`

ThreadLocal源码阅读

    博客分类:
  • java
 
阅读更多

1.作用:

ThreadLocal是线程本地存储,ThreadLocal为变量在每个线程中都创建了一个副本,每个线程都可以访问自己内部的副本变量。

 

2.原理:

 

private final int threadLocalHashCode = nextHashCode();

private static AtomicInteger nextHashCode = new AtomicInteger();



private static final int HASH_INCREMENT = 0x61c88647;



private static int nextHashCode() {

        return nextHashCode.getAndAdd(HASH_INCREMENT);

 }

 

 

hash值:通过hash值可以搜索到ThreadLocal

 

 

protected T initialValue() {

        return null;

    }

 

 

//返回当前线程的初始值,当线程访问变量的时候该方法第一次被调用,通常该方法在每个线程中最多被调用一次,

//该方法返回null,如果希望有值的话需要子类重写该方法

 

 

/**

     * Returns the value in the current thread's copy of this

     * thread-local variable.  If the variable has no value for the

     * current thread, it is first initialized to the value returned

     * by an invocation of the {@link #initialValue} method.

     *

     * @return the current thread's value of this thread-local

     */

    public T get() {

        Thread t = Thread.currentThread();

        ThreadLocalMap map = getMap(t);

        if (map != null) {

            ThreadLocalMap.Entry e = map.getEntry(this);

            if (e != null) {

                @SuppressWarnings("unchecked")

                T result = (T)e.value;

                return result;

            }

        }

        return setInitialValue();

    }

    

    /**

     * Variant of set() to establish initialValue. Used instead

     * of set() in case user has overridden the set() method.

     *

     * @return the initial value

     */

    private T setInitialValue() {

        T value = initialValue();

        Thread t = Thread.currentThread();

        ThreadLocalMap map = getMap(t);

        if (map != null)

            map.set(this, value);

        else

            createMap(t, value);

        return value;

    }

    

    /**

     * Sets the current thread's copy of this thread-local variable

     * to the specified value.  Most subclasses will have no need to

     * override this method, relying solely on the {@link #initialValue}

     * method to set the values of thread-locals.

     *

     * @param value the value to be stored in the current thread's copy of

     *        this thread-local.

     */

    public void set(T value) {

        Thread t = Thread.currentThread();

        ThreadLocalMap map = getMap(t);

        if (map != null)

            map.set(this, value);

        else

            createMap(t, value);

    }

    

     /**

     * Removes the current thread's value for this thread-local

     * variable.  If this thread-local variable is subsequently

     * {@linkplain #get read} by the current thread, its value will be

     * reinitialized by invoking its {@link #initialValue} method,

     * unless its value is {@linkplain #set set} by the current thread

     * in the interim.  This may result in multiple invocations of the

     * {@code initialValue} method in the current thread.

     *

     * @since 1.5

     */

     public void remove() {

         ThreadLocalMap m = getMap(Thread.currentThread());

         if (m != null)

             m.remove(this);

     }

 

 

 //我们可以看到ThreadLocal常见的get,set,remove操作都是通过当前线程获取ThreadLocalMap,

//然后使用ThreadLocalMap进行操作。

//我们来看一下ThreadLocalMap的代码

 

 

 

/**

     * ThreadLocalMap is a customized hash map suitable only for

     * maintaining thread local values. No operations are exported

     * outside of the ThreadLocal class. The class is package private to

     * allow declaration of fields in class Thread.  To help deal with

     * very large and long-lived usages, the hash table entries use

     * WeakReferences for keys. However, since reference queues are not

     * used, stale entries are guaranteed to be removed only when

     * the table starts running out of space.

     */

    static class ThreadLocalMap {



        /**

         * The entries in this hash map extend WeakReference, using

         * its main ref field as the key (which is always a

         * ThreadLocal object).  Note that null keys (i.e. entry.get()

         * == null) mean that the key is no longer referenced, so the

         * entry can be expunged from table.  Such entries are referred to

         * as "stale entries" in the code that follows.

         */

        static class Entry extends WeakReference<ThreadLocal<?>> {

            /** The value associated with this ThreadLocal. */

            Object value;



            Entry(ThreadLocal<?> k, Object v) {

                super(k);

                value = v;

            }

        }



        /**

         * The initial capacity -- MUST be a power of two.

         */

        private static final int INITIAL_CAPACITY = 16;



        /**

         * The table, resized as necessary.

