- 浏览: 58691 次
- 性别:
- 来自: 上海
最新评论
-
di1984HIT:
不错。不错。
Oracle千万条记录插入与查询小结 -
di1984HIT:
恩,FileWrite默认是平台编码
解决Invalid byte 2 of 2-byte UTF-8 sequence (dom4j) -
di1984HIT:
写的真不错啊。
java中使用公钥加密私钥解密原理实现license控制
在过去的一年里我还是一个比较喜欢自己发明轮子的人,不过现在不同了。前几天需要个Base64处理类,在一个开源项目里面找到了Base64的加密解密程序感觉非常不错,毕竟不喜欢引入sun.开头的包。
原文网址:http://blog.csdn.net/sunyujia/archive/2008/01/01/2008469.aspx
import java.util.Arrays;
/**
* A very fast and memory efficient class to encode and decode to and from
* BASE64 in full accordance with RFC 2045.<br>
* <br>
* On Windows XP sp1 with 1.4.2_04 and later ;), this encoder and decoder is
* about 10 times faster on small arrays (10 - 1000 bytes) and 2-3 times as fast
* on larger arrays (10000 - 1000000 bytes) compared to
* <code>sun.misc.Encoder()/Decoder()</code>.<br>
* <br>
*
* On byte arrays the encoder is about 20% faster than Jakarta Commons Base64
* Codec for encode and about 50% faster for decoding large arrays. This
* implementation is about twice as fast on very small arrays (< 30 bytes). If
* source/destination is a <code>String</code> this version is about three
* times as fast due to the fact that the Commons Codec result has to be recoded
* to a <code>String</code> from <code>byte[]</code>, which is very
* expensive.<br>
* <br>
*
* This encode/decode algorithm doesn't create any temporary arrays as many
* other codecs do, it only allocates the resulting array. This produces less
* garbage and it is possible to handle arrays twice as large as algorithms that
* create a temporary array. (E.g. Jakarta Commons Codec). It is unknown whether
* Sun's <code>sun.misc.Encoder()/Decoder()</code> produce temporary arrays
* but since performance is quite low it probably does.<br>
* <br>
*
* The encoder produces the same output as the Sun one except that the Sun's
* encoder appends a trailing line separator if the last character isn't a pad.
* Unclear why but it only adds to the length and is probably a side effect.
* Both are in conformance with RFC 2045 though.<br>
* Commons codec seem to always att a trailing line separator.<br>
* <br>
*
* <b>Note!</b> The encode/decode method pairs (types) come in three versions
* with the <b>exact</b> same algorithm and thus a lot of code redundancy. This
* is to not create any temporary arrays for transcoding to/from different
* format types. The methods not used can simply be commented out.<br>
* <br>
*
* There is also a "fast" version of all decode methods that works the same way
* as the normal ones, but har a few demands on the decoded input. Normally
* though, these fast verions should be used if the source if the input is known
* and it hasn't bee tampered with.<br>
* <br>
*
* If you find the code useful or you find a bug, please send me a note at
* base64 @ miginfocom . com.
*
* Licence (BSD): ==============
*
* Copyright (c) 2004, Mikael Grev, MiG InfoCom AB. (base64 @ miginfocom . com)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer. Redistributions in binary
* form must reproduce the above copyright notice, this list of conditions and
* the following disclaimer in the documentation and/or other materials provided
* with the distribution. Neither the name of the MiG InfoCom AB nor the names
* of its contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* @version 2.2
* @author Mikael Grev Date: 2004-aug-02 Time: 11:31:11
*/
public class Base64 {
private static final boolean devLineSep = true;
private static final char[] CA = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"
.toCharArray();
private static final int[] IA = new int[256];
static {
Arrays.fill(IA, -1);
for (int i = 0, iS = CA.length; i < iS; i++)
IA[CA[i]] = i;
IA['='] = 0;
}
// ****************************************************************************************
// * char[] version
// ****************************************************************************************
public final static char[] encodeToChar(byte[] sArr) {
return encodeToChar(sArr, devLineSep);
}
/**
* Encodes a raw byte array into a BASE64 <code>char[]</code>
* representation i accordance with RFC 2045.
*
* @param sArr
* The bytes to convert. If <code>null</code> or length 0 an
* empty array will be returned.
* @param lineSep
* Optional "\r\n" after 76 characters, unless end of file.<br>
* No line separator will be in breach of RFC 2045 which
* specifies max 76 per line but will be a little faster.
* @return A BASE64 encoded array. Never <code>null</code>.
*/
public final static char[] encodeToChar(byte[] sArr, boolean lineSep) {
// Check special case
int sLen = sArr != null ? sArr.length : 0;
if (sLen == 0)
return new char[0];
int eLen = (sLen / 3) * 3; // Length of even 24-bits.
int cCnt = ((sLen - 1) / 3 + 1) << 2; // Returned character count
int dLen = cCnt + (lineSep ? (cCnt - 1) / 76 << 1 : 0); // Length of
// returned
// array
char[] dArr = new char[dLen];
// Encode even 24-bits
for (int s = 0, d = 0, cc = 0; s < eLen;) {
// Copy next three bytes into lower 24 bits of int, paying attension
// to sign.
int i = (sArr[s++] & 0xff) << 16 | (sArr[s++] & 0xff) << 8
| (sArr[s++] & 0xff);
// Encode the int into four chars
dArr[d++] = CA[(i >>> 18) & 0x3f];
dArr[d++] = CA[(i >>> 12) & 0x3f];
dArr[d++] = CA[(i >>> 6) & 0x3f];
dArr[d++] = CA[i & 0x3f];
// Add optional line separator
if (lineSep && ++cc == 19 && d < dLen - 2) {
dArr[d++] = '\r';
dArr[d++] = '\n';
cc = 0;
}
}
// Pad and encode last bits if source isn't even 24 bits.
int left = sLen - eLen; // 0 - 2.
if (left > 0) {
// Prepare the int
int i = ((sArr[eLen] & 0xff) << 10)
| (left == 2 ? ((sArr[sLen - 1] & 0xff) << 2) : 0);
// Set last four chars
dArr[dLen - 4] = CA[i >> 12];
dArr[dLen - 3] = CA[(i >>> 6) & 0x3f];
dArr[dLen - 2] = left == 2 ? CA[i & 0x3f] : '=';
dArr[dLen - 1] = '=';
}
return dArr;
}
/**
* Decodes a BASE64 encoded char array. All illegal characters will be
* ignored and can handle both arrays with and without line separators.
*
* @param sArr
* The source array. <code>null</code> or length 0 will return
* an empty array.
