`

Hibernate性能优化

阅读更多

在处理大数据量时,会有大量的数据缓冲保存在 Session 的一级缓存中,这缓存大太时会严重显示性能,所以在使用 Hibernate 处理大数据量的,可以使用 session.clear() 或者 session. Evict(Object) 在处理过程中,清除全部的缓存或者清除某个对象。

2) 对大数据量查询时,慎用 list() 或者 iterator() 返回查询结果,
1. 使用 List() 返回结果时, Hibernate 会所有查询结果初始化为持久化对象,结果集较大时,会占用很多的处理时间。
2. 而使用 iterator() 返回结果时,在每次调用 iterator.next() 返回对象并使用对象时, Hibernate 才调用查询将对应的对象初始化,对于大数据量时,每调用一次查询都会花费较多的时间。当结果集较大,但是含有较大量相同的数据,或者结果集不是全部都会使 用时,使用 iterator() 才有优势。
3. 对于大数据量,使用 qry.scroll() 可以得到较好的处理速度以及性能。而且直接对结果集向前向后滚动。

3) 对于关联操作, Hibernate 虽然可以表达复杂的数据关系,但请慎用,使数据关系较为简单时会得到较好的效率,特别是较深层次的关联时,性能会很差。

4) 对含有关联的 PO (持久化对象)时,若 default-cascade="all" 或者 “save-update” ,新增 PO 时,请注意对 PO 中的集合的赋值操作,因为有可能使得多执行一次 update 操作。

5) 在一对多、多对一的关系中,使用延迟加载机制,会使不少的对象在使用时 才 会初始化,这样可使得节省内存空间以及减少数据库 的负荷,而且若 PO 中的集合没有被使用时,就可减少互数据库的交互从而减少处理时间。


6) 对于大数据量新增、修改、删除操作或者是对大数据量的查询,与数据库的交互次数是决定处理时间的最重要因素,减少交互的次数是提升效率的最好途径,所以在 开发过程中,请将 show_sql 设置为 true ,深入了解 Hibernate 的处理过程,尝试不同的方式,可以使得效率提升。


7) Hibernate 是以 JDBC 为基础,但是 Hibernate 是对 JDBC 的优化,其中使用 Hibernate 的缓冲机制会使性能提升,如使用二级缓存以及查询缓存,若命中率较高明,性能会是到大幅提升。

8) Hibernate 可以通过设置 hibernate.jdbc.fetch_size , hibernate.jdbc.batch_size 等属性,对 Hibernate 进行优化。
9) 不过值得注意的是,一些数据库提供的主键生成机制在效率上未必最佳,大量并发 insert 数据时可能会引起表之间的互锁。数据库提供的主键生成机制,往往是通过在一个内部表中保存当前主键状态(如对于自增型主键而言,此内部表中就维护着当前的 最大值和递增量),之后每次插入数据会读取这个最大值,然后加上递增量作为新记录的主键,之后再把这个新的最大值更新回内部表中,这样,一次 Insert 操作可能导致数据库内部多次表读写操作,同时伴随的还有数据的加锁解锁操作,这对性能产生了较大影响。
因此,对于并发 Insert 要求较高的系统,推荐采用 uuid.hex 作为主键生成机制。
10) Dynamic Update 如果选定,则生成 Update  SQL   时不包含未发生变动的字段属性,这样可以在一定程度上提升 SQL 执行效能 . Dynamic Insert 如果选定,则生成 Insert SQL 时不包含未发生变动的字段属性,这样可以在一定程度上提升 SQL 执行效能
11) 在编写代码的时候请,对将 POJO 的 getter/setter 方法设定为 public ,如果设定为 private , Hibernate 将无法对属性的存取进行优化,只能转而采用传统的反射机制进行操作,这将导致大量的性能开销(特别是在 1.4 之前的 Sun JDK 版本以及 IBM JDK 中,反射所带来的系统开销相当可观)。
12) 在 one-to-many 关系中,将 many 一方设为主动方( inverse=false )将有助性能的改善
13) 由于多对多关联的性能不佳(由于引入了中间表,一次读取操作需要反复数次查询),因此在设计 中应该避免大量使用 .
14) Hibernate 支持两种锁机制:即通常所说的“悲观锁( Pessimistic Locking )”和“乐观锁( Optimistic Locking )”。 悲观锁带来 数据库性能的大量开销,特别是对长事务而言,这样的开销往往无法承受。乐观锁机制在一定程度上解决了这个问题.乐观锁机制避免了长事务中的数据库加锁开 销,大大提升了大并发量下的系统整体性能表现。


------------------------------------


一。 inverse = ?
inverse=false(default)
用于单向one-to-many关联
parent.getChildren().add(child) // insert child
parent.getChildren().delete(child) // delete child
inverse=true
用于双向one-to-many关联
child.setParent(parent); session.save(child) // insert child
session.delete(child)
在分层结构的体系中
parentDao, childDao对于CRUD的封装导致往往直接通过session接口持久化对象,而很少通过关联对象可达性