         * table.length MUST always be a power of two.

         */

        private Entry[] table;



        /**

         * The number of entries in the table.

         */

        private int size = 0;



        /**

         * The next size value at which to resize.

         */

        private int threshold; // Default to 0



        /**

         * Set the resize threshold to maintain at worst a 2/3 load factor.

         */

        private void setThreshold(int len) {

            threshold = len * 2 / 3;

        }



        /**

         * Increment i modulo len.

         */

        private static int nextIndex(int i, int len) {

            return ((i + 1 < len) ? i + 1 : 0);

        }



        /**

         * Decrement i modulo len.

         */

        private static int prevIndex(int i, int len) {

            return ((i - 1 >= 0) ? i - 1 : len - 1);

        }



        /**

         * Construct a new map initially containing (firstKey, firstValue).

         * ThreadLocalMaps are constructed lazily, so we only create

         * one when we have at least one entry to put in it.

         */

        ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {

            table = new Entry[INITIAL_CAPACITY];

            int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);

            table[i] = new Entry(firstKey, firstValue);

            size = 1;

            setThreshold(INITIAL_CAPACITY);

        }



        /**

         * Construct a new map including all Inheritable ThreadLocals

         * from given parent map. Called only by createInheritedMap.

         *

         * @param parentMap the map associated with parent thread.

         */

        private ThreadLocalMap(ThreadLocalMap parentMap) {

            Entry[] parentTable = parentMap.table;

            int len = parentTable.length;

            setThreshold(len);

            table = new Entry[len];



            for (int j = 0; j < len; j++) {

                Entry e = parentTable[j];

                if (e != null) {

                    @SuppressWarnings("unchecked")

                    ThreadLocal<Object> key = (ThreadLocal<Object>) e.get();

                    if (key != null) {

                        Object value = key.childValue(e.value);

                        Entry c = new Entry(key, value);

                        int h = key.threadLocalHashCode & (len - 1);

                        while (table[h] != null)

                            h = nextIndex(h, len);

                        table[h] = c;

                        size++;

                    }

                }

            }

        }



        /**

         * Get the entry associated with key.  This method

         * itself handles only the fast path: a direct hit of existing

         * key. It otherwise relays to getEntryAfterMiss.  This is

         * designed to maximize performance for direct hits, in part

         * by making this method readily inlinable.

         *

         * @param  key the thread local object

         * @return the entry associated with key, or null if no such

         */

        private Entry getEntry(ThreadLocal<?> key) {

            int i = key.threadLocalHashCode & (table.length - 1);

            Entry e = table[i];

            if (e != null && e.get() == key)

                return e;

            else

                return getEntryAfterMiss(key, i, e);

        }



        /**

         * Version of getEntry method for use when key is not found in

         * its direct hash slot.

         *

         * @param  key the thread local object

         * @param  i the table index for key's hash code

         * @param  e the entry at table[i]

         * @return the entry associated with key, or null if no such

         */

        private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {

            Entry[] tab = table;

            int len = tab.length;



            while (e != null) {

                ThreadLocal<?> k = e.get();

                if (k == key)

                    return e;

                if (k == null)

                    expungeStaleEntry(i);

                else

                    i = nextIndex(i, len);

                e = tab[i];

            }

            return null;

        }



        /**

         * Set the value associated with key.

         *

         * @param key the thread local object

         * @param value the value to be set

         */

        private void set(ThreadLocal<?> key, Object value) {



            // We don't use a fast path as with get() because it is at

            // least as common to use set() to create new entries as

            // it is to replace existing ones, in which case, a fast

            // path would fail more often than not.



            Entry[] tab = table;

            int len = tab.length;

            int i = key.threadLocalHashCode & (len-1);



            for (Entry e = tab[i];

                 e != null;

                 e = tab[i = nextIndex(i, len)]) {

                ThreadLocal<?> k = e.get();



                if (k == key) {

                    e.value = value;

                    return;

                }



                if (k == null) {

                    replaceStaleEntry(key, value, i);

                    return;

                }

            }



            tab[i] = new Entry(key, value);

            int sz = ++size;

            if (!cleanSomeSlots(i, sz) && sz >= threshold)

                rehash();

        }



        /**

         * Remove the entry for key.

