`
gao_20022002
  • 浏览: 166225 次
  • 性别: Icon_minigender_1
  • 来自: 杭州
社区版块
存档分类
最新评论

深入剖析JSP和Servlet对中文的处理过程

阅读更多

世界上的各地区都有本地的语言。地区差异直接导致了语言环境的差异。在开发一个国际化程序的过程中,处理语言问题就显得很重要了。

  这是一个世界范围内都存在的问题,所以,Java提供了世界性的解决方法。本文描述的方法是用于处理中文的,但是,推而广之,对于处理世界上其它国家和地区的语言同样适用。

  汉字是双字节的。所谓双字节是指一个双字要占用两个BYTE的位置(即16位),分别称为高位和低位。中国规定的汉字编码为GB2312,这是 强制性的,目前几乎所有的能处理中文的应用程序都支持GB2312。GB2312包括了一二级汉字和9区符号,高位从0xa1到0xfe,低位也是从 0xa1到0xfe,其中,汉字的编码范围为0xb0a1到0xf7fe。

  另外有一种编码,叫做GBK,但这是一份规范,不是强制的。GBK提供了20902个汉字,它兼容GB2312,编码范围为0x8140到0xfefe。GBK中的所有字符都可以一一映射到Unicode 2.0。

  在不久的将来,中国会颁布另一种标准:GB18030-2000(GBK2K)。它收录了藏、蒙等少数民族的字型,从根本上解决了字位不足的问 题。注意:它不再是定长的。其二字节部份与GBK兼容,四字节部分是扩充的字符、字形。它的首字节和第三字节从0x81到0xfe,二字节和第四字节从 0x30到0x39。

  本文不打算介绍Unicode,有兴趣的可以浏览“http://www.unicode.org/”查看更多的信息。Unicode有一个特 性:它包括了世界上所有的字符字形。所以,各个地区的语言都可以建立与Unicode的映射关系,而Java正是利用了这一点以达到异种语言之间的转换。

  在JDK中,与中文相关的编码有:  

编码名称
  说    明  ASCII 
  7位,与ascii7相同 
  ISO8859-1 
  8-位,与 8859_1,ISO-8859-1,ISO_8859-1,latin1...等相同 
  GB2312-80 
  16位,与gb2312,gb2312-1980,EUC_CN,euccn,1381,Cp1381, 1383, Cp1383, ISO2022CN,ISO2022CN_GB...等相同 
  GBK 
  与MS936相同,注意:区分大小写 
  UTF8 
  与UTF-8相同 
  GB18030 
  与cp1392、1392相同,目前支持的JDK很少 
  在实际编程时,接触得比较多的是GB2312(GBK)和ISO8859-1。

编码名称

    为什么会有“?”号

  上文说过,异种语言之间的转换是通过Unicode来完成的。假设有两种不同的语言A和B,转换的步骤为:先把A转化为Unicode,再把Unicode转化为B。

  举例说明。有GB2312中有一个汉字“李”,其编码为“C0EE”,欲转化为ISO8859-1编码。步骤为:先把“李”字转化为 Unicode,得到“674E”,再把“674E”转化为ISO8859-1字符。当然,这个映射不会成功,因为ISO8859-1中根本就没有与 “674E”对应的字符。

  当映射不成功时,问题就发生了!当从某语言向Unicode转化时,如果在某语言中没有该字符,得到的将是Unicode的代码 “uffffd”(“u”表示是Unicode编码,)。而从Unicode向某语言转化时,如果某语言没有对应的字符,则得到的是 “0x3f”(“?”)。这就是“?”的由来。

  例如:把字符流buf =“0x80 0x40 0xb0 0xa1”进行new String(buf, "gb2312")操作,得到的结果是“ufffdu554a”,再println出来,得到的结果将是“?啊”,因为“0x80 0x40”是GBK中的字符,在GB2312中没有。

再如,把字符串String="u00d6u00ecu00e9u0046u00bbu00f9"进行new String (buf.getBytes("GBK"))操作,得到的结果是“3fa8aca8a6463fa8b4”,其中,“u00d6”在“GBK”中没有对应 的字符,得到“3f”,“u00ec”对应着“a8ac”,“u00e9”对应着“a8a6”,“0046”对应着“46”(因为这是ASCII字 符),“u00bb”没找到,得到“3f”,最后,“u00f9”对应着“a8b4”。把这个字符串println一下,得到的结果是“?ìéF?ù”。 看到没?这里并不全是问号,因为GBK与Unicode映射的内容中除了汉字外还有字符,本例就是最好的明证。

