止异常的传播和解决。有时用户希望在错误发生时,程序仍然能执行一些动作,要达到这个目的,可以把希望执行的动作放在异常处理器中,然后执行不带参数的RAISE语句,RAISE语句将重新抛出出现的异常,允许他继续传播。
DECLARE
order_too_old EXCEPTION;
BEGIN
RAISE order_too_old;
EXCEPTION
WHEN order_too_old THEN
DECLARE
file_handle UTL_FILE.FILE_TYPE;
BEGIN
--open file
file_handle:=UTL_FILE.FOPEN
(location=>'/ora01/app/oracle/admin/test/utlsir'
,filename=>'error.log'
.open_mode=>'W');
--write error stack
UTL_FILE.PUT_LINE(filehandle,
DBMS_UTILITY.FORMAT_ERROR_STACK);
--write the call stack
UTL_FILE.PUT_LINE(filehandle,
DBMS_UTILITY.FORMAT_CALL_STACK);
--close error log
UTL_FILE.FCLOSE(file_handle);
RAISE; --re-raise the exception
END
END
如果从FORMAT_XXX_STACK输出一个很大的值,那么使用DBMS_OUTPUT或UTL_FILE显示错误或调用堆的异常部分自身也会抛出异常,这两个堆常规下最多能返回2000字节,但utl_file.put_line被限制在1000字节以内,而dbms_output.put_line限制在512字节内。如果使用前面的代码并且不允许这种可能性,那么在异常处理器中将抛出一个未处理的异常。
GOTO语句不能用于将控制从执行部分传递到异常部分或反之。
转自:http://oracle.chinaitlab.com/install/355784.html
分享到:
相关推荐
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
MMC整流器技术解析:基于Matlab的双闭环控制策略与环流抑制性能研究,Matlab下的MMC整流器技术文档:18个子模块,双闭环控制稳定直流电压,环流抑制与最近电平逼近调制,优化桥臂电流波形,高效并网运行。,MMC整流器(Matlab),技术文档 1.MMC工作在整流侧,子模块个数N=18,直流侧电压Udc=25.2kV,交流侧电压6.6kV 2.控制器采用双闭环控制,外环控制直流电压,采用PI调节器,电流内环采用PI+前馈解耦; 3.环流抑制采用PI控制,能够抑制环流二倍频分量; 4.采用最近电平逼近调制(NLM), 5.均压排序:电容电压排序采用冒泡排序,判断桥臂电流方向确定投入切除; 结果: 1.输出的直流电压能够稳定在25.2kV; 2.有功功率,无功功率稳态时波形稳定,有功功率为3.2MW,无功稳定在0Var; 3.网侧电压电流波形均为对称的三相电压和三相电流波形,网侧电流THD=1.47%<2%,符合并网要求; 4.环流抑制后桥臂电流的波形得到改善,桥臂电流THD由9.57%降至1.93%,环流波形也可以看到得到抑制; 5.电容电压能够稳定变化 ,工作点关键词:MMC
Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构,Simulink建模,MPPT最大功率点追踪,扰动观察法采用功率反馈方式,若ΔP>0,说明电压调整的方向正确,可以继续按原方向进行“干扰”;若ΔP<0,说明电压调整的方向错误,需要对“干扰”的方向进行改变。 ,Boost升压;光伏并网结构;Simulink建模;MPPT最大功率点追踪;扰动观察法;功率反馈;电压调整方向。,光伏并网结构中Boost升压MPPT控制策略的Simulink建模与功率反馈扰动观察法
STM32F103C8T6 USB寄存器开发详解(12)-键盘设备
科技活动人员数专指直接从事科技活动以及专门从事科技活动管理和为科技活动提供直接服务的人员数量
Matlab Simulink仿真探究Flyback反激式开关电源性能表现与优化策略,Matlab Simulink仿真探究Flyback反激式开关电源的工作机制,Matlab Simulimk仿真,Flyback反激式开关电源仿真 ,Matlab; Simulink仿真; Flyback反激式; 开关电源仿真,Matlab Simulink在Flyback反激式开关电源仿真中的应用
基于Comsol的埋地电缆电磁加热计算模型:深度解析温度场与电磁场分布学习资料与服务,COMSOL埋地电缆电磁加热计算模型:温度场与电磁场分布的解析与学习资源,comsol 埋地电缆电磁加热计算模型,可以得到埋地电缆温度场及电磁场分布,提供学习资料和服务, ,comsol;埋地电缆电磁加热计算模型;温度场分布;电磁场分布;学习资料;服务,Comsol埋地电缆电磁加热模型:温度场与电磁场分布学习资料及服务
