`
eyejava
  • 浏览: 1268266 次
  • 性别: Icon_minigender_1
  • 来自: 上海
社区版块
存档分类
最新评论

数据仓库2008年大事记和2009年预测

    博客分类:
  • BI
阅读更多

http://www.tdwi.org/News/display.aspx?ID=9261

 

12/17/2008

 

By Mike Schiff

 

As 2008 draws to a close, it’s time to look back at some of the major events of the year and speculate on what might occur in 2009. But first, let’s review my predictions from last year.

 

Results of Last Year’s Predictions

 

In December of 2007 I predicted that the following would occur in 2008:

 

Prediction #1: Further industry consolidations. What happened: Although not keeping up with the rapid pace of 2007, 2008 has seen several additional acquisitions this year. See the “Major Data Warehousing Events of 2008” section (below) for details.

Prediction #2: BI would become easier to deploy. What happened: Intuitive user interfaces, search-like query capabilities, integrated platforms, and shared metadata have combined to make business intelligence easier to deploy.

Prediction #3: Open source growth. What happened: The success of open source vendors such as JasperSoft, Pentaho, and Talend demonstrate the correctness of this prediction.

Data mining growth #4: What happened: Although not increasing as strongly as I had expected, data mining and predictive analytics usage continued to grow in 2008, both in governmental and commercial organizations.

 

Major Data Warehousing Events of 2008

2008数据仓库领域大事记

 

Everyone Had An Appliance Story: With the acceptance of data warehouse appliances as part of an overall data warehousing architecture, major vendors (in addition to start-ups) have jumped on the appliance bandwagon. Column-oriented database vendors such as ParAccel and Vertica have partnered with hardware vendors to support and market data warehouse appliances, and Oracle has partnered with HP to produce the HP Oracle Database Machine. Even Teradata, a company that for many years dismissed data warehouse appliances as niche technology that could only lead to multiple versions of truth, has acknowledged the appliance concept with several platforms of its own and is now bragging that it was the original data warehouse appliance vendor.

每个人都有一个关于数据仓库装置的故事:大厂商通过收购数据仓库装置作为整个数据仓库架构的一部分已经是一个常见现象。面向字段的数据库厂商,比如ParAccel和Vertica已经和硬件厂商成为合作伙伴来支持、开拓数据仓库装置市场。惠普和Oracle合伙生产了HP Oracle数据库机器。即使是Teradata,这个数年前认为数据仓库装置只会误导事实的公司,已经承认了他自己的多平台装置的概念,并且正在鼓吹他自己是最早的数据仓库装置供应商。

(注:数据仓库装置,英文原文是data warehouse appliance,指的是集成了服务器、存储器、操作系统、应用软件等并预先安装好、优化好的数据仓库平台,appliance这个词还没有统一的翻译,暂定为叫做装置)

 

Industry Consolidations Continued: Acquisitions in 2008 included data warehouse appliance specialist DatAllegro by Microsoft, Identity Systems by Informatica, specialty analytics vendor NuTech by Netezza, IDeaS Revenue Optimization and natural language processing specialist Teragram by SAS, and open source database vendor MySQL AB by Sun Microsystems. Furthermore, although announced in 2007, IBM’s acquisition of Cognos and SAP’s acquisition of Business Objects were both completed in January 2008.

行业整合继续进行:08年的收购包括微软收购数据仓库装置厂商DatAllegro,Informatica收购Identity Systems,Netezza收购Specialty analytics,SAS收购了IDeaS Revenue Optimization和专注于自然语言处理的Teragram,Sun公司收购了开源数据库Mysql。IBM收购Cognos,SAP收购BO尽管是07年宣布的,但完成也是在08年的一月

 

The Recessionary Environment Encouraged Further BI Deployments: As companies sought ways to maintain profitability in the face of a deteriorating economy, they recognized the value of business intelligence for discovering new revenue opportunities, identifying areas of potential cost reductions, and reducing fraud. While IT expenditures were closely watched and, in many cases, reduced, many BI projects actually had their priorities increased.