  所以,在汉字转码时,如果发生错乱,得到的不一定都是问号噢!不过,错了终究是错了,50步和100步并没有质的差别。

  或者会问:如果源字符集中有,而Unicode中没有,结果会如何?回答是不知道。因为我手头没有能做这个测试的源字符集。但有一点是肯定的,那就是源字符集不够规范。在Java中,如果发生这种情况,是会抛出异常的。

  什么是UTF

  UTF,是Unicode Text Format的缩写,意为Unicode文本格式。对于UTF,是这样定义的:

  (1)如果Unicode的16位字符的头9位是0,则用一个字节表示,这个字节的首位是“0”,剩下的7位与原字符中的后7位相同,如 “u0034”(0000 0000 0011 0100),用“34” (0011 0100)表示;(与源Unicode字符是相同的);

  (2)如果Unicode的16位字符的头5位是0,则用2个字节表示,首字节是“110”开头,后面的5位与源字符中除去头5个零后的最高5 位相同;第二个字节以“10”开头,后面的6位与源字符中的低6位相同。如“u025d”(0000 0010 0101 1101),转化后为“c99d”(1100 1001 1001 1101);

  (3)如果不符合上述两个规则,则用三个字节表示。第一个字节以“1110”开头,后四位为源字符的高四位;第二个字节以“10”开头,后六位 为源字符中间的六位;第三个字节以“10”开头,后六位为源字符的低六位;如“u9da7”(1001 1101 1010 0111),转化为“e9b6a7”(1110 1001 1011 0110 1010 0111);

  可以这么描述JAVA程序中Unicode与UTF的关系,虽然不绝对:字符串在内存中运行时,表现为Unicode代码,而当要保存到文件或其它介质中去时,用的是UTF。这个转化过程是由writeUTF和readUTF来完成的。

  好了,基础性的论述差不多了,下面进入正题。

  先把这个问题想成是一个黑匣子。先看黑匣子的一级表示: 

 input(charsetA)->process(Unicode)->output(charsetB)

  简单,这就是一个IPO模型,即输入、处理和输出。同样的内容要经过“从charsetA到unicode再到charsetB”的转化。

  再看二级表示:

  SourceFile(jsp,java)->class->output

  在这个图中,可以看出,输入的是jsp和java源文件,在处理过程中,以Class文件为载体,然后输出。再细化到三级表示:  

jsp->temp file->class->browser,os console,db
  app,servlet->class->browser,os console,db

  这个图就更明白了。Jsp文件先生成中间的Java文件,再生成Class。而Servlet和普通App则直接编译生成Class。然后,从Class再输出到浏览器、控制台或数据库等。

 

JSP:从源文件到Class的过程

  Jsp的源文件是以“.jsp”结尾的文本文件。在本节中,将阐述JSP文件的解释和编译过程,并跟踪其中的中文变化。

  1、JSP/Servlet引擎提供的JSP转换工具(jspc)搜索JSP文件中用中指定的charset。如果在JSP文件中未指定,则取JVM中的默认设置file.encoding,一般情况下,这个值是ISO8859-1;

  2、jspc用相当于“javac –encoding ”的命令解释JSP文件中出现的所有字符,包括中文字符和ASCII字符,然后把这些字符转换成Unicode字符,再转化成UTF格式,存为JAVA文 件。ASCII码字符转化为Unicode字符时只是简单地在前面加“00”,如“A”,转化为“u0041”(不需要理由,Unicode的码表就是这 么编的)。然后,经过到UTF的转换,又变回“41”了!这也就是可以使用普通文本编辑器查看由JSP生成的JAVA文件的原因;

  3、引擎用相当于“javac –encoding UNICODE”的命令,把JAVA文件编译成CLASS文件;

  先看一下这些过程中中文字符的转换情况。有如下源代码:

  这段代码是在UltraEdit for Windows上编写的。保存后,“中文”两个字的16进制编码为“D6 D0 CE C4”(GB2312编码)。经查表,“中文”两字的Unicode编码为“u4E2Du6587”,用 UTF表示就是“E4 B8 AD E6 96 87”。打开引擎生成的由JSP文件转变而成的JAVA文件,发现其中的“中文”两个字确实被“E4 B8 AD E6 96 87”替代了,再查看由JAVA文件编译生成的CLASS文件,发现结果与JAVA文件中的完全一样。

  再看JSP中指定的CharSet为ISO-8859-1的情况。

  同样,该文件是用UltraEdit编写的,“中文”这两个字也是存为GB2312编码“D6 D0 CE C4”。先模拟一下生成的JAVA文件和CLASS文件的过程:jspc用ISO-8859-1来解释“中文”,并把它映射到Unicode。由于 ISO-8859-1是8位的,且是拉丁语系,其映射规则就是在每个字节前加“00”,所以,映射后的Unicode编码应为 “u00D6u00D0u00CEu00C4”,转化成UTF后应该是“C3 96 C3 90 C3 8E C3 84”。好,打开文件看一下,JAVA文件和CLASS文件中,“中文”果然都表示为“C3 96 C3 90 C3 8E C3 84”。

