- 浏览: 1664906 次
- 性别:
- 来自: 北京
-
文章分类
- 全部博客 (405)
- C/C++ (16)
- Linux (60)
- Algorithm (41)
- ACM (8)
- Ruby (39)
- Ruby on Rails (6)
- FP (2)
- Java SE (39)
- Java EE (6)
- Spring (11)
- Hibernate (1)
- Struts (1)
- Ajax (5)
- php (2)
- Data/Web Mining (20)
- Search Engine (19)
- NLP (2)
- Machine Learning (23)
- R (0)
- Database (10)
- Data Structure (6)
- Design Pattern (16)
- Hadoop (2)
- Browser (0)
- Firefox plugin/XPCOM (8)
- Eclise development (5)
- Architecture (1)
- Server (1)
- Cache (6)
- Code Generation (3)
- Open Source Tool (5)
- Develope Tools (5)
- 读书笔记 (7)
- 备忘 (4)
- 情感 (4)
- Others (20)
- python (0)
最新评论
-
532870393:
请问下,这本书是基于Hadoop1还是Hadoop2?
Hadoop in Action简单笔记(一) -
dongbiying:
不懂呀。。
十大常用数据结构 -
bing_it:
...
使用Spring MVC HandlerExceptionResolver处理异常 -
一别梦心:
按照上面的执行,文件确实是更新了,但是还是找不到kernel, ...
virtualbox 4.08安装虚机Ubuntu11.04增强功能失败解决方法 -
dsjt:
楼主spring 什么版本,我的3.1 ,xml中配置 < ...
使用Spring MVC HandlerExceptionResolver处理异常
Visitor模式的使用情景以及与Iterator的比较见我以前的一篇文章
http://fuliang.iteye.com/blog/166142
这次主要讨论Visitor的两种实现方式及其优劣。
主要实现方式主要有两种:
方法一、节点类的accept方法负责遍历逻辑,visitor只负责访问的操作。
方法二、节点类负责调用visit自己,而visitor除了负责访问该节点外还accept子节点,也就是遍历逻辑。
第一种看起来很优美,因为它将访问操作和节点遍历分离开来,职责清晰,并且节点本身知道如何去遍历
子节点,事实上这也是GOF设计模式一书例子中使用的方法。缺点是遍历逻辑在节点中写死了,也就是说
如果我在节点中定义了一种遍历顺序,如果Visitor试图使用其他的遍历顺序变得不可能,另外如果我想在
遍历之前做一些事情,遍历之后做些事情也同时变得不可能,除非每个visit方法提供了提供previousVisit
和postVisit进行回调,然而这显然增加了api的复杂性。
第二种方法,很容易看到缺点,他混淆了访问和遍历的职责,这与单一职责原则相悖,后面会讨论如何避免这个缺点。但是它非常的灵活,
可以避免第一方法带来的缺点。
下面举一个简单的例子(这个例子来自于实际项目的一个精简)来说明一下上述两种实现方式,以及面临的问题,
我们先定义一个定义的节点类型,其定义了一种树形结构:
所有节点类要实现的接口,包含了accept方法。
我们看看第一种方法实现visitor模式的代码:
好了节点定义好了那么以及遍历逻辑我们都写好了。
现在我们来写Visitor:
一个简单的Visitor:PrintVistor,我们想打印一些Java整个工程的信息:工程名,
下面有哪些包,以及包里面有哪些类。
一切看起来很好,但是需求来了,打印出来的信息太ugly了,我们希望一种看起来格式很Pretty的信息:类似于IDE的那种
带缩进的有层次感的组织方式。
那我们如何实现这个PrettyPrintVisitor呢,我们似乎失去了时机:我们应该在访问子节点之前做点事情,在访问子节点
之后做点事情,才能满足我们的需求,当然这些事情每一个visit方法不一定做相同的事情。而现在的visitor只能对自己
做一些事情,可以增加previousVisitXx和postVisitXx之类的方法,但是这样许多像PrintVisitor那样的访问者根不不需要
在previousVisitXx和postVisitXx做事情,所以导致大量的空方法出现,代码非常的ugly.当然可以写一个VisitorAdpater
空实现所有的方法来避免,但这样复杂性增加,似乎并不是一件美好的事情。如果这样勉强可以实现的话,那么下面的需求
将导致第一种方式实现的Visitor无法完成:我们想以一种后序遍历的顺序来打印结果,那么这个将无法完成,事实上这样
的需求不是没有,例如语法树的打印可能是先序遍历,而中间代码的生成可能需要一种后序遍历的方式来分析。
这个致命的缺点是节点类硬编码的遍历的顺序,导致访问者只能按照既定的顺序来访问。
下面我们看看第二种方法实现PrettyPrintVisitor吧:
首先把遍历逻辑都从节点中转移到Visitor类中,然后加上我们的缩进功能:
一个辅助类:
一种常用弥补第二种方法缺点的方法是定义好PreOrderDFS父类和PostOrderDFSVisitor父类,这些类来负责访问逻辑,子类只需要super.visitXxx即可
这样PrettyPrintVisitor 可以这么实现了:
结论:
显然第一种很符合面向对象的思想,如果在实际应用中你只需要一种遍历顺序,在访问的时候只对当前节点做操作,那么第一种实现可以优雅的满足你的需要。
第二种方法经过我们定义PreOrderDFS和PostOrderDFSVisitor,把遍历逻辑放在父类中,子类只需要负责访问的逻辑即可,既达到了灵活性,又实现了遍历和访问的分离,可以满足各种复杂的需求和扩展性。
