`

Base64 加密 解密

阅读更多
在过去的一年里我还是一个比较喜欢自己发明轮子的人,不过现在不同了。前几天需要个Base64处理类,在一个开源项目里面找到了Base64的加密解密程序感觉非常不错,毕竟不喜欢引入sun.开头的包。
原文网址:http://blog.csdn.net/sunyujia/archive/2008/01/01/2008469.aspx
import java.util.Arrays;

/**

* A very fast and memory efficient class to encode and decode to and from

* BASE64 in full accordance with RFC 2045.<br>

* <br>

* On Windows XP sp1 with 1.4.2_04 and later ;), this encoder and decoder is

* about 10 times faster on small arrays (10 - 1000 bytes) and 2-3 times as fast

* on larger arrays (10000 - 1000000 bytes) compared to

* <code>sun.misc.Encoder()/Decoder()</code>.<br>

* <br>

*

* On byte arrays the encoder is about 20% faster than Jakarta Commons Base64

* Codec for encode and about 50% faster for decoding large arrays. This

* implementation is about twice as fast on very small arrays (< 30 bytes). If

* source/destination is a <code>String</code> this version is about three

* times as fast due to the fact that the Commons Codec result has to be recoded

* to a <code>String</code> from <code>byte[]</code>, which is very

* expensive.<br>

* <br>

*

* This encode/decode algorithm doesn't create any temporary arrays as many

* other codecs do, it only allocates the resulting array. This produces less

* garbage and it is possible to handle arrays twice as large as algorithms that

* create a temporary array. (E.g. Jakarta Commons Codec). It is unknown whether

* Sun's <code>sun.misc.Encoder()/Decoder()</code> produce temporary arrays

* but since performance is quite low it probably does.<br>

* <br>

*

* The encoder produces the same output as the Sun one except that the Sun's

* encoder appends a trailing line separator if the last character isn't a pad.

* Unclear why but it only adds to the length and is probably a side effect.

* Both are in conformance with RFC 2045 though.<br>

* Commons codec seem to always att a trailing line separator.<br>

* <br>

*

* <b>Note!</b> The encode/decode method pairs (types) come in three versions

* with the <b>exact</b> same algorithm and thus a lot of code redundancy. This

* is to not create any temporary arrays for transcoding to/from different

* format types. The methods not used can simply be commented out.<br>

* <br>

*

* There is also a "fast" version of all decode methods that works the same way

* as the normal ones, but har a few demands on the decoded input. Normally

* though, these fast verions should be used if the source if the input is known

* and it hasn't bee tampered with.<br>

* <br>

*

* If you find the code useful or you find a bug, please send me a note at

* base64 @ miginfocom . com.

*

* Licence (BSD): ==============

*

* Copyright (c) 2004, Mikael Grev, MiG InfoCom AB. (base64 @ miginfocom . com)

* All rights reserved.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this

* list of conditions and the following disclaimer. Redistributions in binary

* form must reproduce the above copyright notice, this list of conditions and

* the following disclaimer in the documentation and/or other materials provided

* with the distribution. Neither the name of the MiG InfoCom AB nor the names

* of its contributors may be used to endorse or promote products derived from

* this software without specific prior written permission.

*

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE

* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

* POSSIBILITY OF SUCH DAMAGE.

*

* @version 2.2

* @author Mikael Grev Date: 2004-aug-02 Time: 11:31:11

*/



public class Base64 {

        private static final boolean devLineSep = true;

        private static final char[] CA = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"

                        .toCharArray();

        private static final int[] IA = new int[256];

        static {

                Arrays.fill(IA, -1);

                for (int i = 0, iS = CA.length; i < iS; i++)

                        IA[CA[i]] = i;

                IA['='] = 0;

        }



        // ****************************************************************************************

        // * char[] version

        // ****************************************************************************************

        public final static char[] encodeToChar(byte[] sArr) {

                return encodeToChar(sArr, devLineSep);

        }



        /**

         * Encodes a raw byte array into a BASE64 <code>char[]</code>

         * representation i accordance with RFC 2045.

