- 浏览: 2950994 次
- 性别:
- 来自: 上海
文章分类
- 全部博客 (2529)
- finance (1459)
- technology (218)
- life (343)
- play (150)
- technology-component (0)
- idea (6)
- house (74)
- health (75)
- work (32)
- joke (23)
- blog (1)
- amazing (13)
- important (22)
- study (13)
- Alternative (0)
- funny (8)
- stock_technology (12)
- business (16)
- car (21)
- decorate (4)
- basketball (2)
- English (16)
- banker (1)
- TheBest (1)
- sample (2)
- love (13)
- management (4)
最新评论
-
zhongmin2012:
BSM确实需要实践,标准ITIL服务流程支持,要做好,需要花费 ...
BSM实施之前做什么 -
shw340518:
提示楼主,有时间逻辑bug:是你妈二十那年写的 那会儿连你爹都 ...
80后辣妈给未来儿子的信~我的儿,你也给我记住了~~~ -
guoapeng:
有相关的文档吗?
it项目管理表格(包含146个DOC文档模板) -
solomon:
看到的都是 这种 CTRL+C 和 CTRL+V 的文章, ...
Designing a website with InfoGlue components -
wendal:
恩, 不错. 有参考价值
Designing a website with InfoGlue components
在做项目经常遇到分科室、人员进行汇总的问题,在ORACLE中对此类问题的处理相当方便!下面以项目中遇到的实例进行说明:
要求做到下图所示效果:
查询语句如下:
select f_sys_getsectnamebysectid(a.sectionid) as sectname,
--a.sectionid,
f_sys_employinfo_getnamebyno(a.buyerid) as name,
sum(c.ratio) as llratio,
sum(b.ratio) as lratio,
sum(a.ratio) as ratio,
sum(d.ratio) as nratio
from (select sectionid, buyerid, ratio
from T_PPRM_ASPPurRatio
where year = '2008') a,
(select buyerid, ratio from T_PPRM_ASPPurRatio where year = '2007') b,
(select buyerid, ratio from T_PPRM_ASPPurRatio where year = '2006') c,
(select buyerid, ratio from T_PPRM_ASPPurRatio where year = '2009') d
where a.buyerid = b.buyerid(+)
and b.buyerid = c.buyerid(+)
and c.buyerid = d.buyerid(+)
group by rollup(a.sectionid, a.buyerid)
下面转帖更详细的介绍,需仔细体会
Oracle ROLLUP和CUBE 用法
Oracle的GROUP BY语句除了最基本的语法外,还支持ROLLUP和CUBE语句。如果是ROLLUP(A, B, C)的话,首先会对(A、B、C)进行GROUP BY,然后对(A、B)进行GROUP BY,然后是(A)进行GROUP BY,最后对全表进行GROUP BY操作。如果是GROUP BY CUBE(A, B, C),则首先会对(A、B、C)进行GROUP BY,然后依次是(A、B),(A、C),(A),(B、C),(B),(C),最后对全表进行GROUP BY操作。 grouping_id()可以美化效果:
Oracle的GROUP BY语句除了最基本的语法外,还支持ROLLUP和CUBE语句。
除本文内容外,你还可参考:
分析函数参考手册: http://xsb.itpub.net/post/419/33028
分析函数使用例子介绍:http://xsb.itpub.net/post/419/44634
SQL> create table t as select * from dba_indexes;
表已创建。
SQL> select index_type, status, count(*) from t group by index_type, status;
INDEX_TYPE STATUS COUNT(*)
--------------------------- -------- ----------
LOB VALID 51
NORMAL N/A 25
NORMAL VALID 479
CLUSTER VALID 11
下面来看看ROLLUP和CUBE语句的执行结果。
SQL> select index_type, status, count(*) from t group by rollup(index_type, status);
INDEX_TYPE STATUS COUNT(*)
--------------------------- -------- ----------
LOB VALID 51
LOB 51
NORMAL N/A 25
NORMAL VALID 479
NORMAL 504
CLUSTER VALID 11
CLUSTER 11
566
已选择8行。
SQL> select index_type, status, count(*) from t group by cube(index_type, status);