刚刚补充了结论。
http://fuliang.iteye.com/blog/166142
这次主要讨论Visitor的两种实现方式及其优劣。
主要实现方式主要有两种:
方法一、节点类的accept方法负责遍历逻辑,visitor只负责访问的操作。
方法二、节点类负责调用visit自己,而visitor除了负责访问该节点外还accept子节点,也就是遍历逻辑。
第一种看起来很优美,因为它将访问操作和节点遍历分离开来,职责清晰,并且节点本身知道如何去遍历
子节点,事实上这也是GOF设计模式一书例子中使用的方法。缺点是遍历逻辑在节点中写死了,也就是说
如果我在节点中定义了一种遍历顺序,如果Visitor试图使用其他的遍历顺序变得不可能,另外如果我想在
遍历之前做一些事情,遍历之后做些事情也同时变得不可能,除非每个visit方法提供了提供previousVisit
和postVisit进行回调,然而这显然增加了api的复杂性。
第二种方法,很容易看到缺点,他混淆了访问和遍历的职责,这与单一职责原则相悖,后面会讨论如何避免这个缺点。但是它非常的灵活,
可以避免第一方法带来的缺点。
下面举一个简单的例子(这个例子来自于实际项目的一个精简)来说明一下上述两种实现方式,以及面临的问题,
我们先定义一个定义的节点类型,其定义了一种树形结构:
所有节点类要实现的接口,包含了accept方法。
package edu.jlu.fuliang.model; import edu.jlu.fuliang.visitor.IVisitor; public interface IModel { void accept(IVisitor visitor); }
我们看看第一种方法实现visitor模式的代码:
package edu.jlu.fuliang.model; import java.util.ArrayList; import java.util.Collections; import java.util.List; import edu.jlu.fuliang.visitor.IVisitor; public class JavaProject implements IModel { private String javaProjectName; private List<JavaPackage> javaPackages; public JavaProject() { javaPackages = new ArrayList<JavaPackage>(); } public void addPackage(JavaPackage pkg) { javaPackages.add(pkg); } public List<JavaPackage> getJavaPackages() { return Collections.unmodifiableList(javaPackages); } public String getJavaProjectName() { return javaProjectName; } public void setJavaProjectName(String javaProjectName) { this.javaProjectName = javaProjectName; } @Override public void accept(IVisitor visitor) { visitor.visitProject(this); for (JavaPackage javaPackage : javaPackages) { javaPackage.accept(visitor); } } }
package edu.jlu.fuliang.model; import java.util.ArrayList; import java.util.Collections; import java.util.List; import edu.jlu.fuliang.visitor.IVisitor; public class JavaPackage implements IModel { private String packageName; private List<JavaClass> javaClasses; public JavaPackage() { javaClasses = new ArrayList<JavaClass>(); } @Override public void accept(IVisitor visitor) { visitor.visitPackage(this); for (JavaClass javaClass : javaClasses) { javaClass.accept(visitor); } } public String getPackageName() { return packageName; } public void setPackageName(String packageName) { this.packageName = packageName; } public List<JavaClass> getJavaClasses() { return Collections.unmodifiableList(javaClasses); } public void addJavaClass(JavaClass javaClass){ javaClasses.add(javaClass); } }
package edu.jlu.fuliang.model; import edu.jlu.fuliang.visitor.IVisitor; public class JavaClass implements IModel{ private String className; public JavaClass() { } public String getClassName() { return className; } public void setClassName(String className) { this.className = className; } @Override public void accept(IVisitor visitor) { visitor.visitClass(this); } }