二。 one-to-many关系
单向关系还是双向关系?
parent.getChildren().add(child)对集合的触及操作会导致lazy的集合初始化,在没有对集合配置二级缓存的情况下,应避免此类操作
select * from child where parent_id = xxx;
性能口诀:
1. 一般情况下避免使用单向关联,尽量使用双向关联
2. 使用双向关联,inverse=“true”
3. 在分层结构中通过DAO接口用session直接持久化对象,避免通过关联关系进行可达性持久化



三。many-to-one关系
单向many-to-one表达了外键存储方
灵活运用many-to-one可以避免一些不必要的性能问题
many-to-one表达的含义是:0..n : 1,many可以是0,可以是1,也可以是n,也就是说many-to-one可以表达一对多,一对一,多对一关系
因此可以配置双向many-to-one关系,例如:
1. 一桌四人打麻将,麻将席位和打麻将的人是什么关系?是双向many-to-one的关系

四。one-to-one
通过主键进行关联
相当于把大表拆分为多个小表
例如把大字段单独拆分出来,以提高数据库操作的性能
Hibernate的one-to-one似乎无法lazy,必须通过bytecode enhancement

五。集合List/Bag/Set
one-to-many
1. List需要维护index column,不能被用于双向关联,必须inverse=“false”,被谨慎的使用在某些稀有的场合

2. Bag/Set语义上没有区别
3. 我个人比较喜欢使用Bag
many-to-many
1. Bag和Set语义有区别
2。 建议使用Set

六。集合的过滤
1. children = session.createFilter(parent.getChildren(), “where this.age > 5 and this.age < 10”).list()
针对一对多关联当中的集合元素非常庞大的情况,特别适合于庞大集合的分页:
session.createFilter(parent.getChildren(),“”).setFirstResult(0).setMaxResults(10).list();
在hibernate 中用 super.getSession().createFilter( , )

七。继承关系当中的隐式多态
HQL: from Object
1. 把所有数据库表全部查询出来
2. polymorphism=“implicit”(default)将当前对象,和对象所有继承子类全部一次性取出
3. polymorphism=“explicit”,只取出当前查询对象

八。Hibernate二级缓存
著名的n+1问题:from Child,然后在页面上面显示每个子类的父类信息,就会导致n条对parent表的查询:
select * from parent where id = ?
.......................
select * from parent where id = ?
解决方案
1. eager fetch
2. 二级缓存

九。inverse和二级缓存的关系
当使用集合缓存的情况下:
1. inverse=“false”,通过parent.getChildren()来操作,Hibernate维护集合缓存
2. inverse=“true”,直接对child进行操作,未能维护集合缓存!导致缓存脏数据
3. 双向关联,inverse=“true”的情况下应避免使用集合缓存

十。Hibernate二级缓存是提升web 应用性能的法宝
OLTP类型的web应用,由于应用服务器端可以进行群集水平扩展,最终的系统瓶颈总是逃不开数据库访问;

哪个框架能够最大限度减少数据库访问,降低数据库访问压力, 哪个框架提供的性能就更高;针对数据库的缓存策略:
1. 对象缓存:细颗粒度,针对表的记录级别,透明化访问,在不改变程序代码的情况下可以极大提升web应用的性能。对象缓存是ORM的制胜法宝。
2. 对象缓存的优劣取决于框架实现的水平,Hibernate是目前已知对象缓存最强大的开源ORM
3. 查询缓存:粗颗粒度,针对查询结果集,应用于数据实时化要求不高的场合

十一。应用场合决定了系统架构
一、是否需要ORM
Hibernate or iBATIS?
二、采用ORM决定了数据库设计
Hibernate:
倾向于细颗粒度的设计,面向对象,将大表拆分为多个关联关系的小表,消除冗余column,通过二级缓存提升性能(DBA比较忌讳关联关系的出现,但是 ORM的缓存将突破关联关系的性能瓶颈);Hibernate的性能瓶颈不在于关联关系,而在于大表的操作
iBATIS:
倾向于粗颗粒度设计,面向关系,尽量把表合并,通过表column冗余,消除关联关系。无有效缓存手段。iBATIS的性能瓶颈不在于大表操作,而在于关联关系。

总结:
性能口诀
1、使用双向一对多关联,不使用单向一对多
2、灵活使用单向多对一关联
3、不用一对一,用多对一取代
4、配置对象缓存,不使用集合缓存
5、一对多集合使用Bag,多对多集合使用Set
6、继承类使用显式多态
7、表字段要少,表关联不要怕多,有二级缓存撑腰



最近开始留意项目中的Hibernate的性能问题,希望可以抽出时间学习 一下hiberante的性能优化。主要是对数据库连接池技术、hibernate二级缓存、hibernate的配置优化等问题进行学习!