         *

         * @param sArr

         *            The bytes to convert. If <code>null</code> or length 0 an

         *            empty array will be returned.

         * @param lineSep

         *            Optional "\r\n" after 76 characters, unless end of file.<br>

         *            No line separator will be in breach of RFC 2045 which

         *            specifies max 76 per line but will be a little faster.

         * @return A BASE64 encoded array. Never <code>null</code>.

         */

        public final static char[] encodeToChar(byte[] sArr, boolean lineSep) {

                // Check special case

                int sLen = sArr != null ? sArr.length : 0;

                if (sLen == 0)

                        return new char[0];



                int eLen = (sLen / 3) * 3; // Length of even 24-bits.

                int cCnt = ((sLen - 1) / 3 + 1) << 2; // Returned character count

                int dLen = cCnt + (lineSep ? (cCnt - 1) / 76 << 1 : 0); // Length of

                // returned

                // array

                char[] dArr = new char[dLen];



                // Encode even 24-bits

                for (int s = 0, d = 0, cc = 0; s < eLen;) {

                        // Copy next three bytes into lower 24 bits of int, paying attension

                        // to sign.

                        int i = (sArr[s++] & 0xff) << 16 | (sArr[s++] & 0xff) << 8

                                        | (sArr[s++] & 0xff);



                        // Encode the int into four chars

                        dArr[d++] = CA[(i >>> 18) & 0x3f];

                        dArr[d++] = CA[(i >>> 12) & 0x3f];

                        dArr[d++] = CA[(i >>> 6) & 0x3f];

                        dArr[d++] = CA[i & 0x3f];



                        // Add optional line separator

                        if (lineSep && ++cc == 19 && d < dLen - 2) {

                                dArr[d++] = '\r';

                                dArr[d++] = '\n';

                                cc = 0;

                        }

                }



                // Pad and encode last bits if source isn't even 24 bits.

                int left = sLen - eLen; // 0 - 2.

                if (left > 0) {

                        // Prepare the int

                        int i = ((sArr[eLen] & 0xff) << 10)

                                        | (left == 2 ? ((sArr[sLen - 1] & 0xff) << 2) : 0);



                        // Set last four chars

                        dArr[dLen - 4] = CA[i >> 12];

                        dArr[dLen - 3] = CA[(i >>> 6) & 0x3f];

                        dArr[dLen - 2] = left == 2 ? CA[i & 0x3f] : '=';

                        dArr[dLen - 1] = '=';

                }

                return dArr;

        }



        /**

         * Decodes a BASE64 encoded char array. All illegal characters will be

         * ignored and can handle both arrays with and without line separators.

         *

         * @param sArr

         *            The source array. <code>null</code> or length 0 will return

         *            an empty array.

         * @return The decoded array of bytes. May be of length 0. Will be

         *         <code>null</code> if the legal characters (including '=') isn't

         *         divideable by 4. (I.e. definitely corrupted).

         */

        public final static byte[] decode(char[] sArr) {

                // Check special case

                int sLen = sArr != null ? sArr.length : 0;

                if (sLen == 0)

                        return new byte[0];



                // Count illegal characters (including '\r', '\n') to know what size the

                // returned array will be,

                // so we don't have to reallocate & copy it later.

                int sepCnt = 0; // Number of separator characters. (Actually illegal

                // characters, but that's a bonus...)

                for (int i = 0; i < sLen; i++)

                        // If input is "pure" (I.e. no line separators or illegal chars)

                        // base64 this loop can be commented out.

                        if (IA[sArr[i]] < 0)

                                sepCnt++;



                // Check so that legal chars (including '=') are evenly divideable by 4

                // as specified in RFC 2045.

                if ((sLen - sepCnt) % 4 != 0)

                        return null;



                int pad = 0;

                for (int i = sLen; i > 1 && IA[sArr[--i]] <= 0;)

                        if (sArr[i] == '=')

                                pad++;



                int len = ((sLen - sepCnt) * 6 >> 3) - pad;



                byte[] dArr = new byte[len]; // Preallocate byte[] of exact length



                for (int s = 0, d = 0; d < len;) {

                        // Assemble three bytes into an int from four "valid" characters.