衰退的经济环境刺激了BI开发:公司们都在寻找经济衰退时的盈利点,他们认识到BI的价值是发现新的营收机会、识别潜在的节约成本的地方并减少欺诈。当很多IT开支被密切关注时,很多情况甚至是减少开支,这种情况下BI项目却有更高的优先级来增加开支

 

Open Source Grew: Supporting cost reduction initiatives, open source business intelligence, database, and data integration technology has shown substantial uptake in 2008 to the point where open source offerings, especially products that have formal (albeit extra-cost) support are now making inroads into accounts that previously would not consider them. In many cases, free open source technology was initially used for prototype deployments with organizations upgrading to commercial versions with formal support when the prototypes were placed in production.

开源领域的成长:受减少开支的促进,在2008年开源BI、数据、数据集成技术已经有了实质内容,特别是那些有正式支持(即使是超支的)的产品正在进入以前不被考虑的领域。很多情况下,免费的开源技术最初用于原形开发,这个时候如果将原形投入了生产则有厂商提供正式支持并将他升级为商业本版。

 

Predictions for 2009

09年预测

 

Looking ahead to 2009, I expect the following to occur:

 

Prediction #1: Further Industry Consolidation

行业进一步地整合

Acquisitions will remain a fact of life in the data warehousing industry. Since the economy is now officially in a recession, some vendors will be open to being acquired if only to ensure their survival. Other, more established, vendors may simply succumb to offers they, or their stockholders, simply can’t refuse.

数据仓库行业,收购依然有生命力。尽管目前的经济形势已经被正式定义为衰退,一些厂商依然会对收购敞开大门,如果这是唯一让他们生存下去的办法。其他一些更大的厂商会接受难以拒绝的收购价格而被收购。

 

If I had to pick two likely targets, my guess would be Informatica, perhaps by HP in order to augment its data warehousing technology portfolio, and SPSS, perhaps by SAP as Business Objects sells (as an OEM) SPSS predictive analytics technology for its BusinessObjects XI platform. Although neither of these two companies is experiencing major financial problems, their technologies would make attractive additions to the technology portfolio of potential acquirers.

如果我必须选择两个可能的被收购目标的话,我猜想可能是Informatica,可能被惠普收购,为了增强他的数据仓库技术组合。另外一个是SPSS,可能被SAP收购,因为BO将SPSS的预测分析技术作为BO XI platform的一部分。尽管BO和SPSS都没有大的财务问题,但他们的技术组合对收购有额外的吸引力。

 

Prediction #2: Cloud Computing will Come Down to Earth

云计算将降落地球

 

Continued pressure to reduce expenses will serve as a catalyst for organizations both large and small to utilize cloud computing as an alternative to obtaining and funding in-house resources. Although small companies may use this as their primary computing platform, large companies may use cloud computing for incremental, perhaps one-time, projects. BI vendors not already offering on-demand software will establish a cloud presence to better compete in the small-to-midsize business (SMB) market.

削减开支的持续压力将像催化剂使得大大小小的机构将云计算作为放在机房的服务器的一个替代品。小公司可以将云计算作为他们主要的计算平台,大公司也可以将云计算作为一个补充。不提供按需定制的BI厂商将建立支持云计算的产品来更好地解决中小公司市场。

 

 

Prediction #3: Open Source Growth will Accelerate

开源技术加速成长

 

Economic pressure will accelerate the growth of open source technology as well, especially as open source has now established itself in production deployments. Because many vendors are utilizing source technology in their applications in order to reduce costs or, as in the case of several data warehouse appliance vendors, partnering with open source business intelligence and data integration vendors to offer a more complete solution, the growth will be seen in both standalone and embedded environments.