* @return The decoded array of bytes. May be of length 0. Will be
* <code>null</code> if the legal characters (including '=') isn't
* divideable by 4. (I.e. definitely corrupted).
*/
public final static byte[] decode(char[] sArr) {
// Check special case
int sLen = sArr != null ? sArr.length : 0;
if (sLen == 0)
return new byte[0];
// Count illegal characters (including '\r', '\n') to know what size the
// returned array will be,
// so we don't have to reallocate & copy it later.
int sepCnt = 0; // Number of separator characters. (Actually illegal
// characters, but that's a bonus...)
for (int i = 0; i < sLen; i++)
// If input is "pure" (I.e. no line separators or illegal chars)
// base64 this loop can be commented out.
if (IA[sArr[i]] < 0)
sepCnt++;
// Check so that legal chars (including '=') are evenly divideable by 4
// as specified in RFC 2045.
if ((sLen - sepCnt) % 4 != 0)
return null;
int pad = 0;
for (int i = sLen; i > 1 && IA[sArr[--i]] <= 0;)
if (sArr[i] == '=')
pad++;
int len = ((sLen - sepCnt) * 6 >> 3) - pad;
byte[] dArr = new byte[len]; // Preallocate byte[] of exact length
for (int s = 0, d = 0; d < len;) {
// Assemble three bytes into an int from four "valid" characters.
int i = 0;
for (int j = 0; j < 4; j++) { // j only increased if a valid char
// was found.
int c = IA[sArr[s++]];
if (c >= 0)
i |= c << (18 - j * 6);
else
j--;
}
// Add the bytes
dArr[d++] = (byte) (i >> 16);
if (d < len) {
dArr[d++] = (byte) (i >>;
if (d < len)
dArr[d++] = (byte) i;
}
}
return dArr;
}
/**
* Decodes a BASE64 encoded char array that is known to be resonably well
* formatted. The method is about twice as fast as {@link #decode(char[])}.
* The preconditions are:<br> + The array must have a line length of 76
* chars OR no line separators at all (one line).<br> + Line separator must
* be "\r\n", as specified in RFC 2045 + The array must not contain illegal
* characters within the encoded string<br> + The array CAN have illegal
* characters at the beginning and end, those will be dealt with
* appropriately.<br>
*
* @param sArr
* The source array. Length 0 will return an empty array.
* <code>null</code> will throw an exception.
* @return The decoded array of bytes. May be of length 0.
*/
public final static byte[] decodeFast(char[] sArr) {
// Check special case
int sLen = sArr.length;
if (sLen == 0)
return new byte[0];
int sIx = 0, eIx = sLen - 1; // Start and end index after trimming.
// Trim illegal chars from start
while (sIx < eIx && IA[sArr[sIx]] < 0)
sIx++;
// Trim illegal chars from end
while (eIx > 0 && IA[sArr[eIx]] < 0)
eIx--;
// get the padding count (=) (0, 1 or 2)
int pad = sArr[eIx] == '=' ? (sArr[eIx - 1] == '=' ? 2 : 1) : 0; // Count
// '='
// at
// end.
int cCnt = eIx - sIx + 1; // Content count including possible
// separators
int sepCnt = sLen > 76 ? (sArr[76] == '\r' ? cCnt / 78 : 0) << 1 : 0;
int len = ((cCnt - sepCnt) * 6 >> 3) - pad; // The number of decoded
// bytes
byte[] dArr = new byte[len]; // Preallocate byte[] of exact length
// Decode all but the last 0 - 2 bytes.
int d = 0;
for (int cc = 0, eLen = (len / 3) * 3; d < eLen;) {
// Assemble three bytes into an int from four "valid" characters.
int i = IA[sArr[sIx++]] << 18 | IA[sArr[sIx++]] << 12
| IA[sArr[sIx++]] << 6 | IA[sArr[sIx++]];
// Add the bytes
dArr[d++] = (byte) (i >> 16);
dArr[d++] = (byte) (i >>;
dArr[d++] = (byte) i;
// If line separator, jump over it.
if (sepCnt > 0 && ++cc == 19) {
sIx += 2;
cc = 0;
}
}
if (d < len) {
// Decode last 1-3 bytes (incl '=') into 1-3 bytes
int i = 0;
for (int j = 0; sIx <= eIx - pad; j++)
i |= IA[sArr[sIx++]] << (18 - j * 6);
for (int r = 16; d < len; r -=
dArr[d++] = (byte) (i >> r);
}
return dArr;
}
// ****************************************************************************************
// * byte[] version
// ****************************************************************************************
public final static byte[] encodeToByte(byte[] sArr) {
return encodeToByte(sArr, devLineSep);
}
/**
* Encodes a raw byte array into a BASE64 <code>byte[]</code>
* representation i accordance with RFC 2045.
*
* @param sArr
* The bytes to convert. If <code>null</code> or length 0 an
* empty array will be returned.
* @param lineSep
* Optional "\r\n" after 76 characters, unless end of file.<br>
* No line separator will be in breach of RFC 2045 which
* specifies max 76 per line but will be a little faster.
* @return A BASE64 encoded array. Never <code>null</code>.
*/
public final static byte[] encodeToByte(byte[] sArr, boolean lineSep) {
// Check special case
int sLen = sArr != null ? sArr.length : 0;
if (sLen == 0)
return new byte[0];
int eLen = (sLen / 3) * 3; // Length of even 24-bits.
int cCnt = ((sLen - 1) / 3 + 1) << 2; // Returned character count
int dLen = cCnt + (lineSep ? (cCnt - 1) / 76 << 1 : 0); // Length of
// returned
// array
byte[] dArr = new byte[dLen];
// Encode even 24-bits
for (int s = 0, d = 0, cc = 0; s < eLen;) {
// Copy next three bytes into lower 24 bits of int, paying attension
// to sign.
int i = (sArr[s++] & 0xff) << 16 | (sArr[s++] & 0xff) << 8
| (sArr[s++] & 0xff);
// Encode the int into four chars
dArr[d++] = (byte) CA[(i >>> 18) & 0x3f];
dArr[d++] = (byte) CA[(i >>> 12) & 0x3f];
dArr[d++] = (byte) CA[(i >>> 6) & 0x3f];
dArr[d++] = (byte) CA[i & 0x3f];
// Add optional line separator
if (lineSep && ++cc == 19 && d < dLen - 2) {
dArr[d++] = '\r';
dArr[d++] = '\n';
cc = 0;
}
}
// Pad and encode last bits if source isn't an even 24 bits.
int left = sLen - eLen; // 0 - 2.
if (left > 0) {
// Prepare the int
int i = ((sArr[eLen] & 0xff) << 10)
| (left == 2 ? ((sArr[sLen - 1] & 0xff) << 2) : 0);
// Set last four chars
dArr[dLen - 4] = (byte) CA[i >> 12];
dArr[dLen - 3] = (byte) CA[(i >>> 6) & 0x3f];
dArr[dLen - 2] = left == 2 ? (byte) CA[i & 0x3f] : (byte) '=';
dArr[dLen - 1] = '=';
}
return dArr;
}
/**
* Decodes a BASE64 encoded byte array. All illegal characters will be
* ignored and can handle both arrays with and without line separators.