好了节点定义好了那么以及遍历逻辑我们都写好了。
现在我们来写Visitor:
package edu.jlu.fuliang.visitor; import edu.jlu.fuliang.model.JavaClass; import edu.jlu.fuliang.model.JavaPackage; import edu.jlu.fuliang.model.JavaProject; public interface IVisitor { public void visitProject(JavaProject project); public void visitPackage(JavaPackage pkg); public void visitClass(JavaClass klass); }
一个简单的Visitor:PrintVistor,我们想打印一些Java整个工程的信息:工程名,
下面有哪些包,以及包里面有哪些类。
package edu.jlu.fuliang.visitor; import edu.jlu.fuliang.model.JavaClass; import edu.jlu.fuliang.model.JavaPackage; import edu.jlu.fuliang.model.JavaProject; public class PrintVistor implements IVisitor{ @Override public void visitClass(JavaClass klass) { System.out.println(klass.getClassName()); } @Override public void visitPackage(JavaPackage pkg) { System.out.println(pkg.getPackageName()); } @Override public void visitProject(JavaProject project) { System.out.println(project.getJavaProjectName()); } }
一切看起来很好,但是需求来了,打印出来的信息太ugly了,我们希望一种看起来格式很Pretty的信息:类似于IDE的那种
带缩进的有层次感的组织方式。
那我们如何实现这个PrettyPrintVisitor呢,我们似乎失去了时机:我们应该在访问子节点之前做点事情,在访问子节点
之后做点事情,才能满足我们的需求,当然这些事情每一个visit方法不一定做相同的事情。而现在的visitor只能对自己
做一些事情,可以增加previousVisitXx和postVisitXx之类的方法,但是这样许多像PrintVisitor那样的访问者根不不需要
在previousVisitXx和postVisitXx做事情,所以导致大量的空方法出现,代码非常的ugly.当然可以写一个VisitorAdpater
空实现所有的方法来避免,但这样复杂性增加,似乎并不是一件美好的事情。如果这样勉强可以实现的话,那么下面的需求
将导致第一种方式实现的Visitor无法完成:我们想以一种后序遍历的顺序来打印结果,那么这个将无法完成,事实上这样
的需求不是没有,例如语法树的打印可能是先序遍历,而中间代码的生成可能需要一种后序遍历的方式来分析。
这个致命的缺点是节点类硬编码的遍历的顺序,导致访问者只能按照既定的顺序来访问。
下面我们看看第二种方法实现PrettyPrintVisitor吧:
首先把遍历逻辑都从节点中转移到Visitor类中,然后加上我们的缩进功能:
package edu.jlu.fuliang.visitor; import java.util.List; import edu.jlu.fuliang.model.JavaClass; import edu.jlu.fuliang.model.JavaPackage; import edu.jlu.fuliang.model.JavaProject; public class PrettyPrintVisitor implements IVisitor{ private Spacing spacing = new Spacing(3); @Override public void visitClass(JavaClass klass) { System.out.print(spacing); spacing.updateSpc(1); System.out.println(klass.getClassName()); spacing.updateSpc(-1); } @Override public void visitPackage(JavaPackage pkg) { System.out.print(spacing); System.out.println(pkg.getPackageName()); spacing.updateSpc(1); List<JavaClass> javaClasses = pkg.getJavaClasses(); for (JavaClass javaClass : javaClasses) { javaClass.accept(this); } spacing.updateSpc(-1); } @Override public void visitProject(JavaProject project) { System.out.print(project.getJavaProjectName()); spacing.updateSpc(1); List<JavaPackage> javaPackages = project.getJavaPackages(); for (JavaPackage javaPackage : javaPackages) { javaPackage.accept(this); } spacing.updateSpc(-1); } }
