`

排序算法复习(Java实现)(一): 插入,冒泡,选择,Shell,快速排序

    博客分类:
  • J2SE
阅读更多

转自:http://www.blogjava.net/javacap/archive/2007/12/13/167364.html

 

为了便于管理,先引入个基础类:

<!---->package  algorithms;

/**
 * 
@author  yovn
 *
 
*/
public   abstract   class  Sorter < extends  Comparable < E >>  {
    
    
public   abstract   void  sort(E[] array, int  from , int  len);
    
    
public   final   void  sort(E[] array)
    {
        sort(array,
0 ,array.length);
    }
    
protected   final   void  swap(E[] array, int  from , int  to)
    {
        E tmp
= array[from];
        array[from]
= array[to];
        array[to]
= tmp;
    }

}

一 插入排序
该算法在数据规模小的时候十分高效,该算法每次插入第K+1到前K个有序数组中一个合适位置,K从0开始到N-1,从而完成排序:

<!---->package  algorithms;
/**
 * 
@author  yovn
 
*/
public   class  InsertSorter < extends  Comparable < E >>   extends  Sorter < E >  {

    
/*  (non-Javadoc)
     * @see algorithms.Sorter#sort(E[], int, int)
     
*/
    
public   void  sort(E[] array,  int  from,  int  len) {
         E tmp
= null ;
          
for ( int  i = from + 1 ;i < from + len;i ++ )
          {
              tmp
= array[i];
              
int  j = i;
              
for (;j > from;j -- )
              {
                  
if (tmp.compareTo(array[j - 1 ]) < 0 )
                  {
                      array[j]
= array[j - 1 ];
                  }
                  
else   break ;
              }
              array[j]
= tmp;
          }
    }
        
    

}


二 冒泡排序
这可能是最简单的排序算法了,算法思想是每次从数组末端开始比较相邻两元素,把第i小的冒泡到数组的第i个位置。i从0一直到N-1从而完成排序。(当然也可以从数组开始端开始比较相邻两元素,把第i大的冒泡到数组的第N-i个位置。i从0一直到N-1从而完成排序。)

<!---->package  algorithms;

/**
 * 
@author  yovn
 *
 
*/
public   class  BubbleSorter < extends  Comparable < E >>   extends  Sorter < E >  {

    
private   static    boolean  DWON = true ;
    
    
public   final   void  bubble_down(E[] array,  int  from,  int  len)
    {
        
for ( int  i = from;i < from + len;i ++ )
        {
            
for ( int  j = from + len - 1 ;j > i;j -- )
            {
                
if (array[j].compareTo(array[j - 1 ]) < 0 )
                {
                    swap(array,j
- 1 ,j);
                }
            }
        }
    }
    
    
public   final   void  bubble_up(E[] array,  int  from,  int  len)
    {
        
for ( int  i = from + len - 1 ;i >= from;i -- )
        {
            
for ( int  j = from;j < i;j ++ )
            {
                
if (array[j].compareTo(array[j + 1 ]) > 0 )
                {
                    swap(array,j,j
+ 1 );
                }
            }
        }
    }
    @Override
    
public   void  sort(E[] array,  int  from,  int  len) {
        
        
if (DWON)
        {
            bubble_down(array,from,len);
        }
        
else
        {
            bubble_up(array,from,len);
        }
    }
    
}


三,选择排序
选择排序相对于冒泡来说,它不是每次发现逆序都交换,而是在找到全局第i小的时候记下该元素位置,最后跟第i个元素交换,从而保证数组最终的有序。
相对与插入排序来说,选择排序每次选出的都是全局第i小的,不会调整前i个元素了。

<!---->package  algorithms;
/**
 * 
@author  yovn
 *
 
*/
public   class  SelectSorter < extends  Comparable < E >>   extends  Sorter < E >  {

    
/*  (non-Javadoc)
     * @see algorithms.Sorter#sort(E[], int, int)
     
