`
hcx_2008
  • 浏览: 124099 次
  • 性别: Icon_minigender_1
  • 来自: 西安
社区版块
存档分类
最新评论

关于SAX,DOM,JAXP,JDOM,DOM4J的一些理解

阅读更多
作者:renyangok                处出:http://renyangok.iteye.com/blog/45359

第一:首先介绍一下SAX,DOM,JAXP,JDOM,DOM4J的基本知识:
(注意:至于 JAXP  |   JAXB  |   JAXM  |   JAXR  |   JAX-RPC 分别指什么,查看http://gceclub.sun.com.cn/staticcontent/html/xml/faq/#jaxr_)

1、sax、dom是两种对xml文档进行分析的方法(没有具体的实现,只有接口)
所以不是解释器,如果光有他们,你是完成不了对xml文档的处理的。
sax的包是org.xml.sax
dom的包是org.w3c.dom
包的名称很重要,它有助于你理解他们之间的关系。

2、jaxp是api,他封装了sax\dom两种接口。并在sax\dom的基础之上,作了一套比较简单的api以供开发人员使用。
jaxp的包是javax.xml.parsers
可以看看jaxp的源文件,它的文件中包含了对sax或者dom的引用(import)
jaxp也不是具体的实现,他只是一套api。如果你仅仅有jaxp那是无法工作的
(其实jaxp只是完成对sax、dom的包装,生成了DocumentBuilderFactory\DocumentBuilder
和SAXParserFactory SAXParser。也就是设计模式中的工厂模式,他的好处就是具体的对象( 解释器)建立由子类完成)

3、xerces解释器(号称地球上最快的xml解释器)
在xerces中对jaxp中定义的SAXParser SAXParserFactory DocumentBuilder DocumentBuilderFactory进行了继承(extends)对应SAXParserImpl SAXParserFactoryImpl DocumentBuilderImpl DocumentBuilderFactoryImpl
这就是为什么你的classpath中只要有xerces.jar(其中包含了sax dom jaxp )和 xercesImpl.jar就可以的原因了.

4、什么时候可以用别的解释器 比如crimson呢
他也是和xerces一样 是解释器,很简单,用crimson.jar 替代xercesImpl.jar

5、jdom和dom4j

W3C的DOM标准API难用的让人想撞墙,于是有一帮人开发Java专用的XML API目的是为了便于使用,这就是jdom的由来,开发到一半的时候,另一部分人又分了出来,他们有自己的想法,于是他们就去开发dom4j,形成了今天这样两个API,至于他们之间的性能,jdom全面惨败,dom4j大获全胜。我觉得jdom和dom4j就相当于sax/dom+jaxp,具体的解释器可以选择。

第二:再介绍一下,dom,sax,jdom,dom4j的技术特点:

1: DOM
DOM 是用与平台和语言无关的方式表示 XML 文档的官方 W3C 标准。DOM 是以层次结构组织的节点或信息片断的集合。这个层次结构允许开发人员在树中寻找特定信息。分析该结构通常需要加载整个文档和构造层次结构,然后才能做任何工作。由于它是基于信息层次的,因而 DOM 被认为是基于树或基于对象的。DOM 以及广义的基于树的处理具有几个优点。首先,由于树在内存中是持久的,因此可以修改它以便应用程序能对数据和结构作出更改。它还可以在任何时候在树中上下导航,而不是像 SAX 那样是一次性的处理。DOM 使用起来也要简单得多。
  另一方面,对于特别大的文档,解析和加载整个文档可能很慢且很耗资源,因此使用其他手段来处理这样的数据会更好。这些基于事件的模型,比如 SAX。

2:SAX
  这种处理的优点非常类似于流媒体的优点。分析能够立即开始,而不是等待所有的数据被处理。而且,由于应用程序只是在读取数据时检查数据,因此不需要将数据存储在内存中。这对于大型文档来说是个巨大的优点。事实上,应用程序甚至不必解析整个文档;它可以在某个条件得到满足时停止解析。一般来说,SAX 还比它的替代者 DOM 快许多。