                        int i = 0;

                        for (int j = 0; j < 4; j++) { // j only increased if a valid char

                                // was found.

                                int c = IA[sArr[s++]];

                                if (c >= 0)

                                        i |= c << (18 - j * 6);

                                else

                                        j--;

                        }

                        // Add the bytes

                        dArr[d++] = (byte) (i >> 16);

                        if (d < len) {

                                dArr[d++] = (byte) (i >>;

                                if (d < len)

                                        dArr[d++] = (byte) i;

                        }

                }

                return dArr;

        }



        /**

         * Decodes a BASE64 encoded char array that is known to be resonably well

         * formatted. The method is about twice as fast as {@link #decode(char[])}.

         * The preconditions are:<br> + The array must have a line length of 76

         * chars OR no line separators at all (one line).<br> + Line separator must

         * be "\r\n", as specified in RFC 2045 + The array must not contain illegal

         * characters within the encoded string<br> + The array CAN have illegal

         * characters at the beginning and end, those will be dealt with

         * appropriately.<br>

         *

         * @param sArr

         *            The source array. Length 0 will return an empty array.

         *            <code>null</code> will throw an exception.

         * @return The decoded array of bytes. May be of length 0.

         */

        public final static byte[] decodeFast(char[] sArr) {

                // Check special case

                int sLen = sArr.length;

                if (sLen == 0)

                        return new byte[0];



                int sIx = 0, eIx = sLen - 1; // Start and end index after trimming.



                // Trim illegal chars from start

                while (sIx < eIx && IA[sArr[sIx]] < 0)

                        sIx++;



                // Trim illegal chars from end

                while (eIx > 0 && IA[sArr[eIx]] < 0)

                        eIx--;



                // get the padding count (=) (0, 1 or 2)

                int pad = sArr[eIx] == '=' ? (sArr[eIx - 1] == '=' ? 2 : 1) : 0; // Count

                // '='

                // at

                // end.

                int cCnt = eIx - sIx + 1; // Content count including possible

                // separators

                int sepCnt = sLen > 76 ? (sArr[76] == '\r' ? cCnt / 78 : 0) << 1 : 0;



                int len = ((cCnt - sepCnt) * 6 >> 3) - pad; // The number of decoded

                // bytes

                byte[] dArr = new byte[len]; // Preallocate byte[] of exact length



                // Decode all but the last 0 - 2 bytes.

                int d = 0;

                for (int cc = 0, eLen = (len / 3) * 3; d < eLen;) {

                        // Assemble three bytes into an int from four "valid" characters.

                        int i = IA[sArr[sIx++]] << 18 | IA[sArr[sIx++]] << 12

                                        | IA[sArr[sIx++]] << 6 | IA[sArr[sIx++]];



                        // Add the bytes

                        dArr[d++] = (byte) (i >> 16);

                        dArr[d++] = (byte) (i >>;

                        dArr[d++] = (byte) i;



                        // If line separator, jump over it.

                        if (sepCnt > 0 && ++cc == 19) {

                                sIx += 2;

                                cc = 0;

                        }

                }



                if (d < len) {

                        // Decode last 1-3 bytes (incl '=') into 1-3 bytes

                        int i = 0;

                        for (int j = 0; sIx <= eIx - pad; j++)

                                i |= IA[sArr[sIx++]] << (18 - j * 6);



                        for (int r = 16; d < len; r -=

                                dArr[d++] = (byte) (i >> r);

                }



                return dArr;

        }



        // ****************************************************************************************

        // * byte[] version

        // ****************************************************************************************

        public final static byte[] encodeToByte(byte[] sArr) {

                return encodeToByte(sArr, devLineSep);

        }



        /**

         * Encodes a raw byte array into a BASE64 <code>byte[]</code>

         * representation i accordance with RFC 2045.