  如果上述代码中不指定,即把第一行写成“”,JSPC会使用file.encoding的设置来解释JSP文件。在RedHat 6.2上,其处理结果与指定为ISO-8859-1是完全相同的。

  到现在为止,已经解释了从JSP文件到CLASS文件的转变过程中中文字符的映射过程。一句话:从“JspCharSet到Unicode再到UTF”。下表总结了这个过程:

  表2 “中文”从JSP到CLASS的转化过程  

Jsp-CharSet
  JSP文件中
  JAVA文件中
  CLASS文件中
  GB2312
  D6 D0 CE C4
  (GB2312)
  从u4E2Du6587(Unicode)到
  E4 B8 AD E6 96 87 (UTF)
  E4 B8 AD E6 96 87 (UTF)
  ISO-8859-1
  D6 D0 CE C4
  (GB2312)
  从u00D6u00D0u00CEu00C4 (Unicode)到C3 96 C3 90 C3 8E C3 84 (UTF)
  C3 96 C3 90 C3 8E C3 84 (UTF)
  无(默认=file.encoding)
  同ISO-8859-1
  同ISO-8859-1
  同ISO-8859-1

  下节先讨论Servlet从JAVA文件到CLASS文件的转化过程,然后再解释从CLASS文件如何输出到客户端。之所以这样安排,是因为JSP和Servlet在输出时处理方法是一样的。

  Servlet:从源文件到Class的过程

  Servlet源文件是以“.java”结尾的文本文件。本节将讨论Servlet的编译过程并跟踪其中的中文变化。

用“javac”编译Servlet源文件。javac可以带“-encoding ”参数,意思是“用< Compile-charset >中指定的编码来解释Serlvet源文件”。

  源文件在编译时,用来解释所有字符,包括中文字符和ASCII字符。然后把字符常量转变成Unicode字符,最后,把Unicode转变成UTF。

  在Servlet中,还有一个地方设置输出流的CharSet。通常在输出结果前,调用HttpServletResponse的setContentType方法来达到与在JSP中设置一样的效果,称之为。

  注意,文中一共提到了三个变量:、和。其中,JSP文件只与有关,而和只与Servlet有关。

  看下例: 

 import javax.servlet.*;
  import javax.servlet.http.*;
  class testServlet extends HttpServlet
  {
  public void doGet(HttpServletRequest req,HttpServletResponse resp)
  throws ServletException,java.io.IOException
  {
  resp.setContentType("text/html; charset=GB2312");
  java.io.PrintWriter out=resp.getWriter();
  out.println("");
  out.println("#中文#");
  out.println("");
  }
  }

  该文件也是用UltraEdit for Windows编写的,其中的“中文”两个字保存为“D6 D0 CE C4”(GB2312编码)。

  开始编译。下表是不同时,CLASS文件中“中文”两字的十六进制码。在编译过程中,不起任何作用。只对CLASS文件的输出产生影响,实际上是和一起,达到与JSP文件中的相同的效果,因为对编译和CLASS文件的输出都会产生影响。

  表3 “中文”从Servlet源文件到Class的转变过程 

 Compile-charset
  Servlet源文件中
  Class文件中
  等效的Unicode码
  GB2312
  D6 D0 CE C4
  (GB2312)
  E4 B8 AD E6 96 87 (UTF)
  u4E2Du6587 (在Unicode中=“中文”)
  ISO-8859-1
  D6 D0 CE C4
  (GB2312)
  C3 96 C3 90 C3 8E C3 84 (UTF)
  u00D6 u00D0 u00CE u00C4 (在D6 D0 CE C4前面各加了一个00)
  无(默认)
  D6 D0 CE C4
  (GB2312)
  同ISO-8859-1
  同ISO-8859-1

  普通Java程序的编译过程与Servlet完全一样。

  CLASS文件中的中文表示法是不是昭然若揭了?OK,接下来看看CLASS又是怎样输出中文的呢?