*
* @param sArr
* The source array. Length 0 will return an empty array.
* <code>null</code> will throw an exception.
* @return The decoded array of bytes. May be of length 0. Will be
* <code>null</code> if the legal characters (including '=') isn't
* divideable by 4. (I.e. definitely corrupted).
*/
public final static byte[] decode(byte[] sArr) {
// Check special case
int sLen = sArr.length;
// Count illegal characters (including '\r', '\n') to know what size the
// returned array will be,
// so we don't have to reallocate & copy it later.
int sepCnt = 0; // Number of separator characters. (Actually illegal
// characters, but that's a bonus...)
for (int i = 0; i < sLen; i++)
// If input is "pure" (I.e. no line separators or illegal chars)
// base64 this loop can be commented out.
if (IA[sArr[i] & 0xff] < 0)
sepCnt++;
// Check so that legal chars (including '=') are evenly divideable by 4
// as specified in RFC 2045.
if ((sLen - sepCnt) % 4 != 0)
return null;
int pad = 0;
for (int i = sLen; i > 1 && IA[sArr[--i] & 0xff] <= 0;)
if (sArr[i] == '=')
pad++;
int len = ((sLen - sepCnt) * 6 >> 3) - pad;
byte[] dArr = new byte[len]; // Preallocate byte[] of exact length
for (int s = 0, d = 0; d < len;) {
// Assemble three bytes into an int from four "valid" characters.
int i = 0;
for (int j = 0; j < 4; j++) { // j only increased if a valid char
// was found.
int c = IA[sArr[s++] & 0xff];
if (c >= 0)
i |= c << (18 - j * 6);
else
j--;
}
// Add the bytes
dArr[d++] = (byte) (i >> 16);
if (d < len) {
dArr[d++] = (byte) (i >>;
if (d < len)
dArr[d++] = (byte) i;
}
}
return dArr;
}
/**
* Decodes a BASE64 encoded byte array that is known to be resonably well
* formatted. The method is about twice as fast as {@link #decode(byte[])}.
* The preconditions are:<br> + The array must have a line length of 76
* chars OR no line separators at all (one line).<br> + Line separator must
* be "\r\n", as specified in RFC 2045 + The array must not contain illegal
* characters within the encoded string<br> + The array CAN have illegal
* characters at the beginning and end, those will be dealt with
* appropriately.<br>
*
* @param sArr
* The source array. Length 0 will return an empty array.
* <code>null</code> will throw an exception.
* @return The decoded array of bytes. May be of length 0.
*/
public final static byte[] decodeFast(byte[] sArr) {
// Check special case
int sLen = sArr.length;
if (sLen == 0)
return new byte[0];
int sIx = 0, eIx = sLen - 1; // Start and end index after trimming.
// Trim illegal chars from start
while (sIx < eIx && IA[sArr[sIx] & 0xff] < 0)
sIx++;
// Trim illegal chars from end
while (eIx > 0 && IA[sArr[eIx] & 0xff] < 0)
eIx--;
// get the padding count (=) (0, 1 or 2)
int pad = sArr[eIx] == '=' ? (sArr[eIx - 1] == '=' ? 2 : 1) : 0; // Count
// '='
// at
// end.
int cCnt = eIx - sIx + 1; // Content count including possible
// separators
int sepCnt = sLen > 76 ? (sArr[76] == '\r' ? cCnt / 78 : 0) << 1 : 0;
int len = ((cCnt - sepCnt) * 6 >> 3) - pad; // The number of decoded
// bytes
byte[] dArr = new byte[len]; // Preallocate byte[] of exact length
// Decode all but the last 0 - 2 bytes.
int d = 0;
for (int cc = 0, eLen = (len / 3) * 3; d < eLen;) {
// Assemble three bytes into an int from four "valid" characters.
int i = IA[sArr[sIx++]] << 18 | IA[sArr[sIx++]] << 12
| IA[sArr[sIx++]] << 6 | IA[sArr[sIx++]];
// Add the bytes
dArr[d++] = (byte) (i >> 16);
dArr[d++] = (byte) (i >>;
dArr[d++] = (byte) i;
// If line separator, jump over it.
if (sepCnt > 0 && ++cc == 19) {
sIx += 2;
cc = 0;
}
}
if (d < len) {
// Decode last 1-3 bytes (incl '=') into 1-3 bytes
int i = 0;
for (int j = 0; sIx <= eIx - pad; j++)
i |= IA[sArr[sIx++]] << (18 - j * 6);
for (int r = 16; d < len; r -=
dArr[d++] = (byte) (i >> r);
}
return dArr;
}
// ****************************************************************************************
// * String version
// ****************************************************************************************
/**
* Encodes a raw byte array into a BASE64 <code>String</code>
* representation i accordance with RFC 2045.
*
* @param sArr
* The bytes to convert. If <code>null</code> or length 0 an
* empty array will be returned.
* @param lineSep
* Optional "\r\n" after 76 characters, unless end of file.<br>
* No line separator will be in breach of RFC 2045 which
* specifies max 76 per line but will be a little faster.
* @return A BASE64 encoded array. Never <code>null</code>.
*/
public final static String encodeToString(byte[] sArr, boolean lineSep) {
// Reuse char[] since we can't create a String incrementally anyway and
// StringBuffer/Builder would be slower.
return new String(encodeToChar(sArr, lineSep));
}
public final static String encodeToString(byte[] sArr) {
// Reuse char[] since we can't create a String incrementally anyway and
// StringBuffer/Builder would be slower.
return new String(encodeToChar(sArr, devLineSep));
}
/**
* Decodes a BASE64 encoded <code>String</code>. All illegal characters
* will be ignored and can handle both strings with and without line
* separators.<br>
* <b>Note!</b> It can be up to about 2x the speed to call
* <code>decode(str.toCharArray())</code> instead. That will create a
* temporary array though. This version will use <code>str.charAt(i)</code>
* to iterate the string.
*
* @param str
* The source string. <code>null</code> or length 0 will return
* an empty array.