3: 选择 DOM 还是选择 SAX ?
  对于需要自己编写代码来处理 XML 文档的开发人员来说,选择 DOM 还是 SAX 解析模型是一个非常重要的设计决策。
  DOM 采用建立树形结构的方式访问 XML 文档,而 SAX 采用的事件模型。
  DOM 解析器把 XML 文档转化为一个包含其内容的树,并可以对树进行遍历。用 DOM 解析模型的优点是编程容易,开发人员只需要调用建树的指令,然后利用navigation APIs访问所需的树节点来完成任务。可以很容易的添加和修改树中的元素。然而由于使用 DOM 解析器的时候需要处理整个 XML 文档,所以对性能和内存的要求比较高,尤其是遇到很大的 XML 文件的时候。由于它的遍历能力,DOM 解析器常用于 XML 文档需要频繁的改变的服务中。
  SAX 解析器采用了基于事件的模型,它在解析 XML 文档的时候可以触发一系列的事件,当发现给定的tag的时候,它可以激活一个回调方法,告诉该方法制定的标签已经找到。SAX 对内存的要求通常会比较低,因为它让开发人员自己来决定所要处理的tag。特别是当开发人员只需要处理文档中所包含的部分数据时,SAX 这种扩展能力得到了更好的体现。但用 SAX 解析器的时候编码工作会比较困难,而且很难同时访问同一个文档中的多处不同数据。

4:jdom http://www.jdom.org
JDOM 的目的是成为 Java 特定文档模型,它简化与 XML 的交互并且比使用 DOM 实现更快。由于是第一个 Java 特定模型,JDOM 一直得到大力推广和促进。正在考虑通过“Java 规范请求 JSR-102”将它最终用作“Java 标准扩展”。从 2000 年初就已经开始了 JDOM 开发。
  JDOM 与 DOM 主要有两方面不同。首先,JDOM 仅使用具体类而不使用接口。这在某些方面简化了 API,但是也限制了灵活性。第二,API 大量使用了 Collections 类,简化了那些已经熟悉这些类的 Java 开发者的使用。
  JDOM 文档声明其目的是“使用 20%(或更少)的精力解决 80%(或更多)Java/XML 问题”(根据学习曲线假定为 20%)。JDOM 对于大多数 Java/XML 应用程序来说当然是有用的,并且大多数开发者发现 API 比 DOM 容易理解得多。JDOM 还包括对程序行为的相当广泛检查以防止用户做任何在 XML 中无意义的事。然而,它仍需要您充分理解 XML 以便做一些超出基本的工作(或者甚至理解某些情况下的错误)。这也许是比学习 DOM 或 JDOM 接口都更有意义的工作。
  JDOM 自身不包含解析器。它通常使用 SAX2 解析器来解析和验证输入 XML 文档(尽管它还可以将以前构造的 DOM 表示作为输入)。它包含一些转换器以将 JDOM 表示输出成 SAX2 事件流、DOM 模型或 XML 文本文档。JDOM 是在 Apache 许可证变体下发布的开放源码。

5: DOM4J   http://dom4j.sourceforge.net/
 虽然 DOM4J 代表了完全独立的开发结果,但最初,它是 JDOM 的一种智能分支。它合并了许多超出基本 XML 文档表示的功能,包括集成的 XPath 支持、XML Schema 支持以及用于大文档或流化文档的基于事件的处理。它还提供了构建文档表示的选项,它通过 DOM4J API 和标准 DOM 接口具有并行访问功能。从 2000 下半年开始,它就一直处于开发之中。
  为支持所有这些功能,DOM4J 使用接口和抽象基本类方法。DOM4J 大量使用了 API 中的 Collections 类,但是在许多情况下,它还提供一些替代方法以允许更好的性能或更直接的编码方法。直接好处是,虽然 DOM4J 付出了更复杂的 API 的代价,但是它提供了比 JDOM 大得多的灵活性。
  在添加灵活性、XPath 集成和对大文档处理的目标时,DOM4J 的目标与 JDOM 是一样的:针对 Java 开发者的易用性和直观操作。它还致力于成为比 JDOM 更完整的解决方案,实现在本质上处理所有 Java/XML 问题的目标。在完成该目标时,它比 JDOM 更少强调防止不正确的应用程序行为。
  DOM4J 是一个非常非常优秀的Java XML API,具有性能优异、功能强大和极端易用使用的特点,同时它也是一个开放源代码的软件。如今你可以看到越来越多的 Java 软件都在使用 DOM4J 来读写 XML,特别值得一提的是连 Sun 的 JAXM 也在用 DOM4J。