Class:输出字符串

  上文说过,字符串在内存中表现为Unicode编码。至于这种Unicode编码表示了什么,那要看它是从哪种字符集映射过来的,也就是说要看它的祖先。这好比在托运行李时,外观都是纸箱子,里面装了什么就要看寄邮件的人实际邮了什么东西。

  看看上面的例子,如果给一串Unicode编码“00D6 00D0 00CE 00C4”,如果不作转换,直接用Unicode码表来对照它时,是四个字符(而且是特殊字符);假如把它与“ISO8859-1”进行映射,则直接去掉 前面的“00”即可得到“D6 D0 CE C4”,这是ASCII码表中的四个字符;而假如把它当作GB2312来进行映射,得到的结果很可能是一大堆乱码,因为在GB2312中有可能没有(也有 可能有)字符与00D6等字符对应(如果对应不上,将得到0x3f,也就是问号,如果对应上了,由于00D6等字符太靠前,估计也是一些特殊符号,真正的 汉字在Unicode中的编码从4E00开始)。

  各位看到了,同样的Unicode字符,可以解释成不同的样子。当然,这其中有一种是我们期望的结果。以上例而论,“D6 D0 CE C4”应该是我们所想要的,当把“D6 D0 CE C4”输出到IE中时,用“简体中文”方式查看,就能看到清楚的“中文”两个字了。(当然了,如果你一定要用“西欧字符”来看,那也没办法,你将得不到任 何有何时何地的东西)为什么呢?因为“00D6 00D0 00CE 00C4”本来就是由ISO8859-1转化过去的。

  给出如下结论:

  在Class输出字符串前,会将Unicode的字符串按照某一种内码重新生成字节流,然后把字节流输入,相当于进行了一步“String.getBytes(???)”操作。???代表某一种字符集。

  如果是Servlet,那么,这种内码就是在HttpServletResponse.setContentType()方法中指定的内码,也就是上文定义的。

  如果是JSP,那么,这种内码就是在中指定的内码,也就是上文定义的。

  如果是Java程序,那么,这种内码就是file.encoding中指定的内码,默认为ISO8859-1。

  当输出对象是浏览器时

  以流行的浏览器IE为例。IE支持多种内码。假如IE接收到了一个字节流“D6 D0 CE C4”,你可以尝试用各种内码去查看。你会发现用“简体中文”时能得到正确的结果。因为“D6 D0 CE C4”本来就是简体中文中“中文”两个字的编码。

  OK,完整地看一遍。  

 

JSP:源文件为GB2312格式的文本文件,且JSP源文件中有“中文”这两个汉字
  如果指定了为GB2312,转化过程如下表。
  表4 Jsp-charset = GB2312时的变化过程
  序号
  步骤说明
  结果
  1
  编写JSP源文件,且存为GB2312格式
  D6 D0 CE C4
  (D6D0=中 CEC4=文)
  2
  jspc把JSP源文件转化为临时JAVA文件,并把字符串按照GB2312映射到Unicode,并用UTF格式写入JAVA文件中
  E4 B8 AD E6 96 87
  3
  把临时JAVA文件编译成CLASS文件
  E4 B8 AD E6 96 87
  4
  运行时,先从CLASS文件中用readUTF读出字符串,在内存中的是Unicode编码
  4E 2D 65 87(在Unicode中4E2D=中 6587=文)
  5
  根据Jsp-charset=GB2312把Unicode转化为字节流
  D6 D0 CE C4
  6
  把字节流输出到IE中,并设置IE的编码为GB2312(作者按:这个信息隐藏在HTTP头中)
  D6 D0 CE C4
  7
  IE用“简体中文”查看结果
  “中文”(正确显示)
  如果指定了为ISO8859-1,转化过程如下表。
  表5 Jsp-charset = ISO8859-1时的变化过程
  序号
  步骤说明
  结果
  1
  编写JSP源文件,且存为GB2312格式
  D6 D0 CE C4
  (D6D0=中 CEC4=文)
  2
  jspc把JSP源文件转化为临时JAVA文件,并把字符串按照ISO8859-1映射到Unicode,并用UTF格式写入JAVA文件中
  C3 96 C3 90 C3 8E C3 84
  3
  把临时JAVA文件编译成CLASS文件
  C3 96 C3 90 C3 8E C3 84
  4
  运行时,先从CLASS文件中用readUTF读出字符串,在内存中的是Unicode编码
  00 D6 00 D0 00 CE 00 C4
  (啥都不是!!!)
  5
  根据Jsp-charset=ISO8859-1把Unicode转化为字节流
  D6 D0 CE C4
  6
  把字节流输出到IE中,并设置IE的编码为ISO8859-1(作者按:这个信息隐藏在HTTP头中)
  D6 D0 CE C4
  7
  IE用“西欧字符”查看结果
  乱码,其实是四个ASCII字符,但由于大于128,所以显示出来的怪模怪样
  8
  改变IE的页面编码为“简体中文”

“中文”(正确显示)

  奇怪了!为什么把设成GB2312和ISO8859-1是一个样的,都能正确显示?因为表4表5中的第2步和第5步互逆,是相互“抵消”的。只不过当指定为ISO8859-1时,要增加第8步操作,殊为不便。