INDEX_TYPE STATUS COUNT(*)
--------------------------- -------- ----------
566
N/A 25
VALID 541
LOB 51
LOB VALID 51
NORMAL 504
NORMAL N/A 25
NORMAL VALID 479
CLUSTER 11
CLUSTER VALID 11
已选择10行。
查询结果不是很一目了然,下面通过Oracle提供的函数GROUPING来整理一下查询结果。
SQL> select grouping(index_type) g_ind, grouping(status) g_st, index_type, status, count(*)
2 from t group by rollup(index_type, status) order by 1, 2;
G_IND G_ST INDEX_TYPE STATUS COUNT(*)
---------- ---------- --------------------------- -------- ----------
0 0 LOB VALID 51
0 0 NORMAL N/A 25
0 0 NORMAL VALID 479
0 0 CLUSTER VALID 11
0 1 LOB 51
0 1 NORMAL 504
0 1 CLUSTER 11
1 1 566
已选择8行。
这个查询结果就直观多了,和不带ROLLUP语句的GROUP BY相比,ROLLUP增加了对INDEX_TYPE的GROUP BY统计和对所有记录的GROUP BY统计。
也就是说,如果是ROLLUP(A, B, C)的话,首先会对(A、B、C)进行GROUP BY,然后对(A、B)进行GROUP BY,然后是(A)进行GROUP BY,最后对全表进行GROUP BY操作。
下面看看CUBE语句。
SQL> select grouping(index_type) g_ind, grouping(status) g_st, index_type, status, count(*)
2 from t group by cube(index_type, status) order by 1, 2;
G_IND G_ST INDEX_TYPE STATUS COUNT(*)
---------- ---------- --------------------------- -------- ----------
0 0 LOB VALID 51
0 0 NORMAL N/A 25
0 0 NORMAL VALID 479
0 0 CLUSTER VALID 11
0 1 LOB 51
0 1 NORMAL 504
0 1 CLUSTER 11
1 0 N/A 25
1 0 VALID 541
1 1 566
已选择10行。
和ROLLUP相比,CUBE又增加了对STATUS列的GROUP BY统计。
如果是GROUP BY CUBE(A, B, C),则首先会对(A、B、C)进行GROUP BY,然后依次是(A、B),(A、C),(A),(B、C),(B),(C),最后对全表进行GROUP BY操作。
除了使用GROUPING函数,还可以使用GROUPING_ID来标识GROUP BY结果。
SQL> select grouping_id(index_type, status) g_ind, index_type, status, count(*)
2 from t group by rollup(index_type, status) order by 1;
G_IND INDEX_TYPE STATUS COUNT(*)
---------- --------------------------- -------- ----------
0 LOB VALID 51
0 NORMAL N/A 25
0 NORMAL VALID 479
0 CLUSTER VALID 11
1 LOB 51
1 NORMAL 504
1 CLUSTER 11
3 566
已选择8行。
SQL> select grouping_id(index_type, status) g_ind, index_type, status, count(*)
2 from t group by cube(index_type, status) order by 1;
G_IND INDEX_TYPE STATUS COUNT(*)
---------- --------------------------- -------- ----------
0 LOB VALID 51
0 NORMAL N/A 25
0 NORMAL VALID 479
0 CLUSTER VALID 11
1 LOB 51
1 NORMAL 504
1 CLUSTER 11
2 N/A 25
2 VALID 541
3 566
已选择10行。
grouping_id()可以美化效果:
select DECODE(GROUPING_ID(C1), 1, '合计', C1) D1,
DECODE(GROUPING_ID(C1, C2), 1, '小计', C2) D2,
DECODE(GROUPING_ID(C1, C2, C1 + C2), 1, '小计', C1 + C2) D3,
count(*),
GROUPING_ID(C1, C2, C1 + C2, C1 + 1, C2 + 1),
GROUPING_ID(C1)
from T2
group by rollup(C1, C2, C1 + C2, C1 + 1, C2 + 1);
===========================================================
1.报表合计专用的Rollup函数
销售报表
广州 1月 2000元
广州 2月 2500元
广州 4500元
深圳 1月 1000元
深圳 2月 2000元
深圳 3000元
所有地区 7500元
以往的查询SQL:
