http://blog.csdn.net/etmonitor/
Assembly学习心得<!----><o:p></o:p>
说明:<o:p></o:p>
最近开始准备把学到的.NET知识重新整理一遍,眼过千遍不如手过一遍,所以我准备记下我的学习心得,已备参考。J<o:p></o:p>
各位都是大虾了,如果有哪些错误或者不完整的地方,还请不吝指出。<o:p></o:p>
多谢了。<o:p></o:p>
<o:p></o:p>
本文分为两部分:<o:p></o:p>
第一部分是一些必须了解的概念;<o:p></o:p>
第二部分是一个完整的例子来逐一说明这些概念;<o:p></o:p>
<o:p></o:p>
第一部分 基本概念
托管模块(Managed Module)<o:p></o:p>
托管模块是一个需要CLR才能执行的标准Windows可移植可执行(portable executable,简称PE)文件。<o:p></o:p>
元数据(Metadata)<o:p></o:p>
简单的讲,元数据就是一个数据表的集合,在这些表中,其中一些用于描述托管模块中所定义的内容(比如所定义的类型和它们的成员),另外还有一些用于描述托管模块中所引用的内容(比如被引用的类型和它们的成员)。<o:p></o:p>
URL: ms-help://MS.MSDNQTR.2004APR.1033/cpguide/html/cpconmetadataoverview.htm<o:p></o:p>
程序集清单(Assembly Manifest)<o:p></o:p>
程序集清单是另外一些元数据表的集合。这些表描述了组成程序集的文件,程序集所有文件中实现的公有导出类型,以及一些程序集相关的资源文件或数据文件。<o:p></o:p>
ms-help://MS.MSDNQTR.2004APR.1033/cpguide/html/cpconAssemblyManifest.htm<o:p></o:p>
<o:p></o:p>
1.程序集(Assembly)的概念:<o:p></o:p>
首先:程序集是一个或多个托管模块,以及一些资源文件的逻辑组合。因为它是一个逻辑上的组合,所以程序集的逻辑表示和物理表示可以相互分离。如何将代码和资源划分到不同的文件中完全取决于我们。例如,我们可以将一些很少使用的类型或资源放在一个单独的Assembly Module中,然后根据需要(比如第一次用到的时候),从web上下载它们。如果没有用到,它们将不会被下载。这样既节省磁盘空间,也减少了安装时间。程序集允许我们将文件的部署分解开来,同时又将所有的文件看作一个单独的集合。<o:p></o:p>
其次:因为CLR是直接和程序集打交道的,所以程序集也是组件复用,以及实施安全策略和版本策略的最小单元(安全策略,版本信息等都只能是加在程序集上)。<o:p></o:p>
注意:程序集是一个逻辑组合,它可以包含很多个文件。大多数程序集(比如使用Visual Studio.NET创建的那些)一般都是单文件程序集,也就是只有一个.exe或者.dll文件(目前.NET的程序集只有这两种格式)。在这种情况下,程序集清单(manifest)直接嵌入到单文件程序集中。但是,你也可以用“程序集生成工具”(Al.exe)来创建多文件程序集。也可以只创建一个只包含清单的程序集。 <o:p></o:p>
2.强命名程序集(Strong Name Assembly)的概念<o:p></o:p>
因为不同的公司可能会开发出有相同名字的程序集来,如果这些程序集都被复制到同一个相同的目录下,最后一个安装的程序集将会代替前面的程序集。这就是著名的Windows “DLL Hell”出现的原因。<o:p></o:p>
很明显,简单的用文件名来区分程序集是不够的,CLR需要支持某种机制来唯一的标识一个程序集。这就是所谓的强命名程序集。<o:p></o:p>
一个强命名程序集包含四个唯一标志程序集的特性:文件名(没有扩展名),版本号,语言文化信息(如果有的话),公有秘钥。<o:p></o:p>
这些信息存储在程序集的清单(manifest)中。清单包含了程序集的元数据,并嵌入在程序集的某个文件中。<o:p></o:p>
下面的字符串标识了四个不同的程序集文件:<o:p></o:p>
“MyType, Version=1.0.1.0, Culture=neutral, PublicKeyToken=bf5779af662fc055”<o:p></o:p>
“MyType, Version=1.0.1.0, Culture=en-us, PublicKeyToken=bf5779af662fc055”<o:p></o:p>
“MyType, Version=1.0.2.0, Culture=neturl, PublicKeyToken=bf5779af662fc055”<o:p></o:p>
“MyType, Version=1.0.2.0, Culture=neutral, PublicKeyToken=dbe4120289f9fd8a”<o:p></o:p>
如果一个公司想唯一的标识它的程序集,那么它必须首先获取一个公钥/私钥对,然后将共有秘钥和程序集相关联。不存在两个两个公司有同样的公钥/私钥对的情况,正是这种区分使得我们可以创建有着相同名称,版本和语言文化信息的程序集,而不引起任何冲突。<o:p></o:p>
与强命名程序集对应的就是所谓的弱命名程序集。(其实就是普通的没有被强命名的程序集)。两种程序集在结构上是相同的。都使用相同的PE文件格式,PE表头,CLR表头,元数据,以及清单(manifest)。二者之间真正的区别在于:强命名程序集有一个发布者的公钥/私钥对签名,其中的公钥/私钥对唯一的标识了程序集的发布者。利用公钥/私钥对,我们可以对程序集进行唯一性识别、实施安全策略和版本控制策略,这种唯一标识程序集的能力使得应用程序在试图绑定一个强命名程序集时,CLR能够实施某些“已确知安全”的策略(比如只信任某个公司的程序集)。<o:p></o:p>