最后:我建议用dom4j

 JDOM 和 DOM 在性能测试时表现不佳,在测试 10M 文档时内存溢出。在小文档情况下还值得考虑使用 DOM 和 JDOM。虽然 JDOM 的开发者已经说明他们期望在正式发行版前专注性能问题,但是从性能观点来看,它确实没有值得推荐之处。另外,DOM 仍是一个非常好的选择。DOM 实现广泛应用于多种编程语言。它还是许多其它与 XML 相关的标准的基础,因为它正式获得 W3C 推荐(与基于非标准的 Java 模型相对),所以在某些类型的项目中可能也需要它(如在 javascript 中使用 DOM)。
  SAX表现较好,这要依赖于它特定的解析方式。一个 SAX 检测即将到来的XML流,但并没有载入到内存(当然当XML流被读入时,会有部分文档暂时隐藏在内存中)。
  无疑,DOM4J是最好的,目前许多开源项目中大量采用 DOM4J,例如大名鼎鼎的 Hibernate 也用 DOM4J 来读取 XML 配置文件。如果不考虑可移植性,那就采用DOM4J吧!
分享到:
评论

相关推荐

    Delphi 12.3控件之TraeSetup-stable-1.0.12120.exe

    Delphi 12.3控件之TraeSetup-stable-1.0.12120.exe

    基于GPRS,GPS的电动汽车远程监控系统的设计与实现.pdf

    基于GPRS,GPS的电动汽车远程监控系统的设计与实现.pdf

    基于MATLAB/Simulink 2018a的单机无穷大系统暂态稳定性仿真与故障分析

    内容概要:本文详细介绍了如何利用MATLAB/Simulink 2018a进行单机无穷大系统的暂态稳定性仿真。主要内容包括搭建同步发电机模型、设置无穷大系统等效电源、配置故障模块及其控制信号、优化求解器设置以及绘制和分析转速波形和摇摆曲线。文中还提供了多个实用脚本,如故障类型切换、摇摆曲线计算和极限切除角的求解方法。此外,作者分享了一些实践经验,如避免常见错误和提高仿真效率的小技巧。 适合人群:从事电力系统研究和仿真的工程师和技术人员,尤其是对MATLAB/Simulink有一定基础的用户。 使用场景及目标:适用于需要进行电力系统暂态稳定性分析的研究项目或工程应用。主要目标是帮助用户掌握单机无穷大系统的建模和仿真方法,理解故障对系统稳定性的影响,并能够通过仿真结果评估系统的性能。 其他说明:文中提到的一些具体操作和脚本代码对于初学者来说可能会有一定的难度,建议结合官方文档或其他教程一起学习。同时,部分技巧和经验来自于作者的实际操作,具有一定的实用性。