         */

        private void remove(ThreadLocal<?> key) {

            Entry[] tab = table;

            int len = tab.length;

            int i = key.threadLocalHashCode & (len-1);

            for (Entry e = tab[i];

                 e != null;

                 e = tab[i = nextIndex(i, len)]) {

                if (e.get() == key) {

                    e.clear();

                    expungeStaleEntry(i);

                    return;

                }

            }

        }



        /**

         * Replace a stale entry encountered during a set operation

         * with an entry for the specified key.  The value passed in

         * the value parameter is stored in the entry, whether or not

         * an entry already exists for the specified key.

         *

         * As a side effect, this method expunges all stale entries in the

         * "run" containing the stale entry.  (A run is a sequence of entries

         * between two null slots.)

         *

         * @param  key the key

         * @param  value the value to be associated with key

         * @param  staleSlot index of the first stale entry encountered while

         *         searching for key.

         */

        private void replaceStaleEntry(ThreadLocal<?> key, Object value,

                                       int staleSlot) {

            Entry[] tab = table;

            int len = tab.length;

            Entry e;



            // Back up to check for prior stale entry in current run.

            // We clean out whole runs at a time to avoid continual

            // incremental rehashing due to garbage collector freeing

            // up refs in bunches (i.e., whenever the collector runs).

            int slotToExpunge = staleSlot;

            for (int i = prevIndex(staleSlot, len);

                 (e = tab[i]) != null;

                 i = prevIndex(i, len))

                if (e.get() == null)

                    slotToExpunge = i;



            // Find either the key or trailing null slot of run, whichever

            // occurs first

            for (int i = nextIndex(staleSlot, len);

                 (e = tab[i]) != null;

                 i = nextIndex(i, len)) {

                ThreadLocal<?> k = e.get();



                // If we find key, then we need to swap it

                // with the stale entry to maintain hash table order.

                // The newly stale slot, or any other stale slot

                // encountered above it, can then be sent to expungeStaleEntry

                // to remove or rehash all of the other entries in run.

                if (k == key) {

                    e.value = value;



                    tab[i] = tab[staleSlot];

                    tab[staleSlot] = e;



                    // Start expunge at preceding stale entry if it exists

                    if (slotToExpunge == staleSlot)

                        slotToExpunge = i;

                    cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);

                    return;

                }



                // If we didn't find stale entry on backward scan, the

                // first stale entry seen while scanning for key is the

                // first still present in the run.

                if (k == null && slotToExpunge == staleSlot)

                    slotToExpunge = i;

            }



            // If key not found, put new entry in stale slot

            tab[staleSlot].value = null;

            tab[staleSlot] = new Entry(key, value);



            // If there are any other stale entries in run, expunge them

            if (slotToExpunge != staleSlot)

                cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);

        }



        /**

         * Expunge a stale entry by rehashing any possibly colliding entries

         * lying between staleSlot and the next null slot.  This also expunges

         * any other stale entries encountered before the trailing null.  See

         * Knuth, Section 6.4

         *

         * @param staleSlot index of slot known to have null key

         * @return the index of the next null slot after staleSlot

         * (all between staleSlot and this slot will have been checked

         * for expunging).

         */

        private int expungeStaleEntry(int staleSlot) {

            Entry[] tab = table;

            int len = tab.length;



            // expunge entry at staleSlot

            tab[staleSlot].value = null;

            tab[staleSlot] = null;

            size--;



            // Rehash until we encounter null

            Entry e;

            int i;

            for (i = nextIndex(staleSlot, len);

                 (e = tab[i]) != null;

                 i = nextIndex(i, len)) {

                ThreadLocal<?> k = e.get();

                if (k == null) {

                    e.value = null;

                    tab[i] = null;

                    size--;

                } else {

                    int h = k.threadLocalHashCode & (len - 1);

                    if (h != i) {

                        tab[i] = null;



                        // Unlike Knuth 6.4 Algorithm R, we must scan until

                        // null because multiple entries could have been stale.

                        while (tab[h] != null)

                            h = nextIndex(h, len);

                        tab[h] = e;

                    }

                }

            }

            return i;

        }



        /**

         * Heuristically scan some cells looking for stale entries.

         * This is invoked when either a new element is added, or

         * another stale one has been expunged. It performs a

         * logarithmic number of scans, as a balance between no

         * scanning (fast but retains garbage) and a number of scans

         * proportional to number of elements, that would find all

         * garbage but would cause some insertions to take O(n) time.

         *

         * @param i a position known NOT to hold a stale entry. The

         * scan starts at the element after i.