*/
    @Override
    
public   void  sort(E[] array,  int  from,  int  len) {
        
for ( int  i = 0 ;i < len;i ++ )
        {
            
int  smallest = i;
            
int  j = i + from;
            
for (;j < from + len;j ++ )
            {
                
if (array[j].compareTo(array[smallest]) < 0 )
                {
                    smallest
= j;
                }
            }
            swap(array,i,smallest);
                   
        }

    }
 
}

四 Shell排序
Shell排序可以理解为插入排序的变种,它充分利用了插入排序的两个特点:
1)当数据规模小的时候非常高效
2)当给定数据已经有序时的时间代价为O(N)
所以,Shell排序每次把数据分成若个小块,来使用插入排序,而且之后在这若个小块排好序的情况下把它们合成大一点的小块,继续使用插入排序,不停的合并小块,知道最后成一个块,并使用插入排序。

这里每次分成若干小块是通过“增量” 来控制的,开始时增量交大,接近N/2,从而使得分割出来接近N/2个小块,逐渐的减小“增量“最终到减小到1。

一直较好的增量序列是2^k-1,2^(k-1)-1,.....7,3,1,这样可使Shell排序时间复杂度达到O(N^1.5)
所以我在实现Shell排序的时候采用该增量序列

<!---->package  algorithms;

/**
 * 
@author  yovn
 
*/
public   class  ShellSorter < extends  Comparable < E >>   extends  Sorter < E >   {

    
/*  (non-Javadoc)
     * Our delta value choose 2^k-1,2^(k-1)-1, .7,3,1.
     * complexity is O(n^1.5)
     * @see algorithms.Sorter#sort(E[], int, int)
     
*/
    @Override
    
public   void  sort(E[] array,  int  from,  int  len) {
        
        
// 1.calculate  the first delta value;
         int  value = 1 ;
        
while ((value + 1 ) * 2 < len)
        {
            value
= (value + 1 ) * 2 - 1 ;
        
        }
    
        
for ( int  delta = value;delta >= 1 ;delta = (delta + 1 ) / 2 - 1 )
        {
            
for ( int  i = 0 ;i < delta;i ++ )
            {
                modify_insert_sort(array,from
+ i,len - i,delta);
            }
        }

    }
    
    
private   final    void  modify_insert_sort(E[] array,  int  from,  int  len, int  delta) {
          
if (len <= 1 ) return ;
          E tmp
= null ;
          
for ( int  i = from + delta;i < from + len;i += delta)
          {
              tmp
= array[i];
              
int  j = i;
              
for (;j > from;j -= delta)
              {
                  
if (tmp.compareTo(array[j - delta]) < 0 )
                  {
                      array[j]
= array[j - delta];
                  }
                  
else   break ;
              }
              array[j]
= tmp;
          }

    }
}


五 快速排序
快速排序是目前使用可能最广泛的排序算法了。
一般分如下步骤:
1)选择一个枢纽元素(有很对选法,我的实现里采用去中间元素的简单方法)
2)使用该枢纽元素分割数组,使得比该元素小的元素在它的左边,比它大的在右边。并把枢纽元素放在合适的位置。
3)根据枢纽元素最后确定的位置,把数组分成三部分,左边的,右边的,枢纽元素自己,对左边的,右边的分别递归调用快速排序算法即可。
快速排序的核心在于分割算法,也可以说是最有技巧的部分。

<!---->package  algorithms;

/**
 * 
@author  yovn
 *
 
*/
public   class  QuickSorter < extends  Comparable < E >>   extends  Sorter < E >  {

    
/*  (non-Javadoc)
     * @see algorithms.Sorter#sort(E[], int, int)
     
*/
    @Override
    
public   void  sort(E[] array,  int  from,  int  len) {
        q_sort(array,from,from
+ len - 1 );
    }

    
    
private   final   void  q_sort(E[] array,  int  from,  int  to) {
        
if (to - from < 1 ) return ;
        
int  pivot = selectPivot(array,from,to);

        
        
        pivot
= partion(array,from,to,pivot);
        
        q_sort(array,from,pivot
- 1 );
        q_sort(array,pivot
+ 1 ,to);
        