一个辅助类:
package edu.jlu.fuliang.visitor; public class Spacing { public final int INDENT_AMT;// 缩进的字数 public String spc = " "; public String brunch = "|---->"; public int indentLevel;// 缩紧的层次 public Spacing(int indentAmount) { INDENT_AMT = indentAmount; } public String toString() { return spc; } public void updateSpc(int numIndentLvls) { if (spc.length() >= brunch.length()) spc = spc.substring(0, spc.length() - brunch.length()); indentLevel += numIndentLvls; if (numIndentLvls < 0) { spc = spc.substring(0, indentLevel * INDENT_AMT); spc += brunch; } else if (numIndentLvls > 0) { StringBuffer buf = new StringBuffer(spc); for (int i = 0; i < numIndentLvls * INDENT_AMT; ++i) buf.append(" "); buf.append(brunch); spc = buf.toString(); } } }
一种常用弥补第二种方法缺点的方法是定义好PreOrderDFS父类和PostOrderDFSVisitor父类,这些类来负责访问逻辑,子类只需要super.visitXxx即可
package edu.jlu.fuliang.visitor; import java.util.List; import edu.jlu.fuliang.model.JavaClass; import edu.jlu.fuliang.model.JavaPackage; import edu.jlu.fuliang.model.JavaProject; public class PreOrderDFSVisitor implements IVisitor{ @Override public void visitClass(JavaClass klass) { } @Override public void visitPackage(JavaPackage pkg) { List<JavaClass> javaClasses = pkg.getJavaClasses(); for (JavaClass javaClass : javaClasses) { javaClass.accept(this); } } @Override public void visitProject(JavaProject project) { List<JavaPackage> javaPackages = project.getJavaPackages(); for (JavaPackage javaPackage : javaPackages) { javaPackage.accept(this); } } }
这样PrettyPrintVisitor 可以这么实现了:
package edu.jlu.fuliang.visitor; import java.util.List; import edu.jlu.fuliang.model.JavaClass; import edu.jlu.fuliang.model.JavaPackage; import edu.jlu.fuliang.model.JavaProject; public class PrettyPrintVisitor extends PreOrderDFSVisitor{ private Spacing spacing = new Spacing(3); @Override public void visitClass(JavaClass klass) { System.out.print(spacing); spacing.updateSpc(1); System.out.println(klass.getClassName()); super.visitClass(klass); spacing.updateSpc(-1); } @Override public void visitPackage(JavaPackage pkg) { System.out.print(spacing); System.out.println(pkg.getPackageName()); spacing.updateSpc(1); super.visitPackage(pkg); spacing.updateSpc(-1); } @Override public void visitProject(JavaProject project) { System.out.print(project.getJavaProjectName()); spacing.updateSpc(1); super.visitProject(project); spacing.updateSpc(-1); } }
结论:
显然第一种很符合面向对象的思想,如果在实际应用中你只需要一种遍历顺序,在访问的时候只对当前节点做操作,那么第一种实现可以优雅的满足你的需要。
第二种方法经过我们定义PreOrderDFS和PostOrderDFSVisitor,把遍历逻辑放在父类中,子类只需要负责访问的逻辑即可,既达到了灵活性,又实现了遍历和访问的分离,可以满足各种复杂的需求和扩展性。
评论
2 楼
fuliang
2009-05-24
RednaxelaFX 写道
楼主对这两种方案有什么总结性的结论不?貌似是比较倾向于第二种?