    【KUKA 机器人资料】:KUKA机器人剑指未来——访库卡自动化设备(上海)有限公司销售部经理邹涛.pdf

    KUKA机器人相关资料

    基于DLR模型的PM10–能见度–湿度相关性 研究.pdf

    基于DLR模型的PM10–能见度–湿度相关性 研究.pdf

    MATLAB/Simulink中基于电导增量法的光伏并网系统MPPT仿真及其环境适应性分析

    内容概要:本文详细介绍了如何使用MATLAB/Simulink进行光伏并网系统的最大功率点跟踪(MPPT)仿真,重点讨论了电导增量法的应用。首先阐述了电导增量法的基本原理,接着展示了如何在Simulink中构建光伏电池模型和MPPT控制系统,包括Boost升压电路的设计和PI控制参数的设定。随后,通过仿真分析了不同光照强度和温度条件对光伏系统性能的影响,验证了电导增量法的有效性,并提出了针对特定工况的优化措施。 适合人群:从事光伏系统研究和技术开发的专业人士,尤其是那些希望通过仿真工具深入理解MPPT控制机制的人群。 使用场景及目标:适用于需要评估和优化光伏并网系统性能的研发项目,旨在提高系统在各种环境条件下的最大功率点跟踪效率。 其他说明:文中提供了详细的代码片段和仿真结果图表,帮助读者更好地理解和复现实验过程。此外,还提到了一些常见的仿真陷阱及解决方案,如变步长求解器的问题和PI参数整定技巧。

    【KUKA 机器人坐标的建立】:mo2_base_en.ppt

    KUKA机器人相关文档

    风力发电领域双馈风力发电机(DFIG)Simulink模型的构建与电流电压波形分析

    内容概要:本文详细探讨了双馈风力发电机(DFIG)在Simulink环境下的建模方法及其在不同风速条件下的电流与电压波形特征。首先介绍了DFIG的基本原理,即定子直接接入电网,转子通过双向变流器连接电网的特点。接着阐述了Simulink模型的具体搭建步骤,包括风力机模型、传动系统模型、DFIG本体模型和变流器模型的建立。文中强调了变流器控制算法的重要性,特别是在应对风速变化时,通过实时调整转子侧的电压和电流,确保电流和电压波形的良好特性。此外,文章还讨论了模型中的关键技术和挑战,如转子电流环控制策略、低电压穿越性能、直流母线电压脉动等问题,并提供了具体的解决方案和技术细节。最终,通过对故障工况的仿真测试,验证了所建模型的有效性和优越性。 适用人群:从事风力发电研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解DFIG工作原理、掌握Simulink建模技能的研究人员;旨在帮助读者理解DFIG在不同风速条件下的动态响应机制,为优化风力发电系统的控制策略提供理论依据和技术支持。 其他说明:文章不仅提供了详细的理论解释,还附有大量Matlab/Simulink代码片段,便于读者进行实践操作。同时,针对一些常见问题给出了实用的调试技巧,有助于提高仿真的准确性和可靠性。

    linux之用户管理教程.md

    linux之用户管理教程.md

    三菱PLC与组态王构建3x3书架式堆垛立体库:IO分配、梯形图编程及组态画面设计

    内容概要:本文详细介绍了利用三菱PLC(特别是FX系列)和组态王软件构建3x3书架式堆垛式立体库的方法。首先阐述了IO分配的原则,明确了输入输出信号的功能,如仓位检测、堆垛机运动控制等。接着深入解析了梯形图编程的具体实现,包括基本的左右移动控制、复杂的自动寻址逻辑,以及确保安全性的限位保护措施。还展示了接线图和原理图的作用,强调了正确的电气连接方式。最后讲解了组态王的画面设计技巧,通过图形化界面实现对立体库的操作和监控。 适用人群:从事自动化仓储系统设计、安装、调试的技术人员,尤其是熟悉三菱PLC和组态王的工程师。 使用场景及目标:适用于需要提高仓库空间利用率的小型仓储环境,旨在帮助技术人员掌握从硬件选型、电路设计到软件编程的全流程技能,最终实现高效稳定的自动化仓储管理。 其他说明:文中提供了多个实用的编程技巧和注意事项,如避免常见错误、优化性能参数等,有助于减少实际应用中的故障率并提升系统的可靠性。

    基于STM32的循迹避障小车仿真20250426(带讲解视频)

