package weka.clusterers;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
/**
* Interface for clusterers. Clients will typically extend either
* AbstractClusterer or AbstractDensityBasedClusterer.
*
* @author Mark Hall (mhall@cs.waikato.ac.nz)
* @revision $Revision: 1.18 $
*/
public interface Clusterer {
/**
* Generates a clusterer. Has to initialize all fields of the clusterer
* that are not being set via options.
*
* @param data set of instances serving as training data
* @exception Exception if the clusterer has not been
* generated successfully
*/
void buildClusterer(Instances data) throws Exception;
/**
* Classifies a given instance. Either this or distributionForInstance()
* needs to be implemented by subclasses.
*
* @param instance the instance to be assigned to a cluster
* @return the number of the assigned cluster as an integer
* @exception Exception if instance could not be clustered
* successfully
*/
int clusterInstance(Instance instance) throws Exception;
/**
* Predicts the cluster memberships for a given instance. Either
* this or clusterInstance() needs to be implemented by subclasses.
*
* @param instance the instance to be assigned a cluster.
* @return an array containing the estimated membership
* probabilities of the test instance in each cluster (this
* should sum to at most 1)
* @exception Exception if distribution could not be
* computed successfully
*/
public double[] distributionForInstance(Instance instance) throws Exception;
/**
* Returns the number of clusters.
*
* @return the number of clusters generated for a training dataset.
* @exception Exception if number of clusters could not be returned
* successfully
*/
int numberOfClusters() throws Exception;
/**
* Returns the Capabilities of this clusterer. Derived classifiers have to
* override this method to enable capabilities.
*
* @return the capabilities of this object
* @see Capabilities
*/
public Capabilities getCapabilities();
}
分享到:
相关推荐
通过对大量数据的聚类分析,不仅能帮助银行精准定位目标客户,还能显著提升电话营销的效率和成功率。而所采用的算法,例如决策树(C4.5)和随机森林等,都是数据挖掘和机器学习中的重要工具,值得在类似的领域内...
【WEKA聚类分析实例代码】是关于使用WEKA这一强大的数据挖掘工具进行聚类分析的一个实际应用。WEKA(Waikato Environment for Knowledge Analysis)是新西兰怀卡托大学开发的一个开源数据挖掘软件,它提供了丰富的...
标题中的“weka-src.rar”指的是Weka的数据挖掘工具的源代码压缩包,而“weka_Weka 聚类_java 数据挖掘_weka java_聚类 java”这部分描述了该软件的主要功能,即Weka在Java环境下进行数据挖掘,特别是聚类分析。Weka...
非常实用的数据挖掘工具包
仿照weka自带的简单K均值聚类算法,实现的一个简单的模糊C均值聚类算法。
本工具包集成了Weka中最新的分类和聚类算法,将其打包成jar包,方便java开发者调用
### Cluster-WEKA聚类知识点解析 #### 一、引言 在数据挖掘领域,聚类是一种非常重要的无监督学习技术,它可以帮助我们从大量数据中发现潜在的模式和结构。Weka作为一款广泛使用的开源数据挖掘软件,因其丰富的算法...
一个我本人写的关天Weka.jar工具包中各种聚类算法的调用的java源程序
“个人推荐的Weka教程,包含了数据格式、数据准备、分类和聚类Demo” 这个标题表明这是一个关于Weka的数据挖掘工具的教程,它涵盖了数据预处理的基本步骤,包括数据格式的理解、数据准备的技巧,以及核心的机器学习...
《深入理解Weka中的聚类算法》 在数据挖掘领域,聚类算法是无监督学习的重要组成部分,它与监督学习和半监督学习相区别。无监督学习是指在没有已知类别标签的情况下,通过聚类算法对数据进行分组,使得同一组内的...
这意味着EM算法在Weka中不仅仅作为一种独立的聚类方法存在,还能够与SimpleKMeans结合使用,提供更加灵活的聚类解决方案。值得注意的是,EM算法在Weka中的实现不仅考虑了算法本身的特性,还充分考虑了数据预处理的...
在数据分析和机器学习领域,Weka 是一个广泛使用的开源工具,它提供了丰富的数据预处理、分类、回归、聚类和关联规则挖掘等算法。在这个场景中,我们关注的是"Weka 用于文旦聚类",这表明我们将使用Weka来执行一种...
《深入理解Weka中的RandomizableClusterer:Java聚类实现》 在数据分析和机器学习领域,Weka(Waikato Environment for Knowledge Analysis)是一个广泛使用的开源工具,它提供了丰富的算法库,涵盖了分类、聚类、...
K-Means 算法是聚类分析中的一种常用方法,WEKA 作为一款功能强大的人工智能数据挖掘软件,也提供了 K-Means 算法的实现。下面将详细介绍如何使用 WEKA 实现 K-Means 聚类。 K-Means 算法概述 K-Means 算法是一种...
WEKA 聚类算法在 Wine 数据集上的应用与效果分析 本报告旨在探讨使用 WEKA 中的 DBSCAN 算法对 Wine 数据集进行聚类的效果和分析。 Wine 数据集是一个常用的多元分类问题数据集,包含了 178 个样本和 13 个特征。在...
其中,K-Means 算法是最常用的聚类算法之一。 K-Means 算法的基本思想是将样本分配到离它最近的簇中,以使得簇内的样本尽可能相似。K-Means 算法的优点是计算速度快、结果可靠,但是它也存在一些缺点,例如对初始值...
**Weka中的聚类算法** Weka是一款强大的数据挖掘工具,包含了多种机器学习算法,其中包括11种不同的聚类算法。在提供的代码示例中,使用的是`SimpleKMeans`,这是一个基于K-Means算法的简单实现。K-Means是一种广泛...