public class Student {
private int age=0;
public int getAge() {
return this.age;
}
public void setAge(int age) {
this.age = age;
}
}
public class TreadLocalDemo implements Runnable {
private final static ThreadLocal studentLocal = new ThreadLocal();
public static void main(String[] agrs) {
TreadLocalDemo td = new TreadLocalDemo();
Thread t1 = new Thread(td,"a");
Thread t2 = new Thread(td,"b");
t1.start();
t2.start();
}
public void run() {
accessStudent();
}
public void accessStudent() {
String currentThreadName = Thread.currentThread().getName();
System.out.println(currentThreadName+" is running!");
Random random = new Random();
int age = random.nextInt(100);
System.out.println("thread "+currentThreadName +" set age to:"+age);
Student student = getStudent();
student.setAge(age);
System.out.println("thread "+currentThreadName+" first read age is:"+student.getAge());
try {
Thread.sleep(5000);
}
catch(InterruptedException ex) {
ex.printStackTrace();
}
System.out.println("thread "+currentThreadName +" second read age is:"+student.getAge());
}
protected Student getStudent() {
Student student = (Student)studentLocal.get();
if(student == null) {
student = new Student();
studentLocal.set(student);
}
return student;
}
protected void setStudent(Student student) {
studentLocal.set(student);
}
}
ThreadLocal
public class ThreadLocal
{
private Map values = Collections.synchronizedMap(new HashMap());
public Object get()
{
Thread curThread = Thread.currentThread();
Object o = values.get(curThread);
if (o == null && !values.containsKey(curThread))
{
o = initialValue();
values.put(curThread, o);
}
return o;
}
public void set(Object newValue)
{
values.put(Thread.currentThread(), newValue);
}
public Object initialValue()
{
return null;
}
}
分享到:
相关推荐
OK即使您不用加锁synchronized,利用ThreadLoacl进行安全变量的副本,但是维持变量副本的资源也是需要消耗资源的。而且对于一个重量级的对象的多个方法多个线程同时调用此对象的同一个局部变量,多个副本的维护实际...
理解ThreadLocal的关键在于认识到它是线程局部的,每个线程都有自己的独立副本,而不是所有线程共享一个全局变量。这使得ThreadLocal成为在多线程环境下维护线程安全状态的一种有效手段,尤其在处理如Handler、...
leetcode下载 OnlineEditor 基于SpringBoot的线上java编程网站 网站地址: 涉及技术:SpringBoot框架、Java动态编译、...ThreadLoacl 实现线程封闭,为每个请求创建一个输出流存储标准输出及标准错误结果。 未来规划:
MATLAB数字滤波器设计及其在语音信号去噪中的应用:源码详解与报告分享,MATLAB 数字滤波器设计 及其语音信号去噪应用。 (供学习交流)带源码,带注释。 有代码和报告。 ,核心关键词:MATLAB; 数字滤波器设计; 语音信号去噪应用; 源码; 注释; 代码与报告。,"MATLAB数字滤波器设计及其在语音信号去噪中的应用:带源码注释与报告"
COMSOL软件模拟三维电化学腐蚀过程的研究分析,comsol三维电化学腐蚀。 ,核心关键词:Comsol;三维电化学;腐蚀;模型模拟;电化学腐蚀过程。,"Comsol模拟:三维电化学腐蚀过程解析"
基于COMSOL的降雨入渗模型:边坡与渗流边界下的强度折减塑性形变研究,comsol降雨入渗模型,边坡降雨边界与渗流边界 强度折减塑性形变 ,comsol降雨入渗模型; 降雨边界; 渗流边界; 强度折减; 塑性形变,"COMSOL降雨入渗模型:边坡渗流与强度折减塑性形变分析"
2025员工安全意识培训试题及答案.docx
Python自动化办公源码-06在Word表格中将上下行相同内容的单元格自动合并
基于深度学习的神经网络技术在信息通信领域的应用研究.pdf
1.内容概要 通过KNN实现鸢尾花分类,即将新的数据点分配给已知类别中的某一类。该算法的核心思想是通过比较距离来确定最近邻的数据点,然后利用这些邻居的类别信息来决定待分类数据点的类别。 2.KNN算法的伪代码 对未知类别属性的数据集中的每个点依次执行以下操作: (1)计算已知类别数据集中的点与当前点之间的距离; (2)按照距离递增次序排序; (3)选取与当前点距离最小的k个点; (4)确定前k个点所在类别的出现频率; (5)返回前k个点出现频率最高的类别作为当前点的预测分类。 3.数据集说明 代码使用`pandas`库加载了一个名为`iris.arff.csv`的数据集 4.学习到的知识 通过鸢尾花分类学习了KNN算法,选择样本数据集中前k个最相似的数据,就是KNN算法中k的出处。k值过大,会出现分类结果模糊的情况;k值较小,那么预测的标签比较容易受到样本的影响。在实验过程中,不同的k值也会导致分类器的错误率不同。KNN算法精度高、无数据输入的假定,可以免去训练过程。但是对于数据量较多的训练样本,KNN必须保存全部数据集,可能会存在计算的时间复杂度、空间复杂度高的情况,存在维数灾难问
感应电机控制与矢量控制仿真:磁链闭环、转速闭环与电流闭环的综合应用研究,感应电机控制仿真,矢量控制,异步电机仿真,磁链闭环,转速闭环,电流闭环 ,核心关键词:感应电机控制仿真; 矢量控制; 异步电机仿真; 磁链闭环; 转速闭环; 电流闭环,"感应电机矢量控制仿真:磁链、转速、电流三闭环异步电机模拟"
威纶通TK6071IP触摸屏锁屏宏指令程序详解:注释清晰,便于理解与学习,威纶通触摸屏锁屏宏指令程序 ~ 威纶通触摸屏锁屏宏指令程序,TK6071IP触摸屏 利用宏指令程序来控制,宏指令注释清晰,方便理解程序。 具有很好的学习意义和借鉴价值。 ,关键词:威纶通触摸屏;锁屏宏指令程序;TK6071IP触摸屏;宏指令控制;注释清晰;学习借鉴。,威纶通触摸屏宏指令程序:清晰注释,学习借鉴之利器
2025输血相关法律法规试题考核试题及答案.docx
Python游戏编程源码-2048小游戏
2025最新康复医学概论考试题库(含答案).doc
Python自动化办公源码-09用Python批量往Word文档中指定位置添加图片
高品质车载充电器技术解决方案:含原理图、PCB图、C源代码及DSP控制器资料,附赠CDCDC模块资料,车载充电器 3Kw OBC 车载充电器 含原理图、PCB图、C源代码、变压器参数等生产资料。 附赠15kwdcdc模块资料 1、这款产品的方案采用的是dsp2803x系列。 2、原理图和Pcb采用AD绘制。 此方案仅供学习 ,车载充电器; 3Kw OBC; 原理图; PCB图; C源代码; 变压器参数; 生产资料; dsp2803x系列; AD绘制; 15kwdcdc模块资料,3Kw车载充电器方案:DSP2803x系列原理图、PCB图及C源学习包
2025最新康复医学考试题及答案.docx
内容概要:本文介绍了一种用于视频处理的新型卷积神经网络(CNN)加速器。主要创新点在于引入了混合精度计算、跨帧数据重用控制器及引擎,以及混合位宽差帧数据编码解码器。这些特性有效解决了视频帧间的时空相关性和稀疏性带来的挑战,提高了处理速度并降低了功耗和带宽需求。具体来说,通过对连续帧的数据相似度利用,可以在保持高精度的同时减少计算量和内存访问次数;通过多类型稀疏卷积聚类数组实现了对现代稀疏神经网络的支持;并通过混合位宽度编码减少了离芯片外的数据传输量,最高达到68%。 适用人群:从事深度学习硬件加速设计的研究人员和技术爱好者;关注AI边缘计算领域的从业者。 使用场景及目标:适用于自动驾驶汽车摄像头、监控系统等实时视频流应用场景。旨在为开发者提供高效的低能耗解决方案,在有限的时间和资源下完成大量的图像信号处理任务,如跟踪、分类等。 其他说明:文中还详细描述了芯片的设计细节,测试平台构建,以及不同模型(如MobileNet)在网络上的实际性能表现。
COMSOL电化学喷射腐蚀模拟与解析:技术原理及应用实践,comsol电化学喷射腐蚀 ,核心关键词:comsol; 电化学; 喷射腐蚀; 电化学腐蚀。,"电化学喷射腐蚀研究:comsol模拟与解析"