    基于STM32的循迹避障小车 主控:STM32 显示:OLED 电源模块 舵机云台 超声波测距 红外循迹模块(3个,左中右) 蓝牙模块 按键(6个,模式和手动控制小车状态) TB6612驱动的双电机 功能: 该小车共有3种模式: 自动模式:根据红外循迹和超声波测距模块决定小车的状态 手动模式:根据按键的状态来决定小车的状态 蓝牙模式:根据蓝牙指令来决定小车的状态 自动模式: 自动模式下,检测距离低于5cm小车后退 未检测到任何黑线,小车停止 检测到左边或左边+中间黑线,小车左转 检测到右边或右边+中间黑线,小车右转 检测到中边或左边+中间+右边黑线,小车前进 手动模式:根据按键的状态来决定小车的状态 蓝牙模式: //需切换为蓝牙模式才能指令控制 *StatusX X取值为0-4 0:小车停止 1:小车前进 2:小车后退 3:小车左转 4:小车右转

    海西蒙古族藏族自治州乡镇边界,矢量边界,shp格式

    矢量边界,行政区域边界,精确到乡镇街道,可直接导入arcgis使用

    基于IEEE33节点的主动配电网优化:含风光储柴燃多源调度模型的经济运行研究

    内容概要:本文探讨了基于IEEE33节点的主动配电网优化方法,旨在通过合理的调度模型降低配电网的总运行成本。文中详细介绍了模型的构建,包括风光发电、储能装置、柴油发电机和燃气轮机等多种分布式电源的集成。为了实现这一目标,作者提出了具体的约束条件,如储能充放电功率限制和潮流约束,并采用了粒子群算法进行求解。通过一系列实验验证,最终得到了优化的分布式电源运行计划,显著降低了总成本并提高了系统的稳定性。 适合人群:从事电力系统优化、智能电网研究的专业人士和技术爱好者。 使用场景及目标:适用于需要优化配电网运行成本的研究机构和企业。主要目标是在满足各种约束条件下,通过合理的调度策略使配电网更加经济高效地运行。 其他说明:文章不仅提供了详细的理论推导和算法实现,还分享了许多实用的经验技巧,如储能充放电策略、粒子群算法参数选择等。此外,通过具体案例展示了不同电源之间的协同作用及其经济效益。

    【KUKA 机器人资料】:KUKA 机器人初级培训教材.pdf

    KUKA机器人相关文档

    基于MATLAB的CSP电站与ORC综合能源系统优化建模及应用

    内容概要:本文详细介绍了将光热电站(CSP)和有机朗肯循环(ORC)集成到综合能源系统中的优化建模方法。主要内容涵盖系统的目标函数设计、关键设备的约束条件(如CSP储热罐、ORC热电耦合)、以及具体实现的技术细节。文中通过MATLAB和YALMIP工具进行建模,采用CPLEX求解器解决混合整数规划问题,确保系统在经济性和环境效益方面的最优表现。此外,文章还讨论了碳排放惩罚机制、风光弃能处理等实际应用场景中的挑战及其解决方案。 适合人群:从事综合能源系统研究的专业人士,尤其是对光热发电、余热利用感兴趣的科研工作者和技术开发者。 使用场景及目标:适用于需要评估和优化包含多种能源形式(如光伏、风电、燃气锅炉等)在内的复杂能源系统的项目。目标是在满足供电供热需求的同时,最小化运行成本并减少碳排放。 其他说明:文中提供了大量具体的MATLAB代码片段作为实例,帮助读者更好地理解和复现所提出的优化模型。对于初学者而言,建议从简单的确定性模型入手,逐渐过渡到更复杂的随机规划和鲁棒优化。