         *

         * @param sArr

         *            The bytes to convert. If <code>null</code> or length 0 an

         *            empty array will be returned.

         * @param lineSep

         *            Optional "\r\n" after 76 characters, unless end of file.<br>

         *            No line separator will be in breach of RFC 2045 which

         *            specifies max 76 per line but will be a little faster.

         * @return A BASE64 encoded array. Never <code>null</code>.

         */

        public final static byte[] encodeToByte(byte[] sArr, boolean lineSep) {

                // Check special case

                int sLen = sArr != null ? sArr.length : 0;

                if (sLen == 0)

                        return new byte[0];



                int eLen = (sLen / 3) * 3; // Length of even 24-bits.

                int cCnt = ((sLen - 1) / 3 + 1) << 2; // Returned character count

                int dLen = cCnt + (lineSep ? (cCnt - 1) / 76 << 1 : 0); // Length of

                // returned

                // array

                byte[] dArr = new byte[dLen];



                // Encode even 24-bits

                for (int s = 0, d = 0, cc = 0; s < eLen;) {

                        // Copy next three bytes into lower 24 bits of int, paying attension

                        // to sign.

                        int i = (sArr[s++] & 0xff) << 16 | (sArr[s++] & 0xff) << 8

                                        | (sArr[s++] & 0xff);



                        // Encode the int into four chars

                        dArr[d++] = (byte) CA[(i >>> 18) & 0x3f];

                        dArr[d++] = (byte) CA[(i >>> 12) & 0x3f];

                        dArr[d++] = (byte) CA[(i >>> 6) & 0x3f];

                        dArr[d++] = (byte) CA[i & 0x3f];



                        // Add optional line separator

                        if (lineSep && ++cc == 19 && d < dLen - 2) {

                                dArr[d++] = '\r';

                                dArr[d++] = '\n';

                                cc = 0;

                        }

                }



                // Pad and encode last bits if source isn't an even 24 bits.

                int left = sLen - eLen; // 0 - 2.

                if (left > 0) {

                        // Prepare the int

                        int i = ((sArr[eLen] & 0xff) << 10)

                                        | (left == 2 ? ((sArr[sLen - 1] & 0xff) << 2) : 0);



                        // Set last four chars

                        dArr[dLen - 4] = (byte) CA[i >> 12];

                        dArr[dLen - 3] = (byte) CA[(i >>> 6) & 0x3f];

                        dArr[dLen - 2] = left == 2 ? (byte) CA[i & 0x3f] : (byte) '=';

                        dArr[dLen - 1] = '=';

                }

                return dArr;

        }



        /**

         * Decodes a BASE64 encoded byte array. All illegal characters will be

         * ignored and can handle both arrays with and without line separators.

         *

         * @param sArr

         *            The source array. Length 0 will return an empty array.

         *            <code>null</code> will throw an exception.

         * @return The decoded array of bytes. May be of length 0. Will be

         *         <code>null</code> if the legal characters (including '=') isn't

         *         divideable by 4. (I.e. definitely corrupted).

         */

        public final static byte[] decode(byte[] sArr) {

                // Check special case

                int sLen = sArr.length;



                // Count illegal characters (including '\r', '\n') to know what size the

                // returned array will be,

                // so we don't have to reallocate & copy it later.

                int sepCnt = 0; // Number of separator characters. (Actually illegal

                // characters, but that's a bonus...)

                for (int i = 0; i < sLen; i++)

                        // If input is "pure" (I.e. no line separators or illegal chars)

                        // base64 this loop can be commented out.

                        if (IA[sArr[i] & 0xff] < 0)

                                sepCnt++;



                // Check so that legal chars (including '=') are evenly divideable by 4

                // as specified in RFC 2045.

                if ((sLen - sepCnt) % 4 != 0)

                        return null;



                int pad = 0;

                for (int i = sLen; i > 1 && IA[sArr[--i] & 0xff] <= 0;)

                        if (sArr[i] == '=')

                                pad++;



                int len = ((sLen - sepCnt) * 6 >> 3) - pad;



                byte[] dArr = new byte[len]; // Preallocate byte[] of exact length



                for (int s = 0, d = 0; d < len;) {

                        // Assemble three bytes into an int from four "valid" characters.