1、文件内容:ibus-table-chinese-yong-1.4.6-3.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/ibus-table-chinese-yong-1.4.6-3.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊
基于51单片机protues仿真的汽车智能灯光控制系统设计(仿真图、源代码) 一、设计项目 根据本次设计的要求,设计出一款基于51单片机的自动切换远近光灯的设计。 技术条件与说明: 1. 设计硬件部分,中央处理器采用了STC89C51RC单片机; 2. 使用两个灯珠代表远近光灯,感光部分采用了光敏电阻,因为光敏电阻输出的是电压模拟信号,单片机不能直接处理模拟信号,所以经过ADC0832进行转化成数字信号; 3. 显示部分采用了LCD1602液晶,还增加按键部分电路,可以选择手自动切换远近光灯; 4. 用超声模块进行检测距离;
altermanager的企业微信告警服务
MyAgent测试版本在线下载
Comsol技术:可调BIC应用的二氧化钒VO2材料探索,Comsol模拟二氧化钒VO2的可调BIC特性研究,Comsol二氧化钒VO2可调BIC。 ,Comsol; 二氧化钒VO2; 可调BIC,Comsol二氧化钒VO2材料:可调BIC技术的关键应用
C++学生成绩管理系统源码
基于Matlab与Cplex的激励型需求响应模式:负荷转移与电价响应的差异化目标函数解析,基于Matlab与CPLEX的激励型需求响应负荷转移策略探索,激励型需求响应 matlab +cplex 激励型需求响应采用激励型需求响应方式对负荷进行转移,和电价响应模式不同,具体的目标函数如下 ,激励型需求响应; matlab + cplex; 负荷转移; 目标函数。,Matlab与Cplex结合的激励型需求响应模型及其负荷转移策略
scratch介绍(scratch说明).zip
内容概要:本文全面介绍了深度学习模型的概念、工作机制和发展历程,详细探讨了神经网络的构建和训练过程,包括反向传播算法和梯度下降方法。文中还列举了深度学习在图像识别、自然语言处理、医疗和金融等多个领域的应用实例,并讨论了当前面临的挑战,如数据依赖、计算资源需求、可解释性和对抗攻击等问题。最后,文章展望了未来的发展趋势,如与量子计算和区块链的融合,以及在更多领域的应用前景。 适合人群:对该领域有兴趣的技术人员、研究人员和学者,尤其适合那些希望深入了解深度学习原理和技术细节的读者。 使用场景及目标:①理解深度学习模型的基本原理和结构;②了解深度学习模型的具体应用案例;③掌握应对当前技术挑战的方向。 阅读建议:文章内容详尽丰富,读者应在阅读过程中注意理解各个关键技术的概念和原理,尤其是神经网络的构成及训练过程。同时也建议对比不同模型的特点及其在具体应用中的表现。
该文档提供了一个关于供应链管理系统开发的详细指南,重点介绍了项目安排、技术实现和框架搭建的相关内容。 文档分为以下几个关键部分: 项目安排:主要步骤包括搭建框架(1天),基础数据模块和权限管理(4天),以及应收应付和销售管理(5天)。 供应链概念:供应链系统的核心流程是通过采购商品放入仓库,并在销售时从仓库提取商品,涉及三个主要订单:采购订单、销售订单和调拨订单。 大数据的应用:介绍了数据挖掘、ETL(数据抽取)和BI(商业智能)在供应链管理中的应用。 技术实现:讲述了DAO(数据访问对象)的重用、服务层的重用、以及前端JS的继承机制、jQuery插件开发等技术细节。 系统框架搭建:包括Maven环境的配置、Web工程的创建、持久化类和映射文件的编写,以及Spring配置文件的实现。 DAO的需求和功能:供应链管理系统的各个模块都涉及分页查询、条件查询、删除、增加、修改操作等需求。 泛型的应用:通过示例说明了在Java语言中如何使用泛型来实现模块化和可扩展性。 文档非常技术导向,适合开发人员参考,用于构建供应链管理系统的架构和功能模块。
这份长达104页的手册由清华大学新闻与传播学院新媒体研究中心元宇宙文化实验室的余梦珑博士后及其团队精心编撰,内容详尽,覆盖了从基础概念、技术原理到实战案例的全方位指导。它不仅适合初学者快速了解DeepSeek的基本操作,也为有经验的用户提供了高级技巧和优化策略。
主题说明: 1、将mxtheme目录放置根目录 | 将mxpro目录放置template文件夹中 2、苹果cms后台-系统-网站参数配置-网站模板-选择mxpro 模板目录填写html 3、网站模板选择好之后一定要先访问前台,然后再进入后台设置 4、主题后台地址: MXTU MAX图图主题,/admin.php/admin/mxpro/mxproset admin.php改成你登录后台的xxx.php 5、首页幻灯片设置视频推荐9,自行后台设置 6、追剧周表在视频数据中,节目周期添加周一至周日自行添加,格式:一,二,三,四,五,六,日
运行GUI版本,可二开