1.关联关系:
普通的关联关系:是不包括一个连接表,也就是中间表如:
create table Person(personId bigint not null primary key,addressId bigint not null)
create table Address(addressId bigint not null primary key)
也就是不会还有一个关系表如:
create table Person(personId bigint not null primary key)
create table Address(addressId bigint not null primary key)
create table PersonAddress(personId bigint not null,ddressId bigint not null primary key)


单向many-to-one关联是最常见的,而单向one-to-many是不常见的


2. inner join (内连接)
left (outer) join (左外连接)
right (outer) join (右外连接)
full join (全连接,并不常用)


3.小技巧:
统计结果数目:
(Integer)session.iterator("select count(*) from ..").next()).intValue();
根据一个集合大小来排序:
select user.id,user.name
from User as user.name
left join user.messages msg
group by user.id,user.name
having count(msg)>=1

分享到:
评论

相关推荐

    Hibernate性能优化研究.pdf

    ### Hibernate性能优化研究 #### 一、引言 随着企业级应用的发展,高效的数据持久化技术成为了提升系统性能的关键因素之一。Hibernate作为一种流行的面向Java环境的对象关系映射(Object-Relational Mapping,简称...

    hibernate性能优化

    珍藏的hibernate性能优化,如果对hibernate进行优化,很详细,是工作和面试的好助手

    hibernate性能优化方案

    ### Hibernate性能优化方案详解 #### 一、引言 Hibernate作为Java领域中广泛使用的对象关系映射(ORM)框架,其高效性和灵活性受到众多开发者的青睐。然而,不当的设计和配置往往会导致性能瓶颈,严重影响应用程序...

    Hibernate性能优化共9页.pdf.zip

    "Hibernate性能优化共9页.pdf.zip" 这个文件标题表明了内容专注于Hibernate框架的性能优化,暗示我们将探讨如何提升使用Hibernate进行数据库操作时的效率。通常,性能优化涉及减少延迟、提高吞吐量、降低资源消耗等...

    hibernate性能优化.doc

    Hibernate 性能优化 在 Hibernate 中,性能优化是非常重要的,因为它直接影响着应用程序的效率和可扩展性。在本文中,我们将讨论两个常见的性能优化问题:批量处理和 1+n 问题,并提供相应的解决方法。 问题 1:...

    Hibernate性能优化:一级缓存

    本文将深入探讨Hibernate性能优化中的一个重要概念——一级缓存,并结合给出的压缩包文件“hibernate_cache_level1”,来详细解析一级缓存的工作原理及其优化策略。 一级缓存是Hibernate内置的一种缓存机制,它存在...

    hibernate性能优化[参考].pdf

    以下是对《hibernate性能优化[参考].pdf》内容的详细解读: 1. **数据库优化**: - **物理硬件优化**:关注磁盘的IO性能,因为数据库读写频繁,磁盘的寻道能力直接影响数据访问速度。 - **MySQL配置优化**:通过...

    Hibernate 性能优化

    ### Hibernate 性能优化 #### 一、引言 Hibernate 是一款非常强大的对象关系映射(ORM)框架,它能够简化 Java 应用程序与数据库之间的交互过程。然而,对于初次接触 Hibernate 的开发者来说,可能会遇到性能方面...

    Hibernate性能优化:二级缓存

    二级缓存是Hibernate性能优化的重要手段,通过合理配置和使用,可以显著减少数据库访问,提高系统响应速度。但同时,需要注意缓存的副作用,如数据一致性、并发控制等问题。在实际应用中,需要结合业务场景和性能...

    Struts Spring Hibernate性能优化

    在进行大型项目开发时,性能优化是至关重要的,特别是对于基于SSH(Struts、Spring、Hibernate)这样的企业级框架的应用。SSH性能优化主要是针对Struts的MVC处理、Spring的依赖注入以及Hibernate的对象关系映射进行...

    Hibernate性能调优

    ### Hibernate性能调优知识...综上所述,Hibernate性能优化涉及多个层面,包括但不限于关联管理、集合类型选择、继承关系配置以及缓存策略等。合理配置这些选项能够显著提高应用程序的性能,并且减少不必要的资源消耗。

    hibernate-性能优化

    【标签】:hibernate, 性能优化 【正文】: 1. **数据库设计调整**: - **降低关联的复杂性**:减少多对多关联,避免过度嵌套的对象关系。 - **避免联合主键**:联合主键可能导致额外的性能损失,尝试使用单独的...

    Hibernate3性能优化 Hibernate_regerence3.12

    的效率低于直接JDBC存取,然而,在经过比较好的性能优化之后,Hibernate的性能还是让人相当满意的, 特别是应用二级缓存之后,甚至可以获得比较不使用缓存的JDBC更好的性能,下面介绍一些通常的 Hibernate的优化策略...

Global site tag (gtag.js) - Google Analytics