                        int i = 0;

                        for (int j = 0; j < 4; j++) { // j only increased if a valid char

                                // was found.

                                int c = IA[sArr[s++] & 0xff];

                                if (c >= 0)

                                        i |= c << (18 - j * 6);

                                else

                                        j--;

                        }



                        // Add the bytes

                        dArr[d++] = (byte) (i >> 16);

                        if (d < len) {

                                dArr[d++] = (byte) (i >>;

                                if (d < len)

                                        dArr[d++] = (byte) i;

                        }

                }



                return dArr;

        }



        /**

         * Decodes a BASE64 encoded byte array that is known to be resonably well

         * formatted. The method is about twice as fast as {@link #decode(byte[])}.

         * The preconditions are:<br> + The array must have a line length of 76

         * chars OR no line separators at all (one line).<br> + Line separator must

         * be "\r\n", as specified in RFC 2045 + The array must not contain illegal

         * characters within the encoded string<br> + The array CAN have illegal

         * characters at the beginning and end, those will be dealt with

         * appropriately.<br>

         *

         * @param sArr

         *            The source array. Length 0 will return an empty array.

         *            <code>null</code> will throw an exception.

         * @return The decoded array of bytes. May be of length 0.

         */

        public final static byte[] decodeFast(byte[] sArr) {

                // Check special case

                int sLen = sArr.length;

                if (sLen == 0)

                        return new byte[0];



                int sIx = 0, eIx = sLen - 1; // Start and end index after trimming.



                // Trim illegal chars from start

                while (sIx < eIx && IA[sArr[sIx] & 0xff] < 0)

                        sIx++;



                // Trim illegal chars from end

                while (eIx > 0 && IA[sArr[eIx] & 0xff] < 0)

                        eIx--;



                // get the padding count (=) (0, 1 or 2)

                int pad = sArr[eIx] == '=' ? (sArr[eIx - 1] == '=' ? 2 : 1) : 0; // Count

                // '='

                // at

                // end.

                int cCnt = eIx - sIx + 1; // Content count including possible

                // separators

                int sepCnt = sLen > 76 ? (sArr[76] == '\r' ? cCnt / 78 : 0) << 1 : 0;



                int len = ((cCnt - sepCnt) * 6 >> 3) - pad; // The number of decoded

                // bytes

                byte[] dArr = new byte[len]; // Preallocate byte[] of exact length



                // Decode all but the last 0 - 2 bytes.

                int d = 0;

                for (int cc = 0, eLen = (len / 3) * 3; d < eLen;) {

                        // Assemble three bytes into an int from four "valid" characters.

                        int i = IA[sArr[sIx++]] << 18 | IA[sArr[sIx++]] << 12

                                        | IA[sArr[sIx++]] << 6 | IA[sArr[sIx++]];



                        // Add the bytes

                        dArr[d++] = (byte) (i >> 16);

                        dArr[d++] = (byte) (i >>;

                        dArr[d++] = (byte) i;



                        // If line separator, jump over it.

                        if (sepCnt > 0 && ++cc == 19) {

                                sIx += 2;

                                cc = 0;

                        }

                }



                if (d < len) {

                        // Decode last 1-3 bytes (incl '=') into 1-3 bytes

                        int i = 0;

                        for (int j = 0; sIx <= eIx - pad; j++)

                                i |= IA[sArr[sIx++]] << (18 - j * 6);



                        for (int r = 16; d < len; r -=

                                dArr[d++] = (byte) (i >> r);

                }



                return dArr;

        }



        // ****************************************************************************************

        // * String version

        // ****************************************************************************************



        /**

         * Encodes a raw byte array into a BASE64 <code>String</code>

         * representation i accordance with RFC 2045.