经济压力也将加速开源技术的增长,特别是那些针对生产应用的开源产品。因为很多厂商正在将开源技术用到他们到应用中以降低费用,或者很多数据仓库装置厂商合伙开源BI厂商提供更完善的解决方案。这种增长将在独立和嵌入式平台都出现。

 

Prediction #4: The IT World Will Become Greener

IT世界将变得更绿色化

 

The peak in energy costs earlier this year provided a strong incentive for organizations to consider becoming “greener” for cost savings as well as more altruistic environmental reasons. Organizations will look to minimize the energy costs associated with their hardware and consider both direct power consumption as well as associated costs such as air conditioning in their technology evaluations. This will further drive virtualization efforts to maximize the utilization of existing hardware.

节能被大力提倡,最大努力使用现有的硬件的方案将越来越多

 

Prediction #5: Major Emphasis on Solutions Rather than Tools and Technology

解决方案将比工具和技术强调的更多

 

The need to quickly address business concerns as well as compliance requirements will drive organizations to seek customizable analytic applications rather than to build them from scratch with BI tools. BI vendors will respond to this demand with additional vertical and functional analytic applications, some of which may be obtained through the acquisition of their current partners. Furthermore, vendors such as Oracle and SAP will continue to enhance the analytic functionality of their operational enterprise applications.

快速处理业务的需求使得机构们更多地寻找定制化的分析应用,而不仅仅是给他们一堆BI工具。BI厂商将用垂直分析、功能分析的应用做出相应,这些应用可能是从他们现有的合作伙伴手中收购来的。更进一步,像Oracle和SAP这种厂商将继续强调他们平台的分析功能。

 

I’ll report on the accuracy of these predictions next year, when I make new ones for 2010.

 

 

Michael A. Schiff is a principal consultant for MAS Strategies. He can be reached at mschiff@mas-strategies.com

2
0
分享到:
评论

相关推荐

    【推荐】数据仓库建设学习资料合集(38份).zip

    推荐,数据仓库建设学习资料合集,包含建设规范、架构...- 数据仓库与数据挖掘(分类规则挖掘与预测) - 数据仓库与数据挖掘考试习题汇总 - 数据仓库与数据挖掘课件 - 数据仓库与数据挖掘应用 - 数据仓库与数据挖掘综述

    数据仓库与数据挖掘(陈志泊)课后习题答案1

    8. **应用场景**:数据仓库和数据挖掘广泛应用于市场营销、财务分析、运营优化等领域,帮助企业发现潜在机会,提高运营效率,预测市场趋势,甚至进行预测建模。 总之,数据仓库与数据挖掘是现代企业决策支持的基石...

    数据仓库与数据挖掘(华电)

    数据仓库的设计通常包括数据源、数据清洗、数据转换、数据加载和数据展现五个阶段。其中,数据源是各种业务系统中的原始数据;数据清洗是去除数据中的错误、不一致和冗余;数据转换则将数据转换为适合分析的格式;...

    数据仓库与数据挖掘课程设计.docx

    数据仓库不仅用于存储数据,更重要的是支持复杂的查询和数据分析,帮助企业做出更好的商业决策。 - **数据集市**: 数据集市是一种小型的数据仓库,通常是某个特定部门为了满足其决策支持需求而构建的。数据集市通常...

    数据仓库,数据仓库入门

    3.3 数据仓库和数据模型 50 3.3.1 数据模型 52 3.3.2 中间层数据模型 54 3.3.3 物理数据模型 58 3.4 数据模型和反复开发 59 3.5 规范化/反规范化 60 3.6 数据仓库中的快照 65 3.7 元数据 66 3.8 数据仓库中的管理...

    数据仓库与数据挖掘课程实验

    - **集成性**:数据仓库中的数据来源于多个异构数据源,需要进行清洗和转换,以确保数据的一致性和完整性。 - **非易失性**:一旦数据进入数据仓库,一般不再修改或删除,只进行定期更新。 - **随时间变化**:数据...

    数据仓库数据仓库和我们经常提到的数据库有哪些区别

    随着时间的推移和技术的发展,人们对数据仓库的理解逐渐深化,最终形成了一个较为统一的定义:“数据仓库是在企业管理和决策中面向主题的、集成的、与时间相关的、不可修改的数据集合。” 数据仓库的特点主要包括...