  再看看不指定 时的情况。 

 表6 未指定Jsp-charset 时的变化过程
  序号
  步骤说明
  结果
  1
  编写JSP源文件,且存为GB2312格式
  D6 D0 CE C4
  (D6D0=中 CEC4=文)
  2
  jspc把JSP源文件转化为临时JAVA文件,并把字符串按照ISO8859-1映射到Unicode,并用UTF格式写入JAVA文件中
  C3 96 C3 90 C3 8E C3 84
  3
  把临时JAVA文件编译成CLASS文件
  C3 96 C3 90 C3 8E C3 84
  4
  运行时,先从CLASS文件中用readUTF读出字符串,在内存中的是Unicode编码
  00 D6 00 D0 00 CE 00 C4
  (啥都不是!!!)
  5
  根据Jsp-charset=ISO8859-1把Unicode转化为字节流
  D6 D0 CE C4
  6
  把字节流输出到IE中
  D6 D0 CE C4
  7
  IE用发出请求时的页面的编码查看结果
  视情况而定。如果是简体中文,则能正确显示,否则,需执行表5中的第8步
  Servlet:源文件为JAVA文件,格式是GB2312,源文件中含有“中文”这两个汉字
  如果=GB2312,=GB2312
  表7 Compile-charset=Servlet-charset=GB2312 时的变化过程
  序号
  步骤说明
  结果
  1
  编写Servlet源文件,且存为GB2312格式
  D6 D0 CE C4
  (D6D0=中 CEC4=文)
  2
  用javac –encoding GB2312把JAVA源文件编译成CLASS文件
  E4 B8 AD E6 96 87 (UTF)
  3
  运行时,先从CLASS文件中用readUTF读出字符串,在内存中的是Unicode编码
  4E 2D 65 87 (Unicode)
  4
  根据Servlet-charset=GB2312把Unicode转化为字节流
  D6 D0 CE C4 (GB2312)
  5
  把字节流输出到IE中并设置IE的编码属性为Servlet-charset=GB2312
  D6 D0 CE C4 (GB2312)
  6
  IE用“简体中文”查看结果
  “中文”(正确显示)
  如果=ISO8859-1,=ISO8859-1
  表8 Compile-charset=Servlet-charset=ISO8859-1时的变化过程
  序号

  步骤说明

  结果  

 

 


1
  编写Servlet源文件,且存为GB2312格式
  D6 D0 CE C4
  (D6D0=中 CEC4=文)
  2
  用javac –encoding ISO8859-1把JAVA源文件编译成CLASS文件
  C3 96 C3 90 C3 8E C3 84 (UTF)
  3
  运行时,先从CLASS文件中用readUTF读出字符串,在内存中的是Unicode编码
  00 D6 00 D0 00 CE 00 C4
  (啥都不是!!!)
  4
  根据Servlet-charset=ISO8859-1把Unicode转化为字节流
  D6 D0 CE C4
  5
  把字节流输出到IE中并设置IE的编码属性为Servlet-charset=ISO8859-1
  D6 D0 CE C4 (GB2312)
  6
  IE用“西欧字符”查看结果
  乱码(原因同表5)
  7
  改变IE的页面编码为“简体中文”
  “中文”(正确显示)

 

如果不指定Compile-charset或Servlet-charset,其默认值均为ISO8859-1。

  当Compile-charset=Servlet-charset时,第2步和第4步能互逆,“抵消”,显示结果均能正确。读者可试着写一下Compile-charset<>Servlet-charset时的情况,肯定是不正确的。

  当输出对象是数据库时

  输出到数据库时,原理与输出到浏览器也是一样的。本节只是Servlet为例,JSP的情况请读者自行推导。

  假设有一个Servlet,它能接收来自客户端(IE,简体中文)的汉字字符串,然后把它写入到内码为ISO8859-1的数据库中,然后再从数据库中取出这个字符串,显示到客户端。

  表9 输出对象是数据库时的变化过程(1)  