刚刚补充了结论。
1 楼
RednaxelaFX
2009-05-24
楼主对这两种方案有什么总结性的结论不?貌似是比较倾向于第二种?
Visitor模式原本确实是很有“导航逻辑”与“业务逻辑”分离的作用。从这个角度看第二种就怪怪的,比较乱。
以前我在我的一个编译器的AST里也用到了Visitor模式。没有专门定义接口,而是直接以抽象类为继承层次的根(不算Object)。这个基类是用脚本来生成的,从源码中AST所在的目录抽取出所有concrete的AST类名,并为它们生成boolean visitXXX(XXX x)与void postVisitXXX(XXX x)这两个方法,其中前者的默认实现为return true;,后者的默认实现为空。visitXXX返回的值是用来判断是否要继续向深处遍历用的,所以一个accept的基本实现像这样:(以上面的JavaProject类为例)
每次我build之前都会让脚本检查一下我的AST类的继承层次里有没有变化,有的话就重新生成基类,以此来保持源码的稳定,避免手动更新的麻烦。楼主说得没错,如果这部分全部都是手写的话非常痛苦也难以维护。但即便如此我还是不太倾向第二种方法。
话说回来,这也只是single-dispatch的语言才有的问题。如果有multimethod这根本就不是问题:不需要Visitor模式实现double-dispatch,所以也就不需要面对选择Visitor模式的实现方式的问题。
Visitor模式原本确实是很有“导航逻辑”与“业务逻辑”分离的作用。从这个角度看第二种就怪怪的,比较乱。
以前我在我的一个编译器的AST里也用到了Visitor模式。没有专门定义接口,而是直接以抽象类为继承层次的根(不算Object)。这个基类是用脚本来生成的,从源码中AST所在的目录抽取出所有concrete的AST类名,并为它们生成boolean visitXXX(XXX x)与void postVisitXXX(XXX x)这两个方法,其中前者的默认实现为return true;,后者的默认实现为空。visitXXX返回的值是用来判断是否要继续向深处遍历用的,所以一个accept的基本实现像这样:(以上面的JavaProject类为例)
@Override public void accept(Visitor v) { if (v.visitJavaProject(this)) { for (JavaPackage p : javaPackages) { p.accept(v); } } v.postVisitJavaProject(this); }
每次我build之前都会让脚本检查一下我的AST类的继承层次里有没有变化,有的话就重新生成基类,以此来保持源码的稳定,避免手动更新的麻烦。楼主说得没错,如果这部分全部都是手写的话非常痛苦也难以维护。但即便如此我还是不太倾向第二种方法。
话说回来,这也只是single-dispatch的语言才有的问题。如果有multimethod这根本就不是问题:不需要Visitor模式实现double-dispatch,所以也就不需要面对选择Visitor模式的实现方式的问题。
发表评论
-
不要向上层暴露本层以及所依赖的接口细节
2012-02-02 16:50 1750h1.背景 在攻略全文搜索中,搜索的接口很丰富,并且将来可能 ... -
对象健身操
2010-05-31 21:43 1641看了一下ThoughtWorks文集中的对象健身操一章,写了九 ... -
多态知多少
2009-07-11 19:18 2117今天看书,看到了这一 ... -
如何写出漂亮的代码
2009-07-04 01:02 2153一、不要使用魔法数字,尽量定义枚举、常量、宏: 我常常见到表示 ... -
你能用Wapper来做什么?
2008-09-23 18:39 2693从简单的说起:一、在只有值传递的语言中,通过Wapper把实 ... -
面向对象的原则、模式、语言及框架(五)
2008-03-10 20:47 2430Liskov替换原则 我们前面说了开闭原则OCP,其背后的主要 ... -
面向对象的原则、模式、语言及框架(四)
2008-03-09 17:17 2166开-闭原则: 任何软件在其生命周期内都会发生变化,如果我们期望 ... -
面向对象的原则、模式、语言及框架(三)
2008-03-08 18:45 2920单一职责原则 这个原则描述了内聚性:一个模块组成元素的功能相 ... -
面向对象的原则、模式、语言及框架(二)
2008-03-08 17:18 2796一、一些拙劣的设计症结 说起面向对象的原则,不得不提一些拙劣的 ... -
面向对象的原则、模式、语言及框架(一)
2008-03-04 19:21 2897这学期开面向对象的方法课程,可以趁机总结一下以前面向对象的开发 ... -
基于接口编程VS基于实现编程
2008-02-29 16:38 2797fhjxp同学在看完我的Struts2.0+Spring+Hi ... -
Yet another Iterator VS visitor
2008-02-29 15:13 2324在论坛中有好几位同学都比较了Iterator和visitor模 ... -
比较Template method、Strategy和Builder模式随想
2007-04-18 14:02 4469Template method和Strategy模式经常在框架 ... -
也谈谈Spring中的Template和Callback模式
2007-04-18 10:59 6419前几天在论坛看到谈论Spring中的Callback模式和Te ... -
从GOF的设计模式说起
2007-04-10 10:27 1994设计模式对于 ...
相关推荐
):比较了提高计算机硬件性能与改进算法效率的优劣。 - **3.4 Asymptotic Analysis** (渐进分析): - **3.4.1 Upper Bounds** (上界):介绍如何使用大O记号表示算法的时间复杂度上界。 - **3.4.2 Lower Bounds** ...