         *

         * @param n scan control: {@code log2(n)} cells are scanned,

         * unless a stale entry is found, in which case

         * {@code log2(table.length)-1} additional cells are scanned.

         * When called from insertions, this parameter is the number

         * of elements, but when from replaceStaleEntry, it is the

         * table length. (Note: all this could be changed to be either

         * more or less aggressive by weighting n instead of just

         * using straight log n. But this version is simple, fast, and

         * seems to work well.)

         *

         * @return true if any stale entries have been removed.

         */

        private boolean cleanSomeSlots(int i, int n) {

            boolean removed = false;

            Entry[] tab = table;

            int len = tab.length;

            do {

                i = nextIndex(i, len);

                Entry e = tab[i];

                if (e != null && e.get() == null) {

                    n = len;

                    removed = true;

                    i = expungeStaleEntry(i);

                }

            } while ( (n >>>= 1) != 0);

            return removed;

        }



        /**

         * Re-pack and/or re-size the table. First scan the entire

         * table removing stale entries. If this doesn't sufficiently

         * shrink the size of the table, double the table size.

         */

        private void rehash() {

            expungeStaleEntries();



            // Use lower threshold for doubling to avoid hysteresis

            if (size >= threshold - threshold / 4)

                resize();

        }



        /**

         * Double the capacity of the table.

         */

        private void resize() {

            Entry[] oldTab = table;

            int oldLen = oldTab.length;

            int newLen = oldLen * 2;

            Entry[] newTab = new Entry[newLen];

            int count = 0;



            for (int j = 0; j < oldLen; ++j) {

                Entry e = oldTab[j];

                if (e != null) {

                    ThreadLocal<?> k = e.get();

                    if (k == null) {

                        e.value = null; // Help the GC

                    } else {

                        int h = k.threadLocalHashCode & (newLen - 1);

                        while (newTab[h] != null)

                            h = nextIndex(h, newLen);

                        newTab[h] = e;

                        count++;

                    }

                }

            }



            setThreshold(newLen);

            size = count;

            table = newTab;

        }



        /**

         * Expunge all stale entries in the table.

         */

        private void expungeStaleEntries() {

            Entry[] tab = table;

            int len = tab.length;

            for (int j = 0; j < len; j++) {

                Entry e = tab[j];

                if (e != null && e.get() == null)

                    expungeStaleEntry(j);

            }

        }

    }

 

 

    

ThreadLocalMap是自定义的hashmap,用于保存threadlocal的值,threadlocalMap中使用了弱引用,

目的是为了处理较大而且长时间存活的变量

解释一下:弱引用是在垃圾回收时,只要收集器

扫描到了该对象,那么直接就回收该对象,不管

对象的声明周期是否结束

当释放掉threadLocal的强引用后,ThreadLocalMap中的value却没有被回收,而这块value永远不会访问到了

假如说,Entry持有的是ThreadLocal强引用的话

那么在ThreadLocal删除的时候必须先删除ThreadLocalMap

否则会导致内存溢出

 

3.使用场景:

(1)spring事物

(2)数据库连接池

(3)用户登录,保存当前用户登录信息

分享到:
评论

相关推荐

    ThreadLocal源码(版本:Android4.3,,含注释)

    ThreadLocal源码(版本:Android4.3,,含注释)

    threadlocal源码.jpg

    threadlocal源码解析

    ThreadLocal源码以及应用.md

    ThreadLocal源码以及应用

    ThreadLocal源码分析

    首先,ThreadLocal 不是用来解决共享对象的多线程访问问题的,一般情况下,通过ThreadLocal.set() 到线程中的对象是该线程自己使用的对象,其他线程是不需要访问的,也访问不到的。各个线程中访问的是不同的对象。

    ThreadLocal_ThreadLocal源码分析_

    **ThreadLocal概述** ThreadLocal是Java中的一个线程局部变量类,它为每个线程创建了一个独立的变量副本。这意味着每个线程都有自己的ThreadLocal变量,互不干扰,提供了线程安全的数据存储方式。ThreadLocal通常...

    Java并发编程学习之ThreadLocal源码详析

    Java并发编程学习之ThreadLocal源码详析 ThreadLocal是Java并发编程中的一种机制,用于解决多线程访问共享变量的问题。它可以使每个线程对共享变量的访问都是线程安全的,使得多线程编程变得更加简单。 ...