序号
  步骤说明
  结果
  域
  1
  在IE中输入“中文”
  D6 D0 CE C4
  IE
  2
  IE把字符串转变成UTF,并送入传输流中
  E4 B8 AD E6 96 87
  3
  Servlet接收到输入流,用readUTF读取
  4E 2D 65 87(unicode)
  Servlet
  4
  编程者在Servlet中必须把字符串根据GB2312还原为字节流
  D6 D0 CE C4
  5
  编程者根据数据库内码ISO8859-1生成新的字符串
  00 D6 00 D0 00 CE 00 C4
  6
  把新生成的字符串提交给JDBC
  00 D6 00 D0 00 CE 00 C4
  7
  JDBC检测到数据库内码为ISO8859-1
  00 D6 00 D0 00 CE 00 C4
  JDBC
  8
  JDBC把接收到的字符串按照ISO8859-1生成字节流
  D6 D0 CE C4
  9
  JDBC把字节流写入数据库中
  D6 D0 CE C4
  10
  完成数据存储工作
  D6 D0 CE C4 数据库
  以下是从数据库中取出数的过程
  11
  JDBC从数据库中取出字节流
  D6 D0 CE C4
  JDBC
  12
  JDBC按照数据库的字符集ISO8859-1生成字符串,并提交给Servlet
  00 D6 00 D0 00 CE 00 C4 (Unicode)
  13
  Servlet获得字符串
  00 D6 00 D0 00 CE 00 C4 (Unicode)
  Servlet
  15
  编程者必须根据数据库的内码ISO8859-1还原成原始字节流
  D6 D0 CE C4
  16
  编程者必须根据客户端字符集GB2312生成新的字符串
  4E 2D 65 87
  (Unicode)
  Servlet准备把字符串输出到客户端
  17
  Servlet根据生成字节流
  D6 D0 CE C4
  Servlet
  18
  Servlet把字节流输出到IE中,如果已指定,还会设置IE的编码为
  D6 D0 CE C4
  19
  IE根据指定的编码或默认编码查看结果
  “中文”(正确显示)

  IE

  解释一下,表中第4第5步和第15第16步是用红色标记的,表示要由编码者来作转换。第4、5两步其实就是一句话:“new String(source.getBytes("GB2312"), "ISO8859-1")”。第15、16两步也是一句话:“new String(source.getBytes("ISO8859-1"), "GB2312")”。亲爱的读者,你在这样编写代码时是否意识到了其中的每一个细节呢?

至于客户端内码和数据库内码为其它值时的流程,和输出对象是系统控制台时的流程,请读者自己想吧。明白了上述流程的原理,相信你可以轻松地写出来。

  行文至此,已可告一段落了。终点又回到了起点,对于编程者而言,几乎是什么影响都没有。

  因为我们早就被告之要这么做了。

  以下给出一个结论,作为结尾。

  1、 在Jsp文件中,要指定contentType,其中,charset的值要与客户端浏览器所用的字符集一样;对于其中的字符串常量,不需做任何内码转 换;对于字符串变量,要求能根据ContentType中指定的字符集还原成客户端能识别的字节流,简单地说,就是“字符串变量是基于字符集的”;

  2、 在Servlet中,必须用HttpServletResponse.setContentType()设置charset,且设置成与客户端内码一致; 对于其中的字符串常量,需要在Javac编译时指定encoding,这个encoding必须与编写源文件的平台的字符集一样,一般说来都是 GB2312或GBK;对于字符串变量,与JSP一样,必须“是基于字符集的”。

分享到:
评论
2 楼 huangwenhui5000 2010-06-01  
不错,研究够深
1 楼 ayiui4566 2010-05-26  
天啊。太有才了。研究这么深~

相关推荐

    智能家居_物联网_环境监控_多功能应用系统_1741777957.zip

    人脸识别项目实战

    PLC热反应炉仿真程序和报告 ,PLC; 热反应炉; 仿真程序; 报告,PLC热反应炉仿真程序报告

    PLC热反应炉仿真程序和报告 ,PLC; 热反应炉; 仿真程序; 报告,PLC热反应炉仿真程序报告

    C++函数全解析:从基础入门到高级特性的编程指南

    内容概要:本文详细介绍了 C++ 函数的基础概念及其实战技巧。内容涵盖了函数的基本结构(定义、声明、调用)、多种参数传递方式(值传递、引用传递、指针传递),各类函数类型(无参无返、有参无返、无参有返、有参有返),以及高级特性(函数重载、函数模板、递归函数)。此外,通过实际案例展示了函数的应用,如统计数组元素频次和实现冒泡排序算法。最后,总结了C++函数的重要性及未来的拓展方向。 适合人群:有一定编程基础的程序员,特别是想要深入了解C++编程特性的开发人员。 使用场景及目标:① 学习C++中函数的定义与调用,掌握参数传递方式;② 掌握不同类型的C++函数及其应用场景;③ 深入理解函数重载、函数模板和递归函数的高级特性;④ 提升实际编程能力,通过实例强化所学知识。 其他说明:文章以循序渐进的方式讲解C++函数的相关知识点,并提供了实际编码练习帮助理解。阅读过程中应当边思考边实践,动手实验有助于更好地吸收知识点。