         *

         * @param sArr

         *            The bytes to convert. If <code>null</code> or length 0 an

         *            empty array will be returned.

         * @param lineSep

         *            Optional "\r\n" after 76 characters, unless end of file.<br>

         *            No line separator will be in breach of RFC 2045 which

         *            specifies max 76 per line but will be a little faster.

         * @return A BASE64 encoded array. Never <code>null</code>.

         */

        public final static String encodeToString(byte[] sArr, boolean lineSep) {

                // Reuse char[] since we can't create a String incrementally anyway and

                // StringBuffer/Builder would be slower.

                return new String(encodeToChar(sArr, lineSep));

        }



        public final static String encodeToString(byte[] sArr) {

                // Reuse char[] since we can't create a String incrementally anyway and

                // StringBuffer/Builder would be slower.

                return new String(encodeToChar(sArr, devLineSep));

        }



        /**

         * Decodes a BASE64 encoded <code>String</code>. All illegal characters

         * will be ignored and can handle both strings with and without line

         * separators.<br>

         * <b>Note!</b> It can be up to about 2x the speed to call

         * <code>decode(str.toCharArray())</code> instead. That will create a

         * temporary array though. This version will use <code>str.charAt(i)</code>

         * to iterate the string.

         *

         * @param str

         *            The source string. <code>null</code> or length 0 will return

         *            an empty array.

         * @return The decoded array of bytes. May be of length 0. Will be

         *         <code>null</code> if the legal characters (including '=') isn't

         *         divideable by 4. (I.e. definitely corrupted).

         */

        public final static byte[] decode(String str) {

                // Check special case

                int sLen = str != null ? str.length() : 0;

                if (sLen == 0)

                        return new byte[0];



                // Count illegal characters (including '\r', '\n') to know what size the

                // returned array will be,

                // so we don't have to reallocate & copy it later.

                int sepCnt = 0; // Number of separator characters. (Actually illegal

                // characters, but that's a bonus...)

                for (int i = 0; i < sLen; i++)

                        // If input is "pure" (I.e. no line separators or illegal chars)

                        // base64 this loop can be commented out.

                        if (IA[str.charAt(i)] < 0)

                                sepCnt++;



                // Check so that legal chars (including '=') are evenly divideable by 4

                // as specified in RFC 2045.

                if ((sLen - sepCnt) % 4 != 0)

                        return null;



                // Count '=' at end

                int pad = 0;

                for (int i = sLen; i > 1 && IA[str.charAt(--i)] <= 0;)

                        if (str.charAt(i) == '=')

                                pad++;



                int len = ((sLen - sepCnt) * 6 >> 3) - pad;



                byte[] dArr = new byte[len]; // Preallocate byte[] of exact length



                for (int s = 0, d = 0; d < len;) {

                        // Assemble three bytes into an int from four "valid" characters.

                        int i = 0;

                        for (int j = 0; j < 4; j++) { // j only increased if a valid char

                                // was found.

                                int c = IA[str.charAt(s++)];

                                if (c >= 0)

                                        i |= c << (18 - j * 6);

                                else

                                        j--;

                        }

                        // Add the bytes

                        dArr[d++] = (byte) (i >> 16);

                        if (d < len) {

                                dArr[d++] = (byte) (i >>;

                                if (d < len)

                                        dArr[d++] = (byte) i;

                        }

                }

                return dArr;

        }



        /**

         * Decodes a BASE64 encoded string that is known to be resonably well

         * formatted. The method is about twice as fast as {@link #decode(String)}.

         * The preconditions are:<br> + The array must have a line length of 76

         * chars OR no line separators at all (one line).<br> + Line separator must

         * be "\r\n", as specified in RFC 2045 + The array must not contain illegal

         * characters within the encoded string<br> + The array CAN have illegal

         * characters at the beginning and end, those will be dealt with

         * appropriately.<br>

         *

         * @param s

         *            The source string. Length 0 will return an empty array.

         *            <code>null</code> will throw an exception.