**:比较了改进硬件性能与优化算法效率之间的优劣。 - **3.4 渐进分析** - **3.4.1 上界**:介绍了如何使用大O表示法来表示算法的时间复杂度上限。 - **3.4.2 下界**:介绍了如何使用Ω表示法来表示算法的时间...
拟阵约束下最大化子模函数的模型及其算法的一种熵聚类方法.pdf
内容概要:本文探讨了在两级电力市场环境中,针对省间交易商的最优购电模型的研究。文中提出了一个双层非线性优化模型,用于处理省内电力市场和省间电力交易的出清问题。该模型采用CVaR(条件风险价值)方法来评估和管理由新能源和负荷不确定性带来的风险。通过KKT条件和对偶理论,将复杂的双层非线性问题转化为更易求解的线性单层问题。此外,还通过实际案例验证了模型的有效性,展示了不同风险偏好设置对购电策略的影响。 适合人群:从事电力系统规划、运营以及风险管理的专业人士,尤其是对电力市场机制感兴趣的学者和技术专家。 使用场景及目标:适用于希望深入了解电力市场运作机制及其风险控制手段的研究人员和技术开发者。主要目标是为省间交易商提供一种科学有效的购电策略,以降低风险并提高经济效益。 其他说明:文章不仅介绍了理论模型的构建过程,还包括具体的数学公式推导和Python代码示例,便于读者理解和实践。同时强调了模型在实际应用中存在的挑战,如数据精度等问题,并指出了未来改进的方向。
内容概要:本文探讨了在MATLAB/Simulink平台上针对四机两区系统的风储联合调频技术。首先介绍了四机两区系统作为经典的电力系统模型,在风电渗透率增加的情况下,传统一次调频方式面临挑战。接着阐述了风储联合调频技术的应用,通过引入虚拟惯性控制和下垂控制策略,提高了系统的频率稳定性。文章展示了具体的MATLAB/Simulink仿真模型,包括系统参数设置、控制算法实现以及仿真加速方法。最终结果显示,在风电渗透率为25%的情况下,通过风储联合调频,系统频率特性得到显著提升,仿真时间缩短至5秒以内。 适合人群:从事电力系统研究、仿真建模的技术人员,特别是关注风电接入电网稳定性的研究人员。 使用场景及目标:适用于希望深入了解风储联合调频机制及其仿真实现的研究人员和技术开发者。目标是掌握如何利用MATLAB/Simulink进行高效的电力系统仿真,尤其是针对含有高比例风电接入的复杂场景。 其他说明:文中提供的具体参数配置和控制算法有助于读者快速搭建类似的仿真环境,并进行相关研究。同时强调了参考文献对于理论基础建立的重要性。
内容概要:本文介绍了永磁同步电机(PMSM)无感控制技术,特别是高频方波注入与滑膜观测器相结合的方法。首先解释了高频方波注入法的工作原理,即通过向电机注入高频方波电压信号,利用电机的凸极效应获取转子位置信息。接着讨论了滑膜观测器的作用,它能够根据电机的电压和电流估计转速和位置,具有较强的鲁棒性。两者结合可以提高无传感器控制系统的稳定性和精度。文中还提供了具体的Python、C语言和Matlab代码示例,展示了如何实现这两种技术。此外,简要提及了正弦波注入的相关论文资料,强调了其在不同工况下的优势。 适合人群:从事电机控制系统设计的研发工程师和技术爱好者,尤其是对永磁同步电机无感控制感兴趣的读者。 使用场景及目标:适用于需要减少传感器依赖、降低成本并提高系统可靠性的情况,如工业自动化设备、电动汽车等领域的电机控制。目标是掌握高频方波注入与滑膜观测器结合的具体实现方法,应用于实际工程项目中。 其他说明:文中提到的高频方波注入和滑膜观测器的结合方式,不仅提高了系统的性能,还在某些特殊情况下表现出更好的适应性。同时,附带提供的代码片段有助于读者更好地理解和实践这一技术。
内容概要:本文深入探讨了MATLAB中扩展卡尔曼滤波(EKF)和双扩展卡尔曼滤波(DEKF)在电池参数辨识中的应用。首先介绍了EKF的基本原理和代码实现,包括状态预测和更新步骤。接着讨论了DEKF的工作机制,即同时估计系统状态和参数,解决了参数和状态耦合估计的问题。文章还详细描述了电池参数辨识的具体应用场景,特别是针对电池管理系统中的荷电状态(SOC)估计。此外,提到了一些实用技巧,如雅可比矩阵的计算、参数初始值的选择、数据预处理方法等,并引用了几篇重要文献作为参考。 适合人群:从事电池管理系统开发的研究人员和技术人员,尤其是对状态估计和参数辨识感兴趣的读者。 使用场景及目标:适用于需要精确估计电池参数的实际项目,如电动汽车、储能系统等领域。目标是提高电池管理系统的性能,确保电池的安全性和可靠性。 其他说明:文章强调了实际应用中的注意事项,如数据处理、参数选择和模型优化等方面的经验分享。同时提醒读者关注最新的研究成果和技术进展,以便更好地应用于实际工作中。