    网站设计与管理作业一.ppt

    网站设计与管理作业一.ppt

    基于MATLAB的双闭环Buck电路仿真模型设计与优化

    内容概要:本文详细介绍了如何使用MATLAB搭建双闭环Buck电路的仿真模型。首先定义了主电路的关键参数,如输入电压、电感、电容等,并解释了这些参数的选择依据。接着分别对电压外环和电流内环进行了PI控制器的设计,强调了电流环响应速度需要显著高于电压环以确保系统的稳定性。文中还讨论了仿真过程中的一些关键技术细节,如PWM死区时间的设置、低通滤波器的应用以及参数调整的方法。通过对比单闭环和双闭环系统的性能,展示了双闭环方案在应对负载突变时的优势。最后分享了一些调试经验和常见问题的解决方案。 适合人群:从事电力电子、电源设计领域的工程师和技术人员,尤其是有一定MATLAB基础的读者。 使用场景及目标:适用于需要进行电源管理芯片设计验证、电源系统性能评估的研究人员和工程师。主要目标是提高电源系统的稳定性和响应速度,特别是在负载变化剧烈的情况下。 其他说明:文章不仅提供了详细的理论分析,还包括了大量的代码片段和具体的调试步骤,帮助读者更好地理解和应用所学知识。同时提醒读者注意仿真与实际情况之间的差异,鼓励在实践中不断探索和改进。

    MATLAB实现冷热电气多能互补微能源网的鲁棒优化调度模型

    内容概要:本文详细探讨了MATLAB环境下冷热电气多能互补微能源网的鲁棒优化调度模型。首先介绍了多能耦合元件(如风电、光伏、P2G、燃气轮机等)的运行特性模型,展示了如何通过MATLAB代码模拟这些元件的实际运行情况。接着阐述了电、热、冷、气四者的稳态能流模型及其相互关系,特别是热电联产过程中能流的转换和流动。然后重点讨论了考虑经济成本和碳排放最优的优化调度模型,利用MATLAB优化工具箱求解多目标优化问题,确保各能源设备在合理范围内运行并保持能流平衡。最后分享了一些实际应用中的经验和技巧,如处理风光出力预测误差、非线性约束、多能流耦合等。 适合人群:从事能源系统研究、优化调度、MATLAB编程的专业人士和技术爱好者。 使用场景及目标:适用于希望深入了解综合能源系统优化调度的研究人员和工程师。目标是掌握如何在MATLAB中构建和求解复杂的多能互补优化调度模型,提高能源利用效率,降低碳排放。 其他说明:文中提供了大量MATLAB代码片段,帮助读者更好地理解和实践所介绍的内容。此外,还提及了一些有趣的发现和挑战,如多能流耦合的复杂性、鲁棒优化的应用等。

    Simulink与Carsim联合仿真:基于PID与MPC的自适应巡航控制系统设计与实现

    内容概要:本文详细介绍了如何利用Simulink和Carsim进行联合仿真,实现基于PID(比例-积分-微分)和MPC(模型预测控制)的自适应巡航控制系统。首先阐述了Carsim参数设置的关键步骤,特别是cpar文件的配置,包括车辆基本参数、悬架系统参数和转向系统参数的设定。接着展示了Matlab S函数的编写方法,分别针对PID控制和MPC控制提供了详细的代码示例。随后讨论了Simulink中车辆动力学模型的搭建,强调了模块间的正确连接和参数设置的重要性。最后探讨了远程指导的方式,帮助解决仿真过程中可能出现的问题。 适合人群:从事汽车自动驾驶领域的研究人员和技术人员,尤其是对Simulink和Carsim有一定了解并希望深入学习联合仿真的从业者。 使用场景及目标:适用于需要验证和优化自适应巡航控制、定速巡航及紧急避撞等功能的研究和开发项目。目标是提高车辆行驶的安全性和舒适性,确保控制算法的有效性和可靠性。 其他说明:文中不仅提供了理论知识,还有大量实用的代码示例和避坑指南,有助于读者快速上手并应用于实际工作中。此外,还提到了远程调试技巧,进一步提升了仿真的成功率。

    02.第18讲一、三重积分02.mp4

    02.第18讲一、三重积分02.mp4

Global site tag (gtag.js) - Google Analytics