`
lixinye0123
  • 浏览: 333212 次
  • 性别: Icon_minigender_1
  • 来自: 温州
社区版块
存档分类
最新评论

Java程序的性能优化

    博客分类:
  • Java
阅读更多
<noscript type="text/javascript"><!----></noscript><noscript src="http://pagead2.googlesyndication.com/pagead/show_ads.js" type="text/javascript"> </noscript>

       

        Java使得复杂应用的开发变得相对简单,毫无疑问,它的这种易用性对Java的大范围流行功不可没。然而,这种易用性实际上是一把双刃剑。一个设计良好的Java程序,性能表现往往不如一个同样设计良好的C++程序。在Java程序中,性能问题的大部分原因并不在于Java语言,而是在于程序本身。养成好的代码编写习惯非常重要,比如正确地、巧妙地运用java.lang.String类和java.util.Vector类,它能够显著地提高程序的性能。下面我们就来具体地分析一下这方面的问题。

  在java中,使用最频繁、同时也是滥用最多的一个类或许就是java.lang.String,它也是导致代码性能低下最主要的原因之一。请考虑下面这个例子:


String s1 = "Testing String";
String s2 = "Concatenation Performance";
String s3 = s1 + " " + s2;

  几乎所有的Java程序员都知道上面的代码效率不高。那么,我们应该怎么办呢?也许可以试试下面这种代码:


StringBuffer s = new StringBuffer();
s.append("Testing String");
s.append(" ");
s.append("Concatenation Performance");
String s3 = s.toString();

  这些代码会比第一个代码片段效率更高吗?答案是否定的。这里的代码实际上正是编译器编译第一个代码片段之后的结果。既然与使用多个独立的String对象相比,StringBuffer并没有使代码有任何效率上的提高,那为什么有那么多的Java书籍批评第一种方法、推荐使用第二种方法?

  第二个代码片段用到了StringBuffer类(编译器在第一个片段中也将使用StringBuffer类),我们来分析一下StringBuffer类的默认构造函数,下面是它的代码:


public StringBuffer() { this(16); }

  默认构造函数预设了16个字符的缓存容量。现在我们再来看看StringBuffer类的append()方法:


public synchronized StringBuffer append(String str) {
if (str == null) {
str = String.valueOf(str);
}
int len = str.length();
int newcount = count + len;
if (newcount > value.length) expandCapacity(newcount);
str.getChars(0, len, value, count);
count = newcount; return this;
}

  append()方法首先计算字符串追加完成后的总长度,如果这个总长度大于StringBuffer的存储能力,append()方法调用私有的expandCapacity()方法。expandCapacity()方法在每次被调用时使StringBuffer存储能力加倍,并把现有的字符数组内容复制到新的存储空间。

  在第二个代码片段中(以及在第一个代码片段的编译结果中),由于字符串追加操作的最后结果是“Testing String Concatenation Performance”,它有40个字符,StringBuffer的存储能力必须扩展两次,从而导致了两次代价昂贵的复制操作。因此,我们至少有一点可以做得比编译器更好,这就是分配一个初始存储容量大于或者等于40个字符的StringBuffer,如下所示:


StringBuffer s = new StringBuffer(45);
s.append("Testing String");
s.append(" ");
s.append("Concatenation Performance");
String s3 = s.toString();

  再考虑下面这个例子:


String s = "";
int sum = 0;
for(int I=1; I<10; I++) {
sum += I;
s = s + "+" +I ;
}
s = s + "=" + sum;

  分析一下为何前面的代码比下面的代码效率低:


StringBuffer sb = new StringBuffer();
int sum = 0;
for(int I=1;
I<10; I++){
sum + = I;
sb.append(I).append("+");
}
String s = sb.append("=").append(sum).toString();

  原因就在于每个s = s + "+" + I操作都要创建并拆除一个StringBuffer对象以及一个String对象。这完全是一种浪费,而在第二个例子中我们避免了这种情况。

  我们再来看看另外一个常用的Java类??java.util.Vector。简单地说,一个Vector就是一个java.lang.Object实例的数组。Vector与数组相似,它的元素可以通过整数形式的索引访问。但是,Vector类型的对象在创建之后,对象的大小能够根据元素的增加或者删除而扩展、缩小。请考虑下面这个向Vector加入元素的例子:


Object obj = new Object();
Vector v = new Vector(100000);
for(int I=0;
I<100000; I++) { v.add(0,obj); }

  除非有绝对充足的理由要求每次都把新元素插入到Vector的前面,否则上面的代码对性能不利。在默认构造函数中,Vector的初始存储能力是10个元素,如果新元素加入时存储能力不足,则以后存储能力每次加倍。Vector类就象StringBuffer类一样,每次扩展存储能力时,所有现有的元素都要复制到新的存储空间之中。下面的代码片段要比前面的例子快几个数量级:


Object obj = new Object();
Vector v = new Vector(100000);
for(int I=0; I<100000; I++) { v.add(obj); }

  同样的规则也适用于Vector类的remove()方法。由于Vector中各个元素之间不能含有“空隙”,删除除最后一个元素之外的任意其他元素都导致被删除元素之后的元素向前移动。也就是说,从Vector删除最后一个元素要比删除第一个元素“开销”低好几倍。

  假设要从前面的Vector删除所有元素,我们可以使用这种代码:


for(int I=0; I<100000; I++)
{
 v.remove(0);
}

  但是,与下面的代码相比,前面的代码要慢几个数量级:


for(int I=0; I<100000; I++)
{
 v.remove(v.size()-1);
}

  从Vector类型的对象v删除所有元素的最好方法是:


v.removeAllElements();