内容概要:本文详细介绍了在无电子凸轮功能情况下,利用三菱FX3U系列PLC和威纶通触摸屏实现分切机上下收放卷张力控制的方法。主要内容涵盖硬件连接、程序框架设计、张力检测与读取、PID控制逻辑以及触摸屏交互界面的设计。文中通过具体代码示例展示了如何初始化寄存器、读取张力传感器数据、计算张力偏差并实施PID控制,最终实现稳定的张力控制。此外,还讨论了卷径计算、速度同步控制等关键技术点,并提供了现场调试经验和优化建议。 适合人群:从事自动化生产设备维护和技术支持的专业人士,尤其是熟悉PLC编程和触摸屏应用的技术人员。 使用场景及目标:适用于需要对分切机进行升级改造的企业,旨在提高分切机的张力控制精度,确保材料切割质量,降低生产成本。通过本方案可以实现±3%的张力控制精度,满足基本生产需求。 其他说明:本文不仅提供详细的程序代码和硬件配置指南,还分享了许多实用的调试技巧和经验,帮助技术人员更好地理解和应用相关技术。
内容概要:本文详细介绍了一种基于西门子S7-200和S7-300 PLC以及组态王软件的三泵变频恒压供水系统。主要内容涵盖IO分配、接线图原理图、梯形图程序编写和组态画面设计四个方面。通过合理的硬件配置和精确的编程逻辑,确保系统能够在不同负载情况下保持稳定的供水压力,同时实现节能和延长设备使用寿命的目标。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是熟悉PLC编程和组态软件使用的专业人士。 使用场景及目标:适用于需要稳定供水的各种场合,如住宅小区、工厂等。目标是通过优化控制系统,提升供水效率,减少能源消耗,并确保系统的可靠性和安全性。 其他说明:文中提供了详细的实例代码和调试技巧,帮助读者更好地理解和实施该项目。此外,还分享了一些实用的经验教训,有助于避免常见的错误和陷阱。
内容概要:本文详细介绍了三相三线制静止无功发生器(SVG/STATCOM)在Simulink中的仿真模型设计与实现。主要内容涵盖ip-iq检测法用于无功功率检测、dq坐标系下的电流解耦控制、电压电流双闭环控制系统的设计、SVPWM调制技术的应用以及具体的仿真参数设置。文中不仅提供了理论背景,还展示了具体的Matlab代码片段,帮助读者理解各个控制环节的工作原理和技术细节。此外,文章还讨论了实际调试中遇到的问题及解决方案,强调了参数调整的重要性。 适合人群:从事电力系统自动化、电力电子技术研究的专业人士,特别是对SVG/STATCOM仿真感兴趣的工程师和研究人员。 使用场景及目标:适用于希望深入了解SVG/STATCOM工作原理并掌握其仿真方法的研究人员和工程师。目标是在实践中能够正确搭建和优化SVG/STATCOM的仿真模型,提高无功补偿的效果。 其他说明:文章提供了丰富的实例代码和调试技巧,有助于读者更好地理解和应用所学知识。同时,文中提及的一些经验和注意事项来源于实际项目,具有较高的参考价值。
基于SIMULINK的风力机发电效率建模探究.pdf
内容概要:本文介绍了如何将CarSim的动力学模型与Simulink的智能算法相结合,利用模型预测控制(MPC)实现车辆的智能超车换道。主要内容包括MPC控制器的设计、路径规划算法、联合仿真的配置要点以及实际应用效果。文中提供了详细的代码片段和技术细节,如权重矩阵设置、路径跟踪目标函数、安全超车条件判断等。此外,还强调了仿真过程中需要注意的关键参数配置,如仿真步长、插值设置等,以确保系统的稳定性和准确性。 适合人群:从事自动驾驶研究的技术人员、汽车工程领域的研究人员、对联合仿真感兴趣的开发者。 使用场景及目标:适用于需要进行自动驾驶车辆行为模拟的研究机构和企业,旨在提高超车换道的安全性和效率,为自动驾驶技术研发提供理论支持和技术验证。 其他说明:随包提供的案例文件已调好所有参数,可以直接导入并运行,帮助用户快速上手。文中提到的具体参数和配置方法对于初学者非常友好,能够显著降低入门门槛。