    `计算机视觉_Python_PyQt5_Opencv_综合图像处理与识别跟踪系统`.zip

    人脸识别项目实战

    Ultra Ethernet Consortium规范介绍与高性能AI网络优化

    内容概要:本文主要介绍了Ultra Ethernet Consortium(UEC)提出的下一代超高性能计算(HPC)和人工智能(AI)网络解决方案及其关键技术创新。文中指出,现代AI应用如大型语言模型(GPT系列)以及HPC对集群性能提出了更高需求。为了满足这一挑战,未来基于超乙太网络的新规格将采用包喷射传输、灵活数据报排序和改进型流量控制等机制来提高尾部延迟性能和整个通信系统的稳定度。同时UEC也在研究支持高效远程直接内存访问的新一代协议,确保能更好地利用现成以太网硬件设施的同时还增强了安全性。 适合人群:网络架构师、数据中心管理员、高性能运算从业人员及相关科研人员。 使用场景及目标:①为构建高效能的深度学习模型训练平台提供理论指导和技术路线;②帮助企业选择最合适的网络技术和优化现有IT基础设施;③推动整个行业内关于大规模分布式系统网络层面上的设计创新。 阅读建议:本文档重点在于展示UEC如何解决目前RDMA/RoCE所面临的问题并提出了一套全新的设计理念用于未来AI和HPC环境下的通信效率提升。在阅读时需要注意理解作者对于当前网络瓶颈分析背后的原因以及新设计方案所能带来的具体好处

    (参考GUI)MATLAB道路桥梁裂缝检测.zip

    (参考GUI)MATLAB道路桥梁裂缝检测.zip

    pygeos-0.14.0-cp311-cp311-win-amd64.whl

    pygeos-0.14.0-cp311-cp311-win_amd64.whl

    微信小程序_人脸识别_克隆安装_社交娱乐用途_1741777709.zip

    人脸识别项目实战

    基于Matlab的模拟光子晶体光纤中的电磁波传播特性 对模式场的分布和有效折射率的计算 模型使用有限差分时域(FDTD)方法来求解光波在PCF中的传播模式 定义物理参数、光纤材料参数、光波参数、PC

    基于Matlab的模拟光子晶体光纤中的电磁波传播特性 对模式场的分布和有效折射率的计算 模型使用有限差分时域(FDTD)方法来求解光波在PCF中的传播模式 定义物理参数、光纤材料参数、光波参数、PCF参数及几何结构等参数 有限差分时域(FDTD)方法:这是一种数值模拟方法,用于求解麦克斯韦方程,模拟电磁波在不同介质中的传播 特征值问题求解:使用eigs函数求解矩阵的特征值问题,以确定光波的传播模式和有效折射率 模式场分布的可视化:通过绘制模式场的分布图,直观地展示光波在PCF中的传播特性 程序已调通,可直接运行 ,基于Matlab模拟; 光子晶体光纤; 电磁波传播特性; 模式场分布; 有效折射率计算; 有限差分时域(FDTD)方法; 物理参数定义; 几何结构参数; 特征值问题求解; 程序运行。,基于Matlab的PCF电磁波传播模拟与特性分析

    知识图谱与大模型融合实践研究报告:技术路径、挑战及行业应用实例分析

    内容概要:《知识图谱与大模型融合实践研究报告》详细探讨了知识图谱和大模型在企业级落地应用的现状、面临的挑战及融合发展的潜力。首先,介绍了知识图谱与大模型的基本概念和发展历史,并对比分析了两者的优点和缺点,随后重点讨论了两者结合的可行性和带来的具体收益。接下来,报告详细讲解了两者融合的技术路径、关键技术及系统评估方法,并通过多个行业实践案例展示了融合的实际成效。最后提出了对未来的展望及相应的政策建议。 适合人群:对人工智能技术和其应用有兴趣的企业技术人员、研究人员及政策制定者。 使用场景及目标:①帮助企业理解知识图谱与大模型融合的关键技术和实际应用场景;②指导企业在实际应用中解决技术难题,优化系统性能;③推动相关领域技术的进步和发展,为政府决策提供理论依据。 其他说明:报告不仅强调了技术和应用场景的重要性,还关注了安全性和法律法规方面的要求,鼓励各界积极参与到这项新兴技术的研究和开发当中。

    (参考GUI)MATLAB BP神经网络的火焰识别.zip

    神经网络火焰识别,神经网络火焰识别,神经网络火焰识别,神经网络火焰识别,神经网络火焰识别

    人脸识别_实时_ArcFace_多路识别技术_JavaScr_1741771263.zip

    人脸识别项目实战

    telepathy-farstream-0.6.0-5.el7.x64-86.rpm.tar.gz

    1、文件内容:telepathy-farstream-0.6.0-5.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/telepathy-farstream-0.6.0-5.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊

    基于Springboot框架的购物推荐网站的设计与实现(Java项目编程实战+完整源码+毕设文档+sql文件+学习练手好项目).zip

    本东大每日推购物推荐网站管理员和用户两个角色。管理员功能有,个人中心,用户管理,商品类型管理,商品信息管理,商品销售排行榜管理,系统管理,订单管理。 用户功能有,个人中心,查看商品,查看购物资讯,购买商品,查看订单,我的收藏,商品评论。因而具有一定的实用性。 本站是一个B/S模式系统,采用Spring Boot框架作为开发技术,MYSQL数据库设计开发,充分保证系统的稳定性。系统具有界面清晰、操作简单,功能齐全的特点,使得东大每日推购物推荐网站管理工作系统化、规范化。 关键词:东大每日推购物推荐网站;Spring Boot框架;MYSQL数据库 东大每日推购物推荐网站的设计与实现 1 1系统概述 1 1.1 研究背景 1 1.2研究目的 1 1.3系统设计思想 1 2相关技术 3 2.1 MYSQL数据库 3 2.2 B/S结构 3 2.3 Spring Boot框架简介 4 3系统分析 4 3.1可行性分析 4 3.1.1技术可行性 5 3.1.2经济可行性 5 3.1.3操作可行性 5 3.2系统性能分析 5 3.2.1 系统安全性 5 3.2.2 数据完整性 6 3.3系统界面

    使用C语言编程设计实现的平衡二叉树的源代码

    二叉树实现。平衡二叉树(Balanced Binary Tree)是一种特殊的二叉树,其特点是树的高度(depth)保持在一个相对较小的范围内,以确保在进行插入、删除和查找等操作时能够在对数时间内完成。平衡二叉树的主要目的是提高二叉树的操作效率,避免由于不平衡而导致的最坏情况(例如,形成链表的情况)。本资源是使用C语言编程设计实现的平衡二叉树的源代码。

    基于扩张状态观测器eso扰动补偿和权重因子调节的电流预测控制,相比传统方法,增加了参数鲁棒性 降低电流脉动,和误差 基于扩张状态观测器eso补偿的三矢量模型预测控制 ,基于扩张状态观测器; 扰动补

    基于扩张状态观测器eso扰动补偿和权重因子调节的电流预测控制,相比传统方法,增加了参数鲁棒性 降低电流脉动,和误差 基于扩张状态观测器eso补偿的三矢量模型预测控制 ,基于扩张状态观测器; 扰动补偿; 权重因子调节; 电流预测控制; 参数鲁棒性; 电流脉动降低; 误差降低; 三矢量模型预测控制,基于鲁棒性增强和扰动补偿的电流预测控制方法

    永磁同步电机全速域控制高频方波注入法、滑模观测器法SMO、加权切矢量控制Simulink仿真模型 低速域采用高频方波注入法HF,高速域采用滑膜观测器法SMO,期间采用加权形式切 送前方法 1、零低速

    永磁同步电机全速域控制高频方波注入法、滑模观测器法SMO、加权切矢量控制Simulink仿真模型 低速域采用高频方波注入法HF,高速域采用滑膜观测器法SMO,期间采用加权形式切 送前方法 1、零低速域,来用无数字滤波器高频方波注入法, 2.中高速域采用改进的SMO滑模观测器,来用的是sigmoid函数,PLL锁相环 3、转速过渡区域采用加权切法 该仿真各个部分清晰分明,仿真波形效果良好内附详细控制方法资料lunwen 带有参考文献和说明文档,仿真模型 ,核心关键词: 1. 永磁同步电机; 2. 全速域控制; 3. 高频方波注入法; 4. 滑模观测器法SMO; 5. 加权切换矢量控制; 6. Simulink仿真模型; 7. 零低速域控制; 8. 中高速域控制; 9. 转速过渡区域控制; 10. 仿真波形效果; 11. 详细控制方法资料; 12. 参考文献和说明文档。,永磁同步电机多域控制策略的仿真研究

    Buck变器二阶LADRC线性自抗扰控制matlab仿真 包括电压电流双闭环和ladrc控制外环加电流内环控制两种 并进行了对比,ladrc控制超调更小,追踪更快 参考文献 版本为2018b

    Buck变器二阶LADRC线性自抗扰控制matlab仿真 包括电压电流双闭环和ladrc控制外环加电流内环控制两种 并进行了对比,ladrc控制超调更小,追踪更快 参考文献 版本为2018b ,关键词:Buck变换器;二阶LADRC;线性自抗扰控制;Matlab仿真;电压电流双闭环;LADRC控制外环;电流内环控制;对比;超调;追踪;2018b版本。,Matlab仿真二阶LADRC控制的Buck变换器:外环LADRC+内环电流控制对比

    2024全球工程前沿.pdf

    2024全球工程前沿.pdf

Global site tag (gtag.js) - Google Analytics