Select area,month,sum(money) from SaleOrder group by area,month
然后广州,深圳的合计和所有地区合计都需要在程序里自行累计
1.其实可以使用如下SQL:
Select area,month,sum(total_sale) from SaleOrder group by rollup(area,month)
就能产生和报表一模一样的纪录
2.如果year不想累加,可以写成
Select year,month,area,sum(total_sale) from SaleOrder group by year, rollup(month,area)
另外Oracle 9i还支持如下语法:
Select year,month,area,sum(total_sale) from SaleOrder group by rollup((year,month),area)
3.如果使用Cube(area,month)而不是RollUp(area,month),除了获得每个地区的合计之外,还将获得每个月份的合计,在报表最后显示。
4.Grouping让合计列更好读
RollUp在显示广州合计时,月份列为NULL,但更好的做法应该是显示为"所有月份"
Grouping就是用来判断当前Column是否是一个合计列,1为yes,然后用Decode把它转为"所有月份"
Select Decode(Grouping(area),1,'所有地区',area) area, Decode(Grouping(month),1,'所有月份',month), sum(money) From SaleOrder Group by RollUp(area,month);
2.对多级层次查询的start with.....connect by
比如人员组织,产品类别,Oracle提供了很经典的方法
SELECT LEVEL, name, emp_id,manager_emp_id FROM employee START WITH manager_emp_id is null CONNECT BY PRIOR emp_id = manager_emp_id;
上面的语句demo了全部的应用,start with指明从哪里开始遍历树,如果从根开始,那么它的manager应该是Null,如果从某个职员开始,可以写成emp_id='11'
CONNECT BY 就是指明父子关系,注意PRIOR位置
另外还有一个LEVEL列,显示节点的层次
3.更多报表/分析决策功能
3.1 分析功能的基本结构
分析功能() over( partion子句,order by子句,窗口子句)
概念上很难讲清楚,还是用例子说话比较好.
3.2 Row_Number 和 Rank, DENSE_Rank
用于选出Top 3 sales这样的报表
当两个业务员可能有相同业绩时,就要使用Rank和Dense_Rank
比如
金额 RowNum Rank Dense_Rank
张三 4000元 1 1 1
李四 3000元 2 2 2
钱五 2000元 3 3 3
孙六 2000元 4 3 3
丁七 1000元 5 5 4
这时,应该把并列第三的钱五和孙六都选进去,所以用Ranking功能比RowNumber保险.至于Desnse还是Ranking就看具体情况了。
SELECT salesperson_id, SUM(tot_sales) sp_sales, RANK( ) OVER (ORDER BY SUM(tot_sales) DESC) sales_rank FROM orders GROUP BY salesperson_id
3.3 NTILE 把纪录平分成甲乙丙丁四等
比如我想取得前25%的纪录,或者把25%的纪录当作同一个level平等对待,把另25%当作另一个Level平等对待
SELECT cust_nbr, SUM(tot_sales) cust_sales, NTILE(4) OVER (ORDER BY SUM(tot_sales) DESC) sales_quartile FROM orders GROUP BY cust_nbr ORDER BY 3,2 DESC;
NTITLE(4)把纪录以 SUM(tot_sales)排序分成4份.
3.4 辅助分析列和Windows Function
报表除了基本事实数据外,总希望旁边多些全年总销量,到目前为止的累计销量,前后三个月的平均销量这样的列来参考.
这种前后三个月的平均和到目前为止的累计销量就叫windows function, 见下例
SELECT month, SUM(tot_sales) monthly_sales, SUM(SUM(tot_sales)) OVER (ORDER BY month ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) max_preceeding FROM orders GROUP BY month ORDER BY month;
SELECT month, SUM(tot_sales) monthly_sales, AVG(SUM(tot_sales)) OVER (ORDER BY month ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) rolling_avg FROM orders GROUP BY month ORDER BY month;
Windows Function的关键就是Windows子句的几个取值
1 PRECEDING 之前的一条记录
1 FOLLOWING 之后的一条记录
UNBOUNDED PRECEDING 之前的所有记录
CURRENT ROW 当前纪录
4.SubQuery总结
SubQuery天天用了,理论上总结一下.SubQuery 分三种
1.Noncorrelated 子查询 最普通的样式.
2.Correlated Subqueries 把父查询的列拉到子查询里面去,头一回cyt教我的时候理解了半天.
3.Inline View 也被当成最普通的样式用了.