    }


    
private   int  partion(E[] array,  int  from,  int  to,  int  pivot) {
        E tmp
= array[pivot];
        array[pivot]
= array[to]; // now to's position is available
        
        
while (from != to)
        {
            
while (from < to && array[from].compareTo(tmp) <= 0 )from ++ ;
            
if (from < to)
            {
                array[to]
= array[from]; // now from's position is available
                to -- ;
            }
            
while (from < to && array[to].compareTo(tmp) >= 0 )to -- ;
            
if (from < to)
            {
                array[from]
= array[to]; // now to's position is available now 
                from ++ ;
            }
        }
        array[from]
= tmp;
        
return  from;
    }


    
private   int  selectPivot(E[] array,  int  from,  int  to) {
    
        
return  (from + to) / 2 ;
    }

}


还有归并排序,堆排序,桶式排序,基数排序,下次在归纳。

分享到:
评论

相关推荐

    排序算法复习大全(Java实现).doc

    本文档旨在详细介绍排序算法的各种实现方式,包括插入排序、冒泡排序、选择排序、Shell 排序和快速排序等,所有算法都使用 Java 语言实现。本文档首先引入了一个基础类 Sorter,用于统一管理各种排序算法,接着逐一...

    基于Java的近百种算法大全打包.zip

    1. **排序算法**:包括但不限于快速排序(Quick Sort)、归并排序(Merge Sort)、堆排序(Heap Sort)、冒泡排序(Bubble Sort)、插入排序(Insertion Sort)、选择排序(Selection Sort)和希尔排序(Shell Sort...

    算法思维导图【全面】.xmind.zip

    算法是计算机科学的基础,尤其在Java编程中,掌握各种排序算法对于提升程序性能至关重要。这份"算法思维导图【全面】.xmind.zip"压缩包文件提供了关于常见排序算法的全面概述,包括它们的设计思想、时间复杂度、空间...

    [附源码+数据库+毕业论文+部署教程+配套软件]基于SpringBoot+MyBatis+MySQL+Maven+Vue的停车场管理系统,推荐!

    一、项目简介 包含:项目源码、数据库脚本等,该项目附带全部源码可作为毕设使用。 项目都经过严格调试,eclipse或者idea 确保可以运行! 该系统功能完善、界面美观、操作简单、功能齐全、管理便捷 二、技术实现 jdk版本:1.8 及以上 ide工具:IDEA或者eclipse 数据库: mysql5.5及以上 后端:spring+springboot+mybatis+maven+mysql 前端: vue , css,js , elementui 三、系统功能 1、系统角色主要包括:管理员、用户 2、系统功能 前台功能包括: 用户登录 车位展示 系统推荐车位 立即预约 公告展示 个人中心 车位预定 违规 余额充值 后台功能: 首页,个人中心,修改密码,个人信息 用户管理 管理员管理 车辆管理 车位管理 车位预定管理,统计报表 公告管理 违规管理 公告类型管理 车位类型管理 车辆类型管理 违规类型管理 轮播图管理 详见 https://flypeppa.blog.csdn.net/article/details/146122666

    springboot656基于java-springboot的农机电招平台毕业设计(代码+数据库+论文+PPT+演示录像+运行教学+软件下载).zip

    项目已获导师指导并通过的高分毕业设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 包含:项目源码、数据库脚本、软件工具等,该项目可以作为毕设、课程设计使用,前后端代码都在里面。 该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。 项目都经过严格调试,确保可以运行!可以放心下载 技术组成 语言:java 开发环境:idea 数据库:MySql 部署环境:maven 数据库工具:navica 更多毕业设计https://cv2022.blog.csdn.net/article/details/124463185

    Python程序设计学习思维导图-仅供参考

    内容为Python程序设计的思维导图,适用于新手小白进行浏览,理清思路

    2024-Stable Diffusion全套资料(软件+关键词+模型).rar

    2024-Stable Diffusion全套资料(软件+关键词+模型).rar

    mmexport1741417035005.png

    mmexport1741417035005.png

    COMSOL三维锂离子电池全耦合电化学热应力模型:模拟充放电过程中的多物理场耦合效应及电芯内应力应变情况,COMSOL锂离子电池热应力全耦合模型,comsol三维锂离子电池电化学热应力全耦合模型锂离子