* @return The decoded array of bytes. May be of length 0. Will be
* <code>null</code> if the legal characters (including '=') isn't
* divideable by 4. (I.e. definitely corrupted).
*/
public final static byte[] decode(String str) {
// Check special case
int sLen = str != null ? str.length() : 0;
if (sLen == 0)
return new byte[0];
// Count illegal characters (including '\r', '\n') to know what size the
// returned array will be,
// so we don't have to reallocate & copy it later.
int sepCnt = 0; // Number of separator characters. (Actually illegal
// characters, but that's a bonus...)
for (int i = 0; i < sLen; i++)
// If input is "pure" (I.e. no line separators or illegal chars)
// base64 this loop can be commented out.
if (IA[str.charAt(i)] < 0)
sepCnt++;
// Check so that legal chars (including '=') are evenly divideable by 4
// as specified in RFC 2045.
if ((sLen - sepCnt) % 4 != 0)
return null;
// Count '=' at end
int pad = 0;
for (int i = sLen; i > 1 && IA[str.charAt(--i)] <= 0;)
if (str.charAt(i) == '=')
pad++;
int len = ((sLen - sepCnt) * 6 >> 3) - pad;
byte[] dArr = new byte[len]; // Preallocate byte[] of exact length
for (int s = 0, d = 0; d < len;) {
// Assemble three bytes into an int from four "valid" characters.
int i = 0;
for (int j = 0; j < 4; j++) { // j only increased if a valid char
// was found.
int c = IA[str.charAt(s++)];
if (c >= 0)
i |= c << (18 - j * 6);
else
j--;
}
// Add the bytes
dArr[d++] = (byte) (i >> 16);
if (d < len) {
dArr[d++] = (byte) (i >>;
if (d < len)
dArr[d++] = (byte) i;
}
}
return dArr;
}
/**
* Decodes a BASE64 encoded string that is known to be resonably well
* formatted. The method is about twice as fast as {@link #decode(String)}.
* The preconditions are:<br> + The array must have a line length of 76
* chars OR no line separators at all (one line).<br> + Line separator must
* be "\r\n", as specified in RFC 2045 + The array must not contain illegal
* characters within the encoded string<br> + The array CAN have illegal
* characters at the beginning and end, those will be dealt with
* appropriately.<br>
*
* @param s
* The source string. Length 0 will return an empty array.
* <code>null</code> will throw an exception.
* @return The decoded array of bytes. May be of length 0.
*/
public final static byte[] decodeFast(String s) {
// Check special case
int sLen = s.length();
if (sLen == 0)
return new byte[0];
int sIx = 0, eIx = sLen - 1; // Start and end index after trimming.
// Trim illegal chars from start
while (sIx < eIx && IA[s.charAt(sIx) & 0xff] < 0)
sIx++;
// Trim illegal chars from end
while (eIx > 0 && IA[s.charAt(eIx) & 0xff] < 0)
eIx--;
// get the padding count (=) (0, 1 or 2)
int pad = s.charAt(eIx) == '=' ? (s.charAt(eIx - 1) == '=' ? 2 : 1) : 0; // Count
// '='
// at
// end.
int cCnt = eIx - sIx + 1; // Content count including possible
// separators
int sepCnt = sLen > 76 ? (s.charAt(76) == '\r' ? cCnt / 78 : 0) << 1
: 0;
int len = ((cCnt - sepCnt) * 6 >> 3) - pad; // The number of decoded
// bytes
byte[] dArr = new byte[len]; // Preallocate byte[] of exact length
// Decode all but the last 0 - 2 bytes.
int d = 0;
for (int cc = 0, eLen = (len / 3) * 3; d < eLen;) {
// Assemble three bytes into an int from four "valid" characters.
int i = IA[s.charAt(sIx++)] << 18 | IA[s.charAt(sIx++)] << 12
| IA[s.charAt(sIx++)] << 6 | IA[s.charAt(sIx++)];
// Add the bytes
dArr[d++] = (byte) (i >> 16);
dArr[d++] = (byte) (i >>;
dArr[d++] = (byte) i;
// If line separator, jump over it.
if (sepCnt > 0 && ++cc == 19) {
sIx += 2;
cc = 0;
}
}
if (d < len) {
// Decode last 1-3 bytes (incl '=') into 1-3 bytes
int i = 0;
for (int j = 0; sIx <= eIx - pad; j++)
i |= IA[s.charAt(sIx++)] << (18 - j * 6);
for (int r = 16; d < len; r -=
dArr[d++] = (byte) (i >> r);
}
return dArr;
}
public static void main(String[] args){
System.out.println(Base64.encodeToString("5CC9D9B48EFCF2FDB766BFB00E08EEDF".getBytes()));
}
}
原文网址:http://blog.csdn.net/sunyujia/archive/2008/01/01/2008469.aspx
import java.util.Arrays;
/**
* A very fast and memory efficient class to encode and decode to and from
* BASE64 in full accordance with RFC 2045.<br>
* <br>
* On Windows XP sp1 with 1.4.2_04 and later ;), this encoder and decoder is
* about 10 times faster on small arrays (10 - 1000 bytes) and 2-3 times as fast
* on larger arrays (10000 - 1000000 bytes) compared to
* <code>sun.misc.Encoder()/Decoder()</code>.<br>
* <br>
*
* On byte arrays the encoder is about 20% faster than Jakarta Commons Base64
* Codec for encode and about 50% faster for decoding large arrays. This
* implementation is about twice as fast on very small arrays (< 30 bytes). If
* source/destination is a <code>String</code> this version is about three
* times as fast due to the fact that the Commons Codec result has to be recoded
* to a <code>String</code> from <code>byte[]</code>, which is very
* expensive.<br>
* <br>
*
* This encode/decode algorithm doesn't create any temporary arrays as many
* other codecs do, it only allocates the resulting array. This produces less
* garbage and it is possible to handle arrays twice as large as algorithms that
* create a temporary array. (E.g. Jakarta Commons Codec). It is unknown whether
* Sun's <code>sun.misc.Encoder()/Decoder()</code> produce temporary arrays
* but since performance is quite low it probably does.<br>
* <br>
*
* The encoder produces the same output as the Sun one except that the Sun's
* encoder appends a trailing line separator if the last character isn't a pad.
* Unclear why but it only adds to the length and is probably a side effect.