<o:p></o:p>
3. 如何创建强命名程序集(Strong Name Assembly)<o:p></o:p>
创建一个强命名程序集首先需要获得一个用强命名实用工具(Strong Name Utility,即SN.exe,.NET SDK自带)产生的密钥。<o:p></o:p>
下面简要介绍一下SN.exe的一些用法。<o:p></o:p>
要产生一个公钥/私钥对:<o:p></o:p>
a) SN –k MyCompany.Keys<o:p></o:p>
该命名告诉SN.exe创建一个名为MyCompany.keys的文件。MyCompany.keys文件将包含以对以二进制格式存储的公有密钥和私有密钥。<o:p></o:p>
b)查看公有密钥:<o:p></o:p>
首先生成一个只包含公有密钥的文件:<o:p></o:p>
SN –p MyCompany.keys MyCompany.PublicKey<o:p></o:p>
然后用-tp参数查看:SN –tp MyCompany.PublicKeys<o:p></o:p>
Public key is<o:p></o:p>
0024000004800000940000000602000000240000525341310004000001000100bb7214723ffc13<o:p></o:p>
901343df4b9c464ebf7ef4312b0ae4d31db04a99673e8163768cc0a2a7062e731dbeb83b869f05<o:p></o:p>
09bf8009e90db5c8728e840e782d2cf928dae35c2578ec55f0d11665a30b37f8636c08789976d8<o:p></o:p>
ee9fe9a5c4a0435f0821738e51d6bdd6e6711a5acb620018658cce93df37d7e85f9a0104a58450<o:p></o:p>
53995ce8<o:p></o:p>
<o:p></o:p>
Public key token is 2dc940d5439468c2<o:p></o:p>
创建好了公钥/私钥对,创建强命名程序集就很容易了。只需要把System.Reflection.AssemblyKeyFileAttribute特性加入到源代码中就可以了: [assembly:AssemblyKeyFile("MyCompany.keys")]<o:p></o:p>
<o:p></o:p>
说明:公钥/私钥对文件的扩展名可以是任意的(也可以没有),因为编译的时候都是以元数据的格式读取的。<o:p></o:p>
<o:p></o:p>
4. 程序集的部署方式<o:p></o:p>
一个程序集有两种部署方式:<o:p></o:p>
a) 私有方式<o:p></o:p>
和应用程序部署在同一目录下的程序集称作私有部署程序集。弱命名程序集只能进行私有部署。<o:p></o:p>
b)全局方式<o:p></o:p>
全局部署方式将程序集部署在一些CLR已确知的地方,当CLR搜索程序集时,它会知道到这些地方去找。强命名程序集既可以进行私有部署,也可以进行全局部署。<o:p></o:p>
程序集种类<o:p></o:p> |
是否可以进行私有部署<o:p></o:p> |
是否可以进行全局部署<o:p></o:p> |
普通程序集<o:p></o:p> |
是<o:p></o:p> |
否<o:p></o:p> |
强命名程序集<o:p></o:p> |
是<o:p></o:p> |
是<o:p></o:p> |
<o:p></o:p>
5.如何部署强命名程序集(Strong Name Assembly)和GAC<o:p></o:p>
a)GAC的概念<o:p></o:p>
如果一个Assembly要被多个应用程序访问,那么他就必须放在一个CLR已确知的目录下,并且CLR在探测到有对该Assembly的引用时,它必须能自动到该目录下寻找这个程序集。这个已确知的目录称作GAC(Global Assembly Cache),就是全局程序集缓存。它一般位于下面的目录下:<system drive="">:\Windows\Assembly\GAC</system>。<o:p></o:p>
GAC的作用就是提供给CLR一个已知的确定的目录去寻找引用的程序集。<o:p></o:p>
<o:p></o:p>
b) GAC的内部结构<o:p></o:p>
GAC是一个特殊的结构化的目录,用Windows Explorer浏览你会以为它只是一个包含很多程序集的普通目录。其实不是这样的,在命令行下查看,你会发现它实际上包含很多子目录,子目录的名字和程序集的名称是相同的,但它们都不是实际的程序集,实际的程序集位于程序集名对应的目录下。比如进入GCFWK子目录,我们会发现其中又有很多的子目录。<o:p></o:p>
<!----><v:shapetype o:spt="75" coordsize="21600,21600" filled="f" stroked="f" id="_x0000_t75" path="m@4@5l@4@11@9@11@9@5xe" o:preferrelative="t"><v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path o:