  假设Vector类型的对象v包含字符串“Hello”。考虑下面的代码,它要从这个Vector中删除“Hello”字符串:


String s = "Hello";
int i = v.indexOf(s);
if(I != -1) v.remove(s);

  这些代码看起来没什么错误,但它同样对性能不利。在这段代码中,indexOf()方法对v进行顺序搜索寻找字符串“Hello”,remove(s)方法也要进行同样的顺序搜索。改进之后的版本是:


String s = "Hello";
int i = v.indexOf(s);
if(I != -1) v.remove(i);

  这个版本中我们直接在remove()方法中给出待删除元素的精确索引位置,从而避免了第二次搜索。一个更好的版本是:


String s = "Hello"; v.remove(s);

  最后,我们再来看一个有关Vector类的代码片段:


for(int I=0; I++;I<v.length)

  如果v包含100,000个元素,这个代码片段将调用v.size()方法100,000次。虽然size方法是一个简单的方法,但它仍旧需要一次方法调用的开销,至少JVM需要为它配置以及清除堆栈环境。在这里,for循环内部的代码不会以任何方式修改Vector类型对象v的大小,因此上面的代码最好改写成下面这种形式:


int size = v.size(); for(int I=0; I++;I<size)

  虽然这是一个简单的改动,但它仍旧赢得了性能。毕竟,每一个CPU周期都是宝贵的。

  拙劣的代码编写方式导致代码性能下降。但是,正如本文例子所显示的,我们只要采取一些简单的措施就能够显著地改善代码性能。

                      
分享到:
评论

相关推荐

    java程序性能优化

    java程序性能优化Java是目前应用最为广泛的软件开发平台,学习针对Java程序的优化方法有重要的现实意义。《Java程序性能优化:让你的Java程序更快、更稳定》以Java性能调优为主线,系统地阐述了与Java性能优化相关的...

    《Java程序性能优化》(葛一鸣)PDF版本下载.txt

    根据提供的文件信息,我们可以推断出这是一本关于Java程序性能优化的书籍,作者是葛一鸣,并提供了该书PDF版本的下载链接。虽然没有具体的书籍内容,但基于标题、描述以及通常这类书籍会涉及的主题,我们可以总结出...

    Java程序性能优化 让你的Java程序更快、更稳定

    Java程序性能优化是每个开发人员都需要关注的重要领域,它涵盖了多个方面,旨在提高代码执行效率,减少资源消耗,以及提升应用程序的稳定性和响应速度。在本文中,我们将深入探讨Java性能优化的关键点,帮助你的Java...

    JAVA程序性能优化

    ### JAVA程序性能优化 在Java开发中,程序性能优化是一个重要的环节,它直接影响到应用程序的运行效率、用户体验以及系统的整体稳定性。本文将基于提供的标题、描述及部分内容,深入探讨几个关键性的性能优化策略。...

    Java程序性能优化 让你的Java程序更快、更稳定pdf文档视频资源

    Java程序性能优化是每个开发人员都需要关注的重要领域,特别是在企业级应用中,高效稳定的Java程序能够带来显著的业务优势。本资源包含一个PDF文档和相关的视频教程,旨在帮助你提升Java程序的速度和稳定性。 首先...

    Java程序性能优化 让你的Java程序更快、更稳定附本书示例代码(清晰版)

    Java程序性能优化是每个开发人员都需要关注的重要领域,特别是在企业级应用中,高效稳定的Java程序能够显著提升用户体验,降低服务器资源消耗。这本书“Java程序性能优化 让你的Java程序更快、更稳定”提供了深入的...

    Java程序性能优化

    《Java程序性能优化:让你的Java程序更快、更稳定》共6章,先后从软件设计、软件编码、JVM调优以及程序故障排斥等方面介绍针对Java程序的优化方法。第1章介绍性能的基本概念、定律、系统调优的过程和注意事项。第2章...

    Java程序性能优化.rar

    这份资料"Java程序性能优化.rar"包含了高清文档和书籍源码,为我们提供了深入学习和实践Java性能优化的机会。 1. **JVM调优** - **垃圾回收(Garbage Collection)**:理解不同的GC算法,如Serial、Parallel、CMS...

    Java程序性能优化.葛一鸣.2012.10.第1版

    《Java程序性能优化》是葛一鸣在2012年10月出版的第一版专著,这本书深入探讨了如何提升Java应用程序的运行效率和性能。在Java开发中,性能优化是一个关键领域,它涉及到代码的高效编写、内存管理、线程调度、数据库...

    java程序性能优化-pdf+源码

    《Java程序性能优化》这本书是Java开发者不可或缺的参考资料,它深入浅出地讲解了如何提升Java应用程序的效率和稳定性。本书结合理论与实践,既包含了基础的性能优化原则,也探讨了高级的优化技巧,适合从初级到中级...

    JAVA程序性能优化 带书签

    Java程序性能优化 让你的Java程序更快、更稳定 高清 目录 完整

    Java程序性能优化(23条).

    ### Java程序性能优化知识点 #### 一、避免在循环条件中使用复杂表达式 在Java程序中,尤其是在不做编译优化的情况下,如果在循环条件中使用了复杂的表达式,那么这个表达式会在每次循环时被重新计算。这种重复计算...

    《Java程序性能优化:让你的Java程序更快、更稳定》完整扫描PDF版网盘链接

    一个优秀的程序员,不仅要会编写程序,更要会编写高质量的程序,感受Java开发中的大智慧,让你的Java程序更优美 专注于Java应用程序的优化方法、技巧和思想,深入剖析软件设计层面、代码层面、JVM虚拟机层面的优化...

Global site tag (gtag.js) - Google Analytics