* Both are in conformance with RFC 2045 though.<br>
* Commons codec seem to always att a trailing line separator.<br>
* <br>
*
* <b>Note!</b> The encode/decode method pairs (types) come in three versions
* with the <b>exact</b> same algorithm and thus a lot of code redundancy. This
* is to not create any temporary arrays for transcoding to/from different
* format types. The methods not used can simply be commented out.<br>
* <br>
*
* There is also a "fast" version of all decode methods that works the same way
* as the normal ones, but har a few demands on the decoded input. Normally
* though, these fast verions should be used if the source if the input is known
* and it hasn't bee tampered with.<br>
* <br>
*
* If you find the code useful or you find a bug, please send me a note at
* base64 @ miginfocom . com.
*
* Licence (BSD): ==============
*
* Copyright (c) 2004, Mikael Grev, MiG InfoCom AB. (base64 @ miginfocom . com)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer. Redistributions in binary
* form must reproduce the above copyright notice, this list of conditions and
* the following disclaimer in the documentation and/or other materials provided
* with the distribution. Neither the name of the MiG InfoCom AB nor the names
* of its contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* @version 2.2
* @author Mikael Grev Date: 2004-aug-02 Time: 11:31:11
*/
public class Base64 {
private static final boolean devLineSep = true;
private static final char[] CA = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"
.toCharArray();
private static final int[] IA = new int[256];
static {
Arrays.fill(IA, -1);
for (int i = 0, iS = CA.length; i < iS; i++)
IA[CA[i]] = i;
IA['='] = 0;
}
// ****************************************************************************************
// * char[] version
// ****************************************************************************************
public final static char[] encodeToChar(byte[] sArr) {
return encodeToChar(sArr, devLineSep);
}
/**
* Encodes a raw byte array into a BASE64 <code>char[]</code>
* representation i accordance with RFC 2045.
*
* @param sArr
* The bytes to convert. If <code>null</code> or length 0 an
* empty array will be returned.
* @param lineSep
* Optional "\r\n" after 76 characters, unless end of file.<br>
* No line separator will be in breach of RFC 2045 which
* specifies max 76 per line but will be a little faster.
* @return A BASE64 encoded array. Never <code>null</code>.
*/
public final static char[] encodeToChar(byte[] sArr, boolean lineSep) {
// Check special case
int sLen = sArr != null ? sArr.length : 0;
if (sLen == 0)
return new char[0];
int eLen = (sLen / 3) * 3; // Length of even 24-bits.
int cCnt = ((sLen - 1) / 3 + 1) << 2; // Returned character count
int dLen = cCnt + (lineSep ? (cCnt - 1) / 76 << 1 : 0); // Length of
// returned
// array
char[] dArr = new char[dLen];
// Encode even 24-bits
for (int s = 0, d = 0, cc = 0; s < eLen;) {
// Copy next three bytes into lower 24 bits of int, paying attension
// to sign.
int i = (sArr[s++] & 0xff) << 16 | (sArr[s++] & 0xff) << 8
| (sArr[s++] & 0xff);
// Encode the int into four chars
dArr[d++] = CA[(i >>> 18) & 0x3f];
dArr[d++] = CA[(i >>> 12) & 0x3f];
dArr[d++] = CA[(i >>> 6) & 0x3f];
dArr[d++] = CA[i & 0x3f];
// Add optional line separator
if (lineSep && ++cc == 19 && d < dLen - 2) {
dArr[d++] = '\r';
dArr[d++] = '\n';
cc = 0;
}
}
// Pad and encode last bits if source isn't even 24 bits.
int left = sLen - eLen; // 0 - 2.
if (left > 0) {
// Prepare the int
int i = ((sArr[eLen] & 0xff) << 10)
| (left == 2 ? ((sArr[sLen - 1] & 0xff) << 2) : 0);
// Set last four chars
dArr[dLen - 4] = CA[i >> 12];
dArr[dLen - 3] = CA[(i >>> 6) & 0x3f];
dArr[dLen - 2] = left == 2 ? CA[i & 0x3f] : '=';
dArr[dLen - 1] = '=';
}
return dArr;
}
/**
* Decodes a BASE64 encoded char array. All illegal characters will be
* ignored and can handle both arrays with and without line separators.
*
* @param sArr
* The source array. <code>null</code> or length 0 will return
* an empty array.
* @return The decoded array of bytes. May be of length 0. Will be
* <code>null</code> if the legal characters (including '=') isn't
* divideable by 4. (I.e. definitely corrupted).
*/
public final static byte[] decode(char[] sArr) {
// Check special case
int sLen = sArr != null ? sArr.length : 0;
if (sLen == 0)
return new byte[0];
// Count illegal characters (including '\r', '\n') to know what size the
// returned array will be,
// so we don't have to reallocate & copy it later.
int sepCnt = 0; // Number of separator characters. (Actually illegal
// characters, but that's a bonus...)
for (int i = 0; i < sLen; i++)
// If input is "pure" (I.e. no line separators or illegal chars)
// base64 this loop can be commented out.
if (IA[sArr[i]] < 0)
sepCnt++;
// Check so that legal chars (including '=') are evenly divideable by 4
// as specified in RFC 2045.
if ((sLen - sepCnt) % 4 != 0)
return null;
int pad = 0;
for (int i = sLen; i > 1 && IA[sArr[--i]] <= 0;)
if (sArr[i] == '=')
pad++;
int len = ((sLen - sepCnt) * 6 >> 3) - pad;
byte[] dArr = new byte[len]; // Preallocate byte[] of exact length
for (int s = 0, d = 0; d < len;) {
// Assemble three bytes into an int from four "valid" characters.
int i = 0;
for (int j = 0; j < 4; j++) { // j only increased if a valid char
// was found.
int c = IA[sArr[s++]];
if (c >= 0)
i |= c << (18 - j * 6);
else
j--;
}
// Add the bytes
dArr[d++] = (byte) (i >> 16);
if (d < len) {
dArr[d++] = (byte) (i >>;
if (d < len)
dArr[d++] = (byte) i;
}
}
return dArr;
}
/**
* Decodes a BASE64 encoded char array that is known to be resonably well
* formatted. The method is about twice as fast as {@link #decode(char[])}.
* The preconditions are:<br> + The array must have a line length of 76
* chars OR no line separators at all (one line).<br> + Line separator must
* be "\r\n", as specified in RFC 2045 + The array must not contain illegal
* characters within the encoded string<br> + The array CAN have illegal
* characters at the beginning and end, those will be dealt with
* appropriately.<br>
*
* @param sArr
* The source array. Length 0 will return an empty array.
* <code>null</code> will throw an exception.
* @return The decoded array of bytes. May be of length 0.
*/
public final static byte[] decodeFast(char[] sArr) {
// Check special case
int sLen = sArr.length;
if (sLen == 0)
return new byte[0];
int sIx = 0, eIx = sLen - 1; // Start and end index after trimming.
