`
mxsfengg
  • 浏览: 209178 次
  • 性别: Icon_minigender_1
  • 来自: 广州
社区版块
存档分类
最新评论

weka 之 聚类

 
阅读更多
package weka.clusterers;

import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;

/**
 * Interface for clusterers. Clients will typically extend either
 * AbstractClusterer or AbstractDensityBasedClusterer.
 *
 * @author Mark Hall (mhall@cs.waikato.ac.nz)
 * @revision $Revision: 1.18 $
 */
public interface Clusterer {

  /**
   * Generates a clusterer. Has to initialize all fields of the clusterer
   * that are not being set via options.
   *
   * @param data set of instances serving as training data 
   * @exception Exception if the clusterer has not been 
   * generated successfully
   */
  void buildClusterer(Instances data) throws Exception;

  /**
   * Classifies a given instance. Either this or distributionForInstance()
   * needs to be implemented by subclasses.
   *
   * @param instance the instance to be assigned to a cluster
   * @return the number of the assigned cluster as an integer
   * @exception Exception if instance could not be clustered
   * successfully
   */
  int clusterInstance(Instance instance) throws Exception;

  /**
   * Predicts the cluster memberships for a given instance.  Either
   * this or clusterInstance() needs to be implemented by subclasses.
   *
   * @param instance the instance to be assigned a cluster.
   * @return an array containing the estimated membership 
   * probabilities of the test instance in each cluster (this 
   * should sum to at most 1)
   * @exception Exception if distribution could not be 
   * computed successfully 
   */
  public double[] distributionForInstance(Instance instance) throws Exception;

  /**
   * Returns the number of clusters.
   *
   * @return the number of clusters generated for a training dataset.
   * @exception Exception if number of clusters could not be returned
   * successfully
   */
  int numberOfClusters() throws Exception;

  /** 
   * Returns the Capabilities of this clusterer. Derived classifiers have to
   * override this method to enable capabilities.
   *
   * @return            the capabilities of this object
   * @see               Capabilities
   */
  public Capabilities getCapabilities();
  
}

 

分享到:
评论

相关推荐

    基于WEKA的聚类分析算法

    通过对大量数据的聚类分析,不仅能帮助银行精准定位目标客户,还能显著提升电话营销的效率和成功率。而所采用的算法,例如决策树(C4.5)和随机森林等,都是数据挖掘和机器学习中的重要工具,值得在类似的领域内...

    WEKA聚类分析实例代码

    【WEKA聚类分析实例代码】是关于使用WEKA这一强大的数据挖掘工具进行聚类分析的一个实际应用。WEKA(Waikato Environment for Knowledge Analysis)是新西兰怀卡托大学开发的一个开源数据挖掘软件,它提供了丰富的...

    weka-src.rar_ weka_Weka 聚类_java 数据挖掘_weka java_聚类 java

    标题中的“weka-src.rar”指的是Weka的数据挖掘工具的源代码压缩包,而“weka_Weka 聚类_java 数据挖掘_weka java_聚类 java”这部分描述了该软件的主要功能,即Weka在Java环境下进行数据挖掘,特别是聚类分析。Weka...

    weka常用聚类包

    非常实用的数据挖掘工具包

    模糊C均值聚类(weka)

    仿照weka自带的简单K均值聚类算法,实现的一个简单的模糊C均值聚类算法。

    Weka中各种分类算法和聚类算法集成

    本工具包集成了Weka中最新的分类和聚类算法,将其打包成jar包,方便java开发者调用

    cluster-weka聚类

    ### Cluster-WEKA聚类知识点解析 #### 一、引言 在数据挖掘领域,聚类是一种非常重要的无监督学习技术,它可以帮助我们从大量数据中发现潜在的模式和结构。Weka作为一款广泛使用的开源数据挖掘软件,因其丰富的算法...

    Weka中各种聚类算法的调用的java源程序

    一个我本人写的关天Weka.jar工具包中各种聚类算法的调用的java源程序

    个人推荐的Weka教程,包含了数据格式、数据准备、分类和聚类Demo

    “个人推荐的Weka教程,包含了数据格式、数据准备、分类和聚类Demo” 这个标题表明这是一个关于Weka的数据挖掘工具的教程,它涵盖了数据预处理的基本步骤,包括数据格式的理解、数据准备的技巧,以及核心的机器学习...

    引用 Weka学习二(聚类算法) .docx

    《深入理解Weka中的聚类算法》 在数据挖掘领域,聚类算法是无监督学习的重要组成部分,它与监督学习和半监督学习相区别。无监督学习是指在没有已知类别标签的情况下,通过聚类算法对数据进行分组,使得同一组内的...

    weka 中em算法详细解析

    这意味着EM算法在Weka中不仅仅作为一种独立的聚类方法存在,还能够与SimpleKMeans结合使用,提供更加灵活的聚类解决方案。值得注意的是,EM算法在Weka中的实现不仅考虑了算法本身的特性,还充分考虑了数据预处理的...

    Weka 用于文旦聚类

    在数据分析和机器学习领域,Weka 是一个广泛使用的开源工具,它提供了丰富的数据预处理、分类、回归、聚类和关联规则挖掘等算法。在这个场景中,我们关注的是"Weka 用于文旦聚类",这表明我们将使用Weka来执行一种...

    RandomizableClusterer.java.tar.gz_Weka 聚类_java cluster package_w

    《深入理解Weka中的RandomizableClusterer:Java聚类实现》 在数据分析和机器学习领域,Weka(Waikato Environment for Knowledge Analysis)是一个广泛使用的开源工具,它提供了丰富的算法库,涵盖了分类、聚类、...

    weka中K-means使用演示

    K-Means 算法是聚类分析中的一种常用方法,WEKA 作为一款功能强大的人工智能数据挖掘软件,也提供了 K-Means 算法的实现。下面将详细介绍如何使用 WEKA 实现 K-Means 聚类。 K-Means 算法概述 K-Means 算法是一种...

    WEKA聚类算法wine数据集分析研究报告.docx

    WEKA 聚类算法在 Wine 数据集上的应用与效果分析 本报告旨在探讨使用 WEKA 中的 DBSCAN 算法对 Wine 数据集进行聚类的效果和分析。 Wine 数据集是一个常用的多元分类问题数据集,包含了 178 个样本和 13 个特征。在...

    引用Weka学习二(聚类算法).pdf

    其中,K-Means 算法是最常用的聚类算法之一。 K-Means 算法的基本思想是将样本分配到离它最近的簇中,以使得簇内的样本尽可能相似。K-Means 算法的优点是计算速度快、结果可靠,但是它也存在一些缺点,例如对初始值...

    引用Weka学习二(聚类算法)[定义].pdf

    **Weka中的聚类算法** Weka是一款强大的数据挖掘工具,包含了多种机器学习算法,其中包括11种不同的聚类算法。在提供的代码示例中,使用的是`SimpleKMeans`,这是一个基于K-Means算法的简单实现。K-Means是一种广泛...

Global site tag (gtag.js) - Google Analytics