    ThreadLocal_ThreadLocal源码分析_源码.zip

    通过分析ThreadLocal的源码,我们可以深入理解其内部机制。例如,`initialValue()`方法用于提供默认的初始值,`set()`方法如何将值放入ThreadLocalMap,`get()`方法如何获取值,以及`remove()`方法如何清理线程局部...

    ThreadLocal源码分析和使用

    ThreadLocal 源码分析和使用 ThreadLocal 是 Java 语言中的一种多线程编程机制,用于解决多线程程序的并发问题。它不是一个 Thread,而是一个 Thread 的局部变量。ThreadLocal 的出现是为了解决多线程程序中的共享...

    ThreadLocal

    ThreadLocal是Java编程语言中的一个类,用于在多线程环境中提供线程局部变量。它是一种特殊类型的变量,每个线程都有自己的副本,互不影响,从而实现线程间数据隔离。ThreadLocal通常被用来解决线程共享数据时可能...

    理解的ThreadLocal类的相关源码(用于博文引用源码下载)

    Java中ThreadLocal工具类(解决多线程程序中并发问题的一种新思路,主要为参数的拷贝问题),感兴趣的话可以查看博文,博文地址:http://blog.csdn.net/otengyue/article/details/38459327

    Java中ThreadLocal源码详细注释

    ThreadLocal的作用是提供线程内的局部变量,这种变量在多线程环境下访问时能够保证各个线程里变量的独立性。线程局部变量(ThreadLocal)其实的功用非常简单,就是为每一个使用该变量的线程都提供一个变量值的副本,是...

    java ThreadLocal多线程专属的变量源码

    java ThreadLocal多线程专属的变量源码java ThreadLocal多线程专属的变量源码java ThreadLocal多线程专属的变量源码java ThreadLocal多线程专属的变量源码java ThreadLocal多线程专属的变量源码java ThreadLocal多...

    Java源码解析ThreadLocal及使用场景

    Java源码解析ThreadLocal及使用场景 ThreadLocal是Java中一个非常重要的类,它在多线程环境下经常使用,用于提供线程本地变量。这些变量使每个线程都有自己的一份拷贝,使得多个线程可以独立地使用变量,不会彼此...

    ThreadLocal的原理,源码深度分析及使用.docx

    ThreadLocal 的原理、源码深度分析及使用 ThreadLocal 是 Java 语言中的一种机制,用于实现线程本地存储,能够帮助开发者在多线程环境下解决变量访问安全的问题。下面将对 ThreadLocal 的原理、实现机制、使用方法...

    hadoop源码阅读总结

    ### Hadoop源码阅读总结:IPC/RPC 通信机制详解 #### 一、概述 Hadoop作为分布式计算框架,其内部各个组件之间的通信主要通过RPC(Remote Procedure Call)实现。本文将详细介绍Hadoop中RPC机制的工作原理,特别是...

    java并发包源码分析(3)ThreadLocal

    Java并发编程中,ThreadLocal是一个非常重要的类,它是解决线程安全问题的一个工具。ThreadLocal提供了一种在多线程环境下使用“共享变量”的方式,但是它实际上是为每个线程提供一个变量的副本,这样每个线程都可以...

    threadLocal

    ThreadLocal是Java编程语言中的一个线程局部变量类,它为每个线程提供了一个独立的变量副本,使得每个线程可以独立地改变...通过阅读和理解这些资料,开发者可以深化对ThreadLocal的理解,并将其有效地应用于项目中。

    使用ThreadLocal管理“session”数据

    要深入理解ThreadLocal的工作原理,需要查看其源码。ThreadLocal内部使用了一个ThreadLocalMap,它是一个基于ThreadLocal实例作为键,值为用户存储对象的弱引用表。每个线程都有一个这样的ThreadLocalMap,保证了...

    ThreadLocal 线程本地变量 及 源码分析.rar_开发_设计

    以上是对ThreadLocal的简单介绍和源码分析,实际使用中还需要结合具体业务场景进行合理设计和优化。通过深入理解ThreadLocal的工作原理,可以帮助我们更好地利用这一工具,提高代码的并发性能和可维护性。

    ThreadLocal源码解析

    ThreadLocal类的作用:为每个线程创建独立的副本,从而保证了线程安全。 ThreadLocal使用代码示例: public class MyThreadLocalTest { private ThreadLocal threadLocal=new ThreadLocal(){ @Override protected...

Global site tag (gtag.js) - Google Analytics