// Trim illegal chars from start
while (sIx < eIx && IA[sArr[sIx]] < 0)
sIx++;
// Trim illegal chars from end
while (eIx > 0 && IA[sArr[eIx]] < 0)
eIx--;
// get the padding count (=) (0, 1 or 2)
int pad = sArr[eIx] == '=' ? (sArr[eIx - 1] == '=' ? 2 : 1) : 0; // Count
// '='
// at
// end.
int cCnt = eIx - sIx + 1; // Content count including possible
// separators
int sepCnt = sLen > 76 ? (sArr[76] == '\r' ? cCnt / 78 : 0) << 1 : 0;
int len = ((cCnt - sepCnt) * 6 >> 3) - pad; // The number of decoded
// bytes
byte[] dArr = new byte[len]; // Preallocate byte[] of exact length
// Decode all but the last 0 - 2 bytes.
int d = 0;
for (int cc = 0, eLen = (len / 3) * 3; d < eLen;) {
// Assemble three bytes into an int from four "valid" characters.
int i = IA[sArr[sIx++]] << 18 | IA[sArr[sIx++]] << 12
| IA[sArr[sIx++]] << 6 | IA[sArr[sIx++]];
// Add the bytes
dArr[d++] = (byte) (i >> 16);
dArr[d++] = (byte) (i >>;
dArr[d++] = (byte) i;
// If line separator, jump over it.
if (sepCnt > 0 && ++cc == 19) {
sIx += 2;
cc = 0;
}
}
if (d < len) {
// Decode last 1-3 bytes (incl '=') into 1-3 bytes
int i = 0;
for (int j = 0; sIx <= eIx - pad; j++)
i |= IA[sArr[sIx++]] << (18 - j * 6);
for (int r = 16; d < len; r -=
dArr[d++] = (byte) (i >> r);
}
return dArr;
}
// ****************************************************************************************
// * byte[] version
// ****************************************************************************************
public final static byte[] encodeToByte(byte[] sArr) {
return encodeToByte(sArr, devLineSep);
}
/**
* Encodes a raw byte array into a BASE64 <code>byte[]</code>
* representation i accordance with RFC 2045.
*
* @param sArr
* The bytes to convert. If <code>null</code> or length 0 an
* empty array will be returned.
* @param lineSep
* Optional "\r\n" after 76 characters, unless end of file.<br>
* No line separator will be in breach of RFC 2045 which
* specifies max 76 per line but will be a little faster.
* @return A BASE64 encoded array. Never <code>null</code>.
*/
public final static byte[] encodeToByte(byte[] sArr, boolean lineSep) {
// Check special case
int sLen = sArr != null ? sArr.length : 0;
if (sLen == 0)
return new byte[0];
int eLen = (sLen / 3) * 3; // Length of even 24-bits.
int cCnt = ((sLen - 1) / 3 + 1) << 2; // Returned character count
int dLen = cCnt + (lineSep ? (cCnt - 1) / 76 << 1 : 0); // Length of
// returned
// array
byte[] dArr = new byte[dLen];
// Encode even 24-bits
for (int s = 0, d = 0, cc = 0; s < eLen;) {
// Copy next three bytes into lower 24 bits of int, paying attension
// to sign.
int i = (sArr[s++] & 0xff) << 16 | (sArr[s++] & 0xff) << 8
| (sArr[s++] & 0xff);
// Encode the int into four chars
dArr[d++] = (byte) CA[(i >>> 18) & 0x3f];
dArr[d++] = (byte) CA[(i >>> 12) & 0x3f];
dArr[d++] = (byte) CA[(i >>> 6) & 0x3f];
dArr[d++] = (byte) CA[i & 0x3f];
// Add optional line separator
if (lineSep && ++cc == 19 && d < dLen - 2) {
dArr[d++] = '\r';
dArr[d++] = '\n';
cc = 0;
}
}
// Pad and encode last bits if source isn't an even 24 bits.
int left = sLen - eLen; // 0 - 2.
if (left > 0) {
// Prepare the int
int i = ((sArr[eLen] & 0xff) << 10)
| (left == 2 ? ((sArr[sLen - 1] & 0xff) << 2) : 0);
// Set last four chars
dArr[dLen - 4] = (byte) CA[i >> 12];
dArr[dLen - 3] = (byte) CA[(i >>> 6) & 0x3f];
dArr[dLen - 2] = left == 2 ? (byte) CA[i & 0x3f] : (byte) '=';
dArr[dLen - 1] = '=';
}
return dArr;
}
/**
* Decodes a BASE64 encoded byte array. All illegal characters will be
* ignored and can handle both arrays with and without line separators.
*
* @param sArr
* The source array. Length 0 will return an empty array.
* <code>null</code> will throw an exception.
* @return The decoded array of bytes. May be of length 0. Will be
* <code>null</code> if the legal characters (including '=') isn't
* divideable by 4. (I.e. definitely corrupted).
*/
public final static byte[] decode(byte[] sArr) {
// Check special case
int sLen = sArr.length;
// Count illegal characters (including '\r', '\n') to know what size the
// returned array will be,
// so we don't have to reallocate & copy it later.
int sepCnt = 0; // Number of separator characters. (Actually illegal
// characters, but that's a bonus...)
for (int i = 0; i < sLen; i++)
// If input is "pure" (I.e. no line separators or illegal chars)
// base64 this loop can be commented out.
if (IA[sArr[i] & 0xff] < 0)
sepCnt++;
// Check so that legal chars (including '=') are evenly divideable by 4
// as specified in RFC 2045.
if ((sLen - sepCnt) % 4 != 0)
return null;
int pad = 0;
for (int i = sLen; i > 1 && IA[sArr[--i] & 0xff] <= 0;)
if (sArr[i] == '=')
pad++;
int len = ((sLen - sepCnt) * 6 >> 3) - pad;
byte[] dArr = new byte[len]; // Preallocate byte[] of exact length
for (int s = 0, d = 0; d < len;) {
// Assemble three bytes into an int from four "valid" characters.
int i = 0;
for (int j = 0; j < 4; j++) { // j only increased if a valid char
// was found.
int c = IA[sArr[s++] & 0xff];
if (c >= 0)
i |= c << (18 - j * 6);
else
j--;
}
// Add the bytes
dArr[d++] = (byte) (i >> 16);
if (d < len) {
dArr[d++] = (byte) (i >>;
if (d < len)
dArr[d++] = (byte) i;
}
}
return dArr;
}
/**
* Decodes a BASE64 encoded byte array that is known to be resonably well
* formatted. The method is about twice as fast as {@link #decode(byte[])}.