然后Noncorrelated 子查询又有三种情况
1.返回一行一列 where price < (select max(price) from goods )
2.返回多行一列 where price>= ALL (select price from goods where type=2)
or where NOT price< ANY(select price from goods where type=2)
最常用的IN其实就是=ANY()
3.返回多行多列 一次返回多列当然就节省了查询时间
UPDATE monthly_orders SET (tot_orders, max_order_amt) = (SELECT COUNT(*), MAX(sale_price) FROM cust_order) DELETE FROM line_item WHERE (order_nbr, part_nbr) IN (SELECT order_nbr, part_nbr FROM cust_order c)
========================================
/*--------理解grouping sets
select a, b, c, sum( d ) from t
group by grouping sets ( a, b, c )
等效于
select * from (
select a, null, null, sum( d ) from t group by a
union all
select null, b, null, sum( d ) from t group by b
union all
select null, null, c, sum( d ) from t group by c
)
*/
发表评论
-
New Enterprise Security Solutions
2011-09-13 15:46 0<!-- [if !mso]> <styl ... -
ES Announces Enterprise Security Solutions
2011-09-13 15:40 0<!-- [if !mso]> <styl ... -
linux下如何将文件打包、压缩并分割成制定大小?
2010-09-15 18:52 3311将大文件或目录打包、 ... -
rhel4 yum安装, 使用
2010-09-07 16:37 0第一种方法: yum源来自chinalinuxpub.com ... -
Windows: 远程自动安装程序
2010-08-26 15:48 1085问题的提出 作为 ... -
Oracle体系结构
2010-08-07 09:53 1025Oracle体系结构 Oracle Server包括Oracl ... -
ocp sesson 3
2010-07-31 14:39 0show parameter undo 只有 默认情况下服务 ... -
ocp session 2
2010-07-25 17:00 0/home/oracle/raInventory/orains ... -
ocp session 1
2010-07-24 13:02 0ocp first lesson D:\oracle_cou ... -
Python的xmlrpc调试
2010-07-19 23:55 2107Python的xmlrpc 调 试 ----------- ... -
mdadm使用详解及RAID 5简单分析
2010-07-11 16:19 1390http://blog.csdn.net/chinalinux ... -
Linux的lvm的基本配置步骤
2010-07-11 14:53 12831.增加硬件 增加的ide硬盘前缀为hd,scs ... -
OCP study material
2010-07-11 13:52 0\\192.168.1.105watch -n 1 'stat ... -
apache+python+mod_python+django 编译安装指南
2010-06-24 17:25 14691、本文将知道你在 linux 下使用源码包安装 ... -
在ubuntu下配置apache运行python脚本
2010-06-22 16:11 2269常用的简单命令 sudo apt ... -
Python 2.5 Quick Reference
2010-06-21 11:18 1464... -
shell 面试题汇集
2010-06-10 19:50 1044利用 top 取某个进程的 CPU 的脚本 : ... -
shell程序面试题
2010-06-10 19:48 29061.要求分析Apache访问日志,找出里面数量在前面100位的 ... -
EMC技术支持工程师笔试部分试题回忆
2010-06-07 15:16 1648要查看更多EMC公司笔经相关信息,请访问EMC公司校园招聘CL ... -
linux shell 条件语句
2010-06-03 23:29 1777...
相关推荐
而在GROUP BY的基础上,Oracle数据库提供了两种高级分组功能:ROLLUP和CUBE,它们允许我们更灵活地生成汇总数据。 1. ROLLUP(滚联回溯): ROLLUP是GROUP BY的一个扩展,它不仅返回每个单独的分组结果,还会生成...
总结来说,Oracle的`ROLLUP`和`CUBE`函数是强大的数据分析工具,能够帮助用户快速生成多层次的汇总数据,适用于各种复杂的数据报告需求。在处理大量数据时,它们的简洁语法和高效性能使得数据聚合变得更为方便。理解...
在 Oracle 中,除了 Grouping Sets 之外,还有其他两种分组统计方法:Rollup 和 Cube。Rollup 是一种统计方法,它可以对数据进行分组和聚合计算,但它只能对单个列进行分组。Cube 是一种特殊的分组统计方法,它可以...