    数据仓库设计说明书

    3.3 数据仓库和数据模型 50 3.3.1 数据模型 52 3.3.2 中间层数据模型 54 3.3.3 物理数据模型 58 3.4 数据模型和反复开发 59 3.5 规范化/反规范化 60 3.6 数据仓库中的快照 65 3.7 元数据 66 3.8 数据仓库中的管理...

    SQL Server 2008 数据仓库 指南

    理解并掌握这些概念和技术对于SQL Server 2008数据仓库的开发者和管理员来说至关重要,他们需要能够设计、实施和优化满足业务需求的数据仓库解决方案。通过深入学习和实践经验,可以更好地利用SQL Server 2008提供的...

    数据仓库教程(陈文伟)

    陈文伟的教程还可能涉及到数据仓库的最新发展,如云计算中的数据仓库(云数据仓库)、大数据处理框架(如Hadoop和Spark)对数据仓库的影响,以及现代数据仓库工具如Amazon Redshift、Google BigQuery和Snowflake等。...

    数据仓库与数据挖掘

    数据仓库与数据挖掘是信息技术领域中的重要组成部分,它们在现代商业智能和决策支持系统中扮演着核心角色。数据仓库是一个集中的、非易失性的、用于报告和数据分析的数据集合,而数据挖掘则是一种从大量数据中发现有...

    《数据仓库与数据挖掘》课程设计方案报告模板.pdf

    这份《数据仓库与数据挖掘》课程设计方案报告模板旨在为学生提供一个实践导向的学习框架,通过实际项目来理解并掌握这两项技术的核心概念和应用。 首先,报告中提及的数据仓库是一个集成的、非易失的、面向主题的、...

    数据仓库与数据挖掘课后答案(陈志泊著)清华大学出版社[归类].pdf

    2. 元数据是描述数据仓库内数据的结构和建立方法的数据,它为访问数据仓库提供了一个信息目录,根据元数据用途的不同可将数据仓库的元数据分为技术元数据和业务元数据两类。 3. 数据处理通常分成两大类:联机事务...

    数据仓库与数据挖掘技术课件-夏火松

    监督学习如分类和回归,通过已知的输入-输出对来预测新数据;无监督学习如聚类和关联规则,从数据中找出内在的结构和关系;半监督学习则介于两者之间,用于处理大量未标记数据的情况。常用的数据挖掘工具有R、Python...

    IBM数据仓库需求建模方法及行业数据仓库模型

    IBM数据仓库需求建模方法及行业数据仓库模型的知识点主要涵盖了数据仓库的建设、企业级数据仓库建模、软硬件配置、行业数据仓库模型以及市场趋势和相关技术。 首先,IBM数据仓库需求建模方法强调了企业级数据仓库...

    数据仓库与数据分析教程ppt.rar

    在数据仓库环境中进行数据分析,通常会用到SQL(结构化查询语言)进行查询和报表生成,以及更复杂的工具如OLAP(在线分析处理)立方体,它们允许用户从不同角度快速地对大量数据进行多维分析。此外,随着大数据技术...

    数据仓库需求文档.pdf

    数据仓库的功能目标是信息分布在不同的部门和下属企业中,提供了丰富的工具来清洗、转换和从各地提取数据,使得放在仓库里的数据有条有理,易于使用。数据仓库的主要组成部分包括数据提取、数据转换、数据存储和前端...

    基于财务数据分析的数据仓库模型

    财务预测是根据历史数据以及市场趋势进行的,数据仓库提供了必要的历史数据和当前数据支持,有助于提高预测的可靠性。 3. 成本分析与控制:通过数据仓库,企业能够详细追踪成本的产生,分析不同产品、项目或部门的...

    数据仓库方法论 数据仓库方法论

    数据仓库方法论是构建高效、可靠且具有洞察力的数据仓库系统的核心指导思想,它涵盖了从概念设计到实际部署的全过程,旨在将原始的业务数据转化为有价值的信息和知识,以支持企业的决策制定。以下是对数据仓库方法论...

Global site tag (gtag.js) - Google Analytics