内容概要:本文详细介绍了利用MATLAB进行信号与系统实验的具体步骤和技术要点。首先讲解了常见信号(如方波、sinc函数、正弦波等)的生成方法及其注意事项,强调了时间轴设置和参数调整的重要性。接着探讨了卷积积分的两种实现方式——符号运算和数值积分,指出了各自的特点和应用场景,并特别提醒了数值卷积时的时间轴重构和步长修正问题。随后深入浅出地解释了频域分析的方法,包括傅里叶变换的符号计算和快速傅里叶变换(FFT),并给出了具体的代码实例和常见错误提示。最后阐述了离散时间信号与系统的Z变换分析,展示了如何通过Z变换将差分方程转化为传递函数以及如何绘制零极点图来评估系统的稳定性。 适合人群:正在学习信号与系统课程的学生,尤其是需要完成相关实验任务的人群;对MATLAB有一定基础,希望通过实践加深对该领域理解的学习者。 使用场景及目标:帮助学生掌握MATLAB环境下信号生成、卷积积分、频域分析和Z变换的基本技能;提高学生解决实际问题的能力,避免常见的编程陷阱;培养学生的动手能力和科学思维习惯。 其他说明:文中不仅提供了详细的代码示例,还分享了许多实用的小技巧,如如何正确保存实验结果图、如何撰写高质量的实验报告等。同时,作者以幽默风趣的语言风格贯穿全文,使得原本枯燥的技术内容变得生动有趣。
KUKA机器人相关文档
内容概要:本文详细介绍了无传感器永磁同步电机(PMSM)控制技术,特别是针对低速和中高速的不同控制策略。低速阶段采用I/F控制,通过固定电流幅值和斜坡加速的方式启动电机,确保平稳启动。中高速阶段则引入滑模观测器进行反电动势估算,从而精确控制电机转速。文中还讨论了两者之间的平滑切换逻辑,强调了参数选择和调试技巧的重要性。此外,提供了具体的伪代码示例,帮助读者更好地理解和实现这一控制方案。 适合人群:从事电机控制系统设计的研发工程师和技术爱好者。 使用场景及目标:适用于需要降低成本并提高可靠性的应用场景,如家用电器、工业自动化设备等。主要目标是掌握无传感器PMSM控制的基本原理及其优化方法。 其他说明:文中提到的实际案例和测试数据有助于加深理解,同时提醒开发者注意硬件参数准确性以及调试过程中可能出现的问题。
智能家居与物联网培训材料.ppt
内容概要:本文详细介绍了使用Matlab解决车辆路径规划问题的四种经典算法:TSP(旅行商问题)、CVRP(带容量约束的车辆路径问题)、CDVRP(带容量和距离双重约束的车辆路径问题)和VRPTW(带时间窗约束的车辆路径问题)。针对每个问题,文中提供了具体的算法实现思路和关键代码片段,如遗传算法用于TSP的基础求解,贪心算法和遗传算法结合用于CVRP的路径分割,以及带有惩罚函数的时间窗约束处理方法。此外,还讨论了性能优化技巧,如矩阵运算替代循环、锦标赛选择、2-opt局部优化等。 适合人群:具有一定编程基础,尤其是对物流调度、路径规划感兴趣的开发者和技术爱好者。 使用场景及目标:适用于物流配送系统的路径优化,旨在提高配送效率,降低成本。具体应用场景包括但不限于外卖配送、快递运输等。目标是帮助读者掌握如何利用Matlab实现高效的路径规划算法,解决实际业务中的复杂约束条件。 其他说明:文中不仅提供了详细的代码实现,还分享了许多实践经验,如参数设置、数据预处理、异常检测等。建议读者在实践中不断尝试不同的算法组合和优化策略,以应对更加复杂的实际问题。
软考网络工程师2010-2014真题及答案完整版 全国计算机软考 适合软考中级人群
包括:源程序工程文件、Proteus仿真工程文件、论文材料、配套技术手册等 1、采用51/52单片机作为主控芯片; 2、采用1602液晶显示:测量酒精值、酒驾阈值、醉驾阈值; 3、采用PCF8591进行AD模数转换; 4、LED指示:正常绿灯、酒驾黄灯、醉驾红灯; 5、可通过按键修改酒驾醉驾阈值;
内容概要:本文详细介绍了利用MATLAB实现约束最优化求解的方法,主要分为两大部分:无约束优化和带约束优化。对于无约束优化,作者首先讲解了梯度下降法的基本原理和实现技巧,如步长搜索和Armijo条件的应用。接着深入探讨了带约束优化问题,特别是序列二次规划(SQP)方法的具体实现,包括拉格朗日函数的Hesse矩阵计算、QP子问题的构建以及拉格朗日乘子的更新策略。文中不仅提供了详细的MATLAB代码示例,还分享了许多调参经验和常见错误的解决办法。 适合人群:具备一定数学基础和编程经验的研究人员、工程师或学生,尤其是对最优化理论和应用感兴趣的读者。 使用场景及目标:适用于需要解决各类优化问题的实际工程项目,如机械臂能耗最小化、化工过程优化等。通过学习本文,读者能够掌握如何将复杂的约束优化问题分解为更易处理的二次规划子问题,从而提高求解效率和准确性。 其他说明:文章强调了优化算法选择的重要性,指出不同的问题结构决定了最适合的算法。此外,作者还分享了一些实用的经验教训,如Hesse矩阵的正定性处理和惩罚因子的动态调整,帮助读者少走弯路。