《Pro Oracle SQL》Chapter 7 Advanced Grouping 是一本关于Oracle...通过阅读《Pro Oracle SQL》的这一章节,以及实践7_11_os.sql和7_12_os.sql中的示例,读者可以深入了解并掌握CUBE的用法,提升自己的数据处理能力。
9. 分组和分析函数:如GROUP BY、ROLLUP、CUBE和RANK等,用于数据的分组汇总和复杂分析,是大数据处理和OLAP操作的关键。 10. 连接函数:如CONNECT_BY_ROOT和START_WITH,用于构建复杂的树状查询,处理层次结构数据...
3. **Oracle特有功能**:Oracle数据库提供了一些特有的SQL语法和功能,如游标(CURSOR)、PL/SQL(Oracle的存储过程语言)、分组函数(GROUP BY, ROLLUP, CUBE)以及窗口函数(OVER()子句)。 4. **数据类型**:...
- Les17_对 GROUP BY 子句的扩展.ppt可能深入讨论了GROUP BY的高级用法,如HAVING子句和ROLLUP/CUBE/GROUPING SETS。 通过这套培训资料,学习者可以从基础的SQL语法到复杂的数据库管理技巧逐步进阶,了解并掌握...
4. **`GROUPING`函数**:`GROUPING`用于识别由`ROLLUP`、`CUBE`或`GROUPING SETS`返回的空值,区分标准空值和汇总情况。 **`HAVING`子句**: `HAVING`在`GROUP BY`后使用,用于筛选分组后的结果,可以包含聚合函数...
Oracle数据库是全球广泛使用的大型关系型数据库管理系统,其强大的功能和灵活性深受IT专业人士的喜爱。这里提供的"Oracle常用高级语句.rar"压缩包包含了多个与Oracle数据库相关的文档,涵盖了PL/SQL编程、函数应用、...
5. **聚合操作**: Oracle OLAP支持多种聚合操作,如ROLLUP和CUBE,它们用于创建上卷(Roll-up)、下钻(Drill-down)、切片(Slice)和切块(Dice)等分析操作。这些操作帮助用户从不同角度查看数据。 6. **安全性...
- `GROUP BY GROUPING SETS`是`ROLLUP`和`CUBE`的组合,可自定义分组。 了解这些基本规则和用法后,你可以根据业务需求灵活运用`GROUP BY`来分析和汇总数据。记得在实际操作中,确保遵守上述规则,以避免SQL语法...
10. 增强GROUP BY功能,使用GROUP BY扩展选项,如GROUPING SETS、CUBE和ROLLUP等,可以实现更复杂的聚合计算。 11. 分析函数(ANALYTICAL FUNCTIONS)是Oracle SQL的高级特性之一,允许在数据集上进行窗口计算,...
14.3 使用ROLLUP、GROUPING和CUBE 14.4 家族树和COlLrlectby 14.4.1 排除个体和分支 14.4.2 向根遍历 14.4.3 基本规则 第15章 更改数据:插入、更新、合并和删除 第16章 DECODE和CASE.SQL中的if-fhen-else 第17章 ...
14.3 使用ROLLUP、GROUPING和CUBE 14.4 家族树和COlLrlectby 14.4.1 排除个体和分支 14.4.2 向根遍历 14.4.3 基本规则 第15章 更改数据:插入、更新、合并和删除 第16章 DECODE和CASE.SQL中的if-fhen-else 第17章 ...
2. 使用方法和限制 使用`APPEND`提示可以启用直接路径插入。然而,这种方法不支持事务,可能导致无法回滚,且可能影响其他并发操作。 四、物化视图 物化视图是预先计算并存储的结果集,提供快速的数据访问。它们...
10. **Les17分组查询扩展.ppt** - 分组查询的高级用法,可能包含GROUP BY ROLLUP、CUBE和GROUPING SETS,这些功能允许更灵活的数据汇总和分析。 通过这个教学课件,学习者不仅可以掌握Oracle SQL的基本语法,还能...
`GROUP BY` 和 `HAVING` 子句是SQL中的基础工具,但在Oracle 10g中,你可以使用 `CUBE()`, `ROLLUP()`, `GROUPING SETS()` 进行多维度分析,创建更复杂的分组。`CONNECT BY` 用于构建层次结构,如组织结构或产品分类...