    COMSOL三维锂离子电池全耦合电化学热应力模型:模拟充放电过程中的多物理场耦合效应及电芯内应力应变情况,COMSOL锂离子电池热应力全耦合模型,comsol三维锂离子电池电化学热应力全耦合模型锂离子电池耦合COMSOL固体力学模块和固体传热模块,模型仿真模拟电池在充放电过程中由于锂插层,热膨胀以及外部约束所导致的电极的应力应变情况结果有电芯中集流体,电极,隔膜的应力应变以及压力情况等,电化学-力单向耦合和双向耦合 ,关键词: 1. COMSOL三维锂离子电池模型; 2. 电化学热应力全耦合模型; 3. 锂离子电池; 4. 固体力学模块; 5. 固体传热模块; 6. 应力应变情况; 7. 电芯中集流体; 8. 电极; 9. 隔膜; 10. 电化学-力单向/双向耦合。,COMSOL锂离子电池全耦合热应力仿真模型

    基于传递矩阵法的一维层状声子晶体振动传输特性及其优化设计与应用,声子晶体传递矩阵法解析及应用,Matlab 一维层状声子晶体振动传输特性 传递矩阵法在声子晶体的设计和应用中具有重要作用 通过调整声子

    基于传递矩阵法的一维层状声子晶体振动传输特性及其优化设计与应用,声子晶体传递矩阵法解析及应用,Matlab 一维层状声子晶体振动传输特性 传递矩阵法在声子晶体的设计和应用中具有重要作用。 通过调整声子晶体的材料、周期和晶格常数等参数,可以设计出具有特定带隙结构的声子晶体,用于滤波、减震、降噪等应用。 例如,通过调整声子晶体的周期数和晶格常数,可以改变带隙的位置和宽度,从而实现特定的频率范围内的噪声控制。 此外,传递矩阵法还可以用于分析和优化声子晶体的透射谱,为声学器件的设计提供理论依据。 ,Matlab; 一维层状声子晶体; 振动传输特性; 传递矩阵法; 材料调整; 周期和晶格常数; 带隙结构; 滤波; 减震; 降噪; 透射谱分析; 声学器件设计,Matlab模拟声子晶体振动传输特性及优化设计研究

    头部姿态估计(HeadPose Estimation)-Android源码

    头部姿态估计(HeadPose Estimation)-Android源码

    永磁同步电机FOC、MPC与高频注入Simulink模型及基于MBD的代码生成工具,适用于Ti f28335与dspace/ccs平台开发,含电机控制开发文档,永磁同步电机控制技术:FOC、MPC与高

    永磁同步电机FOC、MPC与高频注入Simulink模型及基于MBD的代码生成工具,适用于Ti f28335与dspace/ccs平台开发,含电机控制开发文档,永磁同步电机控制技术:FOC、MPC与高频注入Simulink模型开发及应用指南,提供永磁同步电机FOC,MPC,高频注入simulink模型。 提供基于模型开发(MBD)代码生成模型,可结合Ti f28335进行电机模型快速开发,可适用dspace平台或者ccs平台。 提供电机控制开发编码器,转子位置定向,pid调试相关文档。 ,永磁同步电机; FOC控制; MPC控制; 高频注入; Simulink模型; 模型开发(MBD); Ti f28335; 电机模型开发; dspace平台; ccs平台; 编码器; 转子位置定向; pid调试。,永磁同步电机MPC-FOC控制与代码生成模型