         * @return The decoded array of bytes. May be of length 0.

         */

        public final static byte[] decodeFast(String s) {

                // Check special case

                int sLen = s.length();

                if (sLen == 0)

                        return new byte[0];



                int sIx = 0, eIx = sLen - 1; // Start and end index after trimming.



                // Trim illegal chars from start

                while (sIx < eIx && IA[s.charAt(sIx) & 0xff] < 0)

                        sIx++;



                // Trim illegal chars from end

                while (eIx > 0 && IA[s.charAt(eIx) & 0xff] < 0)

                        eIx--;



                // get the padding count (=) (0, 1 or 2)

                int pad = s.charAt(eIx) == '=' ? (s.charAt(eIx - 1) == '=' ? 2 : 1) : 0; // Count

                // '='

                // at

                // end.

                int cCnt = eIx - sIx + 1; // Content count including possible

                // separators

                int sepCnt = sLen > 76 ? (s.charAt(76) == '\r' ? cCnt / 78 : 0) << 1

                                : 0;



                int len = ((cCnt - sepCnt) * 6 >> 3) - pad; // The number of decoded

                // bytes

                byte[] dArr = new byte[len]; // Preallocate byte[] of exact length



                // Decode all but the last 0 - 2 bytes.

                int d = 0;

                for (int cc = 0, eLen = (len / 3) * 3; d < eLen;) {

                        // Assemble three bytes into an int from four "valid" characters.

                        int i = IA[s.charAt(sIx++)] << 18 | IA[s.charAt(sIx++)] << 12

                                        | IA[s.charAt(sIx++)] << 6 | IA[s.charAt(sIx++)];



                        // Add the bytes

                        dArr[d++] = (byte) (i >> 16);

                        dArr[d++] = (byte) (i >>;

                        dArr[d++] = (byte) i;



                        // If line separator, jump over it.

                        if (sepCnt > 0 && ++cc == 19) {

                                sIx += 2;

                                cc = 0;

                        }

                }



                if (d < len) {

                        // Decode last 1-3 bytes (incl '=') into 1-3 bytes

                        int i = 0;

                        for (int j = 0; sIx <= eIx - pad; j++)

                                i |= IA[s.charAt(sIx++)] << (18 - j * 6);



                        for (int r = 16; d < len; r -=

                                dArr[d++] = (byte) (i >> r);

                }



                return dArr;

        }

        public static void main(String[] args){

                System.out.println(Base64.encodeToString("5CC9D9B48EFCF2FDB766BFB00E08EEDF".getBytes()));

        }

}
分享到:
评论

相关推荐

    BASE64加密解密

    【标题】:BASE64加密解密 在计算机科学中,BASE64是一种常见的数据编码方式,用于将二进制数据转换为可打印的ASCII字符序列。这种编码方法广泛应用于电子邮件系统、网络传输以及文件存储等领域,因为它可以将任何...

    C# Base64加密解密

    总的来说,C#中的Base64加密解密提供了简单且安全的方法来处理二进制数据,特别是在需要在文本环境(如邮件、网页)中传输时。在WinForm应用中,开发者可以结合UI设计,创建用户友好的工具,方便地进行Base64编码和...

    Java Base64加密解密方法工具类

    Java Base64加密解密方法工具类

    Base64加密解密.zip

    以下是对Base64加密解密的详细讲解以及如何在C# WinForm应用中实现。 首先,理解Base64的基本原理。Base64使用64个不同的字符(包括大小写字母、数字以及"+"和"/")来表示二进制数据,每个字符代表6位二进制数。...

    java 图片base64 加密解密

    在Java编程中,图片Base64加密解密是一种常见的数据处理技术,特别是在网络传输和存储时,由于Base64编码可以将二进制数据转换为可打印的ASCII字符,因此非常适用。`sun.misc.BASE64Encoder`和`sun.misc.BASE64...