* The preconditions are:<br> + The array must have a line length of 76
* chars OR no line separators at all (one line).<br> + Line separator must
* be "\r\n", as specified in RFC 2045 + The array must not contain illegal
* characters within the encoded string<br> + The array CAN have illegal
* characters at the beginning and end, those will be dealt with
* appropriately.<br>
*
* @param sArr
* The source array. Length 0 will return an empty array.
* <code>null</code> will throw an exception.
* @return The decoded array of bytes. May be of length 0.
*/
public final static byte[] decodeFast(byte[] sArr) {
// Check special case
int sLen = sArr.length;
if (sLen == 0)
return new byte[0];
int sIx = 0, eIx = sLen - 1; // Start and end index after trimming.
// Trim illegal chars from start
while (sIx < eIx && IA[sArr[sIx] & 0xff] < 0)
sIx++;
// Trim illegal chars from end
while (eIx > 0 && IA[sArr[eIx] & 0xff] < 0)
eIx--;
// get the padding count (=) (0, 1 or 2)
int pad = sArr[eIx] == '=' ? (sArr[eIx - 1] == '=' ? 2 : 1) : 0; // Count
// '='
// at
// end.
int cCnt = eIx - sIx + 1; // Content count including possible
// separators
int sepCnt = sLen > 76 ? (sArr[76] == '\r' ? cCnt / 78 : 0) << 1 : 0;
int len = ((cCnt - sepCnt) * 6 >> 3) - pad; // The number of decoded
// bytes
byte[] dArr = new byte[len]; // Preallocate byte[] of exact length
// Decode all but the last 0 - 2 bytes.
int d = 0;
for (int cc = 0, eLen = (len / 3) * 3; d < eLen;) {
// Assemble three bytes into an int from four "valid" characters.
int i = IA[sArr[sIx++]] << 18 | IA[sArr[sIx++]] << 12
| IA[sArr[sIx++]] << 6 | IA[sArr[sIx++]];
// Add the bytes
dArr[d++] = (byte) (i >> 16);
dArr[d++] = (byte) (i >>;
dArr[d++] = (byte) i;
// If line separator, jump over it.
if (sepCnt > 0 && ++cc == 19) {
sIx += 2;
cc = 0;
}
}
if (d < len) {
// Decode last 1-3 bytes (incl '=') into 1-3 bytes
int i = 0;
for (int j = 0; sIx <= eIx - pad; j++)
i |= IA[sArr[sIx++]] << (18 - j * 6);
for (int r = 16; d < len; r -=
dArr[d++] = (byte) (i >> r);
}
return dArr;
}
// ****************************************************************************************
// * String version
// ****************************************************************************************
/**
* Encodes a raw byte array into a BASE64 <code>String</code>
* representation i accordance with RFC 2045.
*
* @param sArr
* The bytes to convert. If <code>null</code> or length 0 an
* empty array will be returned.
* @param lineSep
* Optional "\r\n" after 76 characters, unless end of file.<br>
* No line separator will be in breach of RFC 2045 which
* specifies max 76 per line but will be a little faster.
* @return A BASE64 encoded array. Never <code>null</code>.
*/
public final static String encodeToString(byte[] sArr, boolean lineSep) {
// Reuse char[] since we can't create a String incrementally anyway and
// StringBuffer/Builder would be slower.
return new String(encodeToChar(sArr, lineSep));
}
public final static String encodeToString(byte[] sArr) {
// Reuse char[] since we can't create a String incrementally anyway and
// StringBuffer/Builder would be slower.
return new String(encodeToChar(sArr, devLineSep));
}
/**
* Decodes a BASE64 encoded <code>String</code>. All illegal characters
* will be ignored and can handle both strings with and without line
* separators.<br>
* <b>Note!</b> It can be up to about 2x the speed to call
* <code>decode(str.toCharArray())</code> instead. That will create a
* temporary array though. This version will use <code>str.charAt(i)</code>
* to iterate the string.
*
* @param str
* The source string. <code>null</code> or length 0 will return
* an empty array.
* @return The decoded array of bytes. May be of length 0. Will be
* <code>null</code> if the legal characters (including '=') isn't
* divideable by 4. (I.e. definitely corrupted).
*/
public final static byte[] decode(String str) {
// Check special case
int sLen = str != null ? str.length() : 0;
if (sLen == 0)
return new byte[0];
// Count illegal characters (including '\r', '\n') to know what size the
// returned array will be,
// so we don't have to reallocate & copy it later.
int sepCnt = 0; // Number of separator characters. (Actually illegal
// characters, but that's a bonus...)
for (int i = 0; i < sLen; i++)
// If input is "pure" (I.e. no line separators or illegal chars)
// base64 this loop can be commented out.
if (IA[str.charAt(i)] < 0)
sepCnt++;
// Check so that legal chars (including '=') are evenly divideable by 4
// as specified in RFC 2045.
if ((sLen - sepCnt) % 4 != 0)
return null;
// Count '=' at end
int pad = 0;
for (int i = sLen; i > 1 && IA[str.charAt(--i)] <= 0;)
if (str.charAt(i) == '=')
pad++;
int len = ((sLen - sepCnt) * 6 >> 3) - pad;
byte[] dArr = new byte[len]; // Preallocate byte[] of exact length
for (int s = 0, d = 0; d < len;) {
// Assemble three bytes into an int from four "valid" characters.
int i = 0;
for (int j = 0; j < 4; j++) { // j only increased if a valid char
// was found.
int c = IA[str.charAt(s++)];
if (c >= 0)
i |= c << (18 - j * 6);
else
j--;
}
// Add the bytes
dArr[d++] = (byte) (i >> 16);
if (d < len) {
dArr[d++] = (byte) (i >>;
if (d < len)
dArr[d++] = (byte) i;
}
}
return dArr;
}
/**
* Decodes a BASE64 encoded string that is known to be resonably well
* formatted. The method is about twice as fast as {@link #decode(String)}.
* The preconditions are:<br> + The array must have a line length of 76
* chars OR no line separators at all (one line).<br> + Line separator must
* be "\r\n", as specified in RFC 2045 + The array must not contain illegal
* characters within the encoded string<br> + The array CAN have illegal
* characters at the beginning and end, those will be dealt with
* appropriately.<br>
*
* @param s
* The source string. Length 0 will return an empty array.
* <code>null</code> will throw an exception.
* @return The decoded array of bytes. May be of length 0.
*/
public final static byte[] decodeFast(String s) {
// Check special case
int sLen = s.length();
if (sLen == 0)
return new byte[0];
int sIx = 0, eIx = sLen - 1; // Start and end index after trimming.