    light of warehouse.zip

    light of warehouse.zip

    考虑温度和气体排放等因素的工业乙醇发酵过程及其Matlab源码-乙醇发酵-气体排放-Matlab建模和仿真-代谢路径

    内容概要:文章深入讨论了工业乙醇发酵的基本原理及工艺流程,特别是在温度和气体排放(如CO2及其他有害气体)影响下的发酵效果分析。文章介绍了乙醇发酵的重要环节,如糖分解、代谢路径、代谢调控以及各阶段的操作流程,重点展示了如何通过Matlab建模和仿真实验来探索这两个关键环境因素对发酵过程的具体影响。通过动态模型仿真分析,得出合适的温度范围以及适时排除CO2能显著提升发酵产乙醇的效果与效率,从而提出了基于仿真的优化发酵生产工艺的新方法。 适用人群:从事生物工程相关领域研究的科学家、工程师及相关专业师生。 使用场景及目标:适用于实验室环境、学术交流会议及实际生产指导中,以提升研究人员对该领域内复杂现象的理解能力和技术水平为目标。 其他说明:附录中有详细的数学公式表达和程序代码可供下载执行,便于有兴趣的研究团队重复实验或者继续扩展研究工作。

    Tomcat资源包《Tomcat启动报错:CATALINA-HOME环境变量未正确配置的完整解决方案》

    本资源包专为解决 Tomcat 启动时提示「CATALINA_HOME 环境变量未正确配置」问题而整理,包含以下内容: 1. **Apache Tomcat 9.0.69 官方安装包**:已验证兼容性,解压即用。 2. **环境变量配置指南**: - Windows 系统下 `CATALINA_HOME` 和 `JAVA_HOME` 的详细配置步骤。 - 常见错误排查方法(如路径含空格、未生效问题)。 3. **辅助工具脚本**:一键检测环境变量是否生效的批处理文件。 4. **解决方案文档**:图文并茂的 PDF 文档,涵盖从报错分析到成功启动的全流程。 适用场景: - Tomcat 9.x 版本环境配置 - Java Web 开发环境搭建 - 运维部署调试 注意事项: - 资源包路径需为纯英文,避免特殊字符。 - 建议使用 JDK 8 或更高版本。

    java毕业设计源码 仿360buy京东商城源码 京东JavaWeb项目源代码

    这是一款仿照京东商城的Java Web项目源码,完美复现了360buy的用户界面和购物流程,非常适合Java初学者和开发者进行学习与实践。通过这份源码,你将深入了解电商平台的架构设计和实现方法。欢迎大家下载体验,提升自己的编程能力!

    java-springboot+vue的乒乓球馆预约管理系统源码.zip

    系统选用B/S模式,后端应用springboot框架,前端应用vue框架, MySQL为后台数据库。 本系统基于java设计的各项功能,数据库服务器端采用了Mysql作为后台数据库,使Web与数据库紧密联系起来。 在设计过程中,充分保证了系统代码的良好可读性、实用性、易扩展性、通用性、便于后期维护、操作方便以及页面简洁等特点。

    【javaweb毕业设计源码】大学生求职就业网

    这是一款专为大学生打造的求职就业网JavaWeb毕业设计源码,功能齐全,界面友好。它提供简历投递、职位搜索、在线交流等多种实用功能,能够帮助你顺利进入职场。无论你是想提升技术水平还是寻找灵感,这个源码都是不可多得的资源。快来下载,让你的求职之路更加顺畅吧!

    useTable(1).ts

    useTable(1).ts

    DSP实验报告汇总.pdf

    实验一: 1、进行CCS6.1软件的安装,仿真器的设置,程序的编译和调试; 2、熟悉CCS软件中的C语言编程; 3、使用按键控制LED跑马灯的开始与停止、闪烁频率; 4、调试Convolution、FFT、FIR、FFT-FIR实验,编制IIR算法并调试,并在CCS软件上给出实验结果。 实验二: 1、利用定时器周期中断或下溢中断和比较器比较值的修改来实现占空比可调的PWM波形; 2、改变PWM占空比控制LED灯的亮暗,按键实现10级LED灯亮暗调整; 3、模拟数字转换,转换过程中LED指示,并在变量窗口显示转换结果; 4、数字模拟转换,产生一个正弦波,转换过程中LED指示,转换完成后在CCS调试窗口显示波形。 实验三: 1、SCI异步串行通信实验; 2、SPI及IIC同步串行通信实验; 3、CAN现场总线串行通信实验; 4、传输过程中LED指示。 实验四: 1、电机转速控制实验。

Global site tag (gtag.js) - Google Analytics