    微信小程序 AES ECB base64 加密解密

    在微信小程序中实现AES ECB Base64加密解密,你需要以下步骤: 1. 引入加密库:微信小程序提供了`wx.request`方法来调用外部API,你可以引入第三方加密库,如`crypto-js`,通过npm安装后将其添加到项目中。 2. ...

    sqlserver2005的base64加密解密函数

    总结,虽然SQL Server 2005本身并不提供内置的Base64加密解密功能,但通过创建自定义函数,我们可以实现类似的功能。需要注意的是,上述函数仅适用于简单场景,对于更复杂的需求,可能需要更完善的Base64编码解码...

    js的base64加密解密

    在这个场景中,我们讨论的是一个纯JavaScript实现的Base64加密解密工具类,它无需依赖其他外部JavaScript库,因此非常适合在各种环境中使用,特别是对于那些对文件大小和加载速度有严格要求的项目。 Base64加密,也...

    Sql Server Base64加密解密角本

    非常实用的Base64加密,解密角本。基于UTF8,支持中文加解密。

    C#base64加密解密工具(有源码)

    总结来说,C#的Base64加密解密工具提供了对二进制数据的简单编码和解码,方便在各种环境中传递和存储数据。源码的分析有助于开发者理解和掌握这一基础但实用的技术,进一步提高编程能力。在使用过程中,注意正确处理...

    base64加密解密

    下面,我们将深入探讨Base64加密解密的原理和实现: 1. **Base64编码原理**:Base64编码将每3个字节的二进制数据(24位)转化为4个6位的二进制数,然后将这6位转换为对应的Base64字符。如果原始数据不是3的倍数,会...

    LabVIEW实现Base64加密解密程序源码

    LabVIEW实现Base64加密解密程序源码,可以作为子VI直接调用,非常方便,经过测试没有问题。base64是一种用64个字符来表示任意二进制数据的方法。base 64编码可以将任意一组字节转换为较长的常见文本字符序列,从而...

    base64加密解密的hive udf函数

    本文将详细探讨如何在Hive中自定义User Defined Function(UDF)来实现Base64的加密和解密。 首先,我们需要了解Base64的基本原理。Base64是一种将任意二进制数据转化为ASCII字符集的方法,它通过将每3个字节转换为...

    Base64加密解密

    这个压缩包文件"复件 Base64_Test源码"包含了C++实现Base64加密解密的源代码,对于理解Base64的工作原理和C++编程实践非常有帮助。 Base64的基本原理是将每3个8位字节(共24位)的数据块转换为4个6位的字节(共24位...

    Base64 加密解密小工具

    下面,我们将深入探讨Base64加密解密的基本原理、用途以及如何使用工具进行操作。 1. Base64的基本原理 Base64是基于64个可打印字符来表示二进制数据的编码方法。这64个字符包括大小写字母(A-Z, a-z)、数字(0-9...

    Base64加密解密工具

    "Base64加密解密工具"是专门针对这种编码方式进行设计的实用程序,能够帮助用户便捷地对数据进行Base64编码或解码。 Base64编码的基本原理是将每3个字节(24位)的数据转换为4个6位的Base64字符,这样每个64字符的...

    Base64加密解密封装

    标题提到的"Base64加密解密封装"是指将Base64编码和解码的逻辑进行封装,以方便在项目中复用。封装通常包括创建类或方法,提供接口供其他部分的代码调用,实现加密和解密功能。这种封装能提高代码的可读性和可维护性...

    用Java实现BASE64加密解密

    总之,Java提供了方便的`java.util.Base64`工具类来处理Base64编码和解码,使得在Java项目中实现Base64加密解密变得简单且高效。这个基础的加密解密机制虽然简单,但在很多场景下已经足够满足基本的数据保护需求。

    base64 加密解密

    Base64是一种常见的数据编码方式,它将...总的来说,通过理解和掌握C#中的Base64加密解密,你可以更好地处理二进制数据的传输和存储问题。这个VS2015的Demo提供了一个很好的起点,帮助开发者快速上手并应用于实际项目。

Global site tag (gtag.js) - Google Analytics