// Trim illegal chars from start
while (sIx < eIx && IA[s.charAt(sIx) & 0xff] < 0)
sIx++;
// Trim illegal chars from end
while (eIx > 0 && IA[s.charAt(eIx) & 0xff] < 0)
eIx--;
// get the padding count (=) (0, 1 or 2)
int pad = s.charAt(eIx) == '=' ? (s.charAt(eIx - 1) == '=' ? 2 : 1) : 0; // Count
// '='
// at
// end.
int cCnt = eIx - sIx + 1; // Content count including possible
// separators
int sepCnt = sLen > 76 ? (s.charAt(76) == '\r' ? cCnt / 78 : 0) << 1
: 0;
int len = ((cCnt - sepCnt) * 6 >> 3) - pad; // The number of decoded
// bytes
byte[] dArr = new byte[len]; // Preallocate byte[] of exact length
// Decode all but the last 0 - 2 bytes.
int d = 0;
for (int cc = 0, eLen = (len / 3) * 3; d < eLen;) {
// Assemble three bytes into an int from four "valid" characters.
int i = IA[s.charAt(sIx++)] << 18 | IA[s.charAt(sIx++)] << 12
| IA[s.charAt(sIx++)] << 6 | IA[s.charAt(sIx++)];
// Add the bytes
dArr[d++] = (byte) (i >> 16);
dArr[d++] = (byte) (i >>;
dArr[d++] = (byte) i;
// If line separator, jump over it.
if (sepCnt > 0 && ++cc == 19) {
sIx += 2;
cc = 0;
}
}
if (d < len) {
// Decode last 1-3 bytes (incl '=') into 1-3 bytes
int i = 0;
for (int j = 0; sIx <= eIx - pad; j++)
i |= IA[s.charAt(sIx++)] << (18 - j * 6);
for (int r = 16; d < len; r -=
dArr[d++] = (byte) (i >> r);
}
return dArr;
}
public static void main(String[] args){
System.out.println(Base64.encodeToString("5CC9D9B48EFCF2FDB766BFB00E08EEDF".getBytes()));
}
}
相关推荐
【标题】:BASE64加密解密 在计算机科学中,BASE64是一种常见的数据编码方式,用于将二进制数据转换为可打印的ASCII字符序列。这种编码方法广泛应用于电子邮件系统、网络传输以及文件存储等领域,因为它可以将任何...
总的来说,C#中的Base64加密解密提供了简单且安全的方法来处理二进制数据,特别是在需要在文本环境(如邮件、网页)中传输时。在WinForm应用中,开发者可以结合UI设计,创建用户友好的工具,方便地进行Base64编码和...
Java Base64加密解密方法工具类
以下是对Base64加密解密的详细讲解以及如何在C# WinForm应用中实现。 首先,理解Base64的基本原理。Base64使用64个不同的字符(包括大小写字母、数字以及"+"和"/")来表示二进制数据,每个字符代表6位二进制数。...
在Java编程中,图片Base64加密解密是一种常见的数据处理技术,特别是在网络传输和存储时,由于Base64编码可以将二进制数据转换为可打印的ASCII字符,因此非常适用。`sun.misc.BASE64Encoder`和`sun.misc.BASE64...
在微信小程序中实现AES ECB Base64加密解密,你需要以下步骤: 1. 引入加密库:微信小程序提供了`wx.request`方法来调用外部API,你可以引入第三方加密库,如`crypto-js`,通过npm安装后将其添加到项目中。 2. ...
总结,虽然SQL Server 2005本身并不提供内置的Base64加密解密功能,但通过创建自定义函数,我们可以实现类似的功能。需要注意的是,上述函数仅适用于简单场景,对于更复杂的需求,可能需要更完善的Base64编码解码...
在这个场景中,我们讨论的是一个纯JavaScript实现的Base64加密解密工具类,它无需依赖其他外部JavaScript库,因此非常适合在各种环境中使用,特别是对于那些对文件大小和加载速度有严格要求的项目。 Base64加密,也...
非常实用的Base64加密,解密角本。基于UTF8,支持中文加解密。
总结来说,C#的Base64加密解密工具提供了对二进制数据的简单编码和解码,方便在各种环境中传递和存储数据。源码的分析有助于开发者理解和掌握这一基础但实用的技术,进一步提高编程能力。在使用过程中,注意正确处理...
下面,我们将深入探讨Base64加密解密的原理和实现: 1. **Base64编码原理**:Base64编码将每3个字节的二进制数据(24位)转化为4个6位的二进制数,然后将这6位转换为对应的Base64字符。如果原始数据不是3的倍数,会...
LabVIEW实现Base64加密解密程序源码,可以作为子VI直接调用,非常方便,经过测试没有问题。base64是一种用64个字符来表示任意二进制数据的方法。base 64编码可以将任意一组字节转换为较长的常见文本字符序列,从而...
本文将详细探讨如何在Hive中自定义User Defined Function(UDF)来实现Base64的加密和解密。 首先,我们需要了解Base64的基本原理。Base64是一种将任意二进制数据转化为ASCII字符集的方法,它通过将每3个字节转换为...
这个压缩包文件"复件 Base64_Test源码"包含了C++实现Base64加密解密的源代码,对于理解Base64的工作原理和C++编程实践非常有帮助。 Base64的基本原理是将每3个8位字节(共24位)的数据块转换为4个6位的字节(共24位...
下面,我们将深入探讨Base64加密解密的基本原理、用途以及如何使用工具进行操作。 1. Base64的基本原理 Base64是基于64个可打印字符来表示二进制数据的编码方法。这64个字符包括大小写字母(A-Z, a-z)、数字(0-9...
"Base64加密解密工具"是专门针对这种编码方式进行设计的实用程序,能够帮助用户便捷地对数据进行Base64编码或解码。 Base64编码的基本原理是将每3个字节(24位)的数据转换为4个6位的Base64字符,这样每个64字符的...
标题提到的"Base64加密解密封装"是指将Base64编码和解码的逻辑进行封装,以方便在项目中复用。封装通常包括创建类或方法,提供接口供其他部分的代码调用,实现加密和解密功能。这种封装能提高代码的可读性和可维护性...
总之,Java提供了方便的`java.util.Base64`工具类来处理Base64编码和解码,使得在Java项目中实现Base64加密解密变得简单且高效。这个基础的加密解密机制虽然简单,但在很多场景下已经足够满足基本的数据保护需求。
Base64是一种常见的数据编码方式,它将...总的来说,通过理解和掌握C#中的Base64加密解密,你可以更好地处理二进制数据的传输和存储问题。这个VS2015的Demo提供了一个很好的起点,帮助开发者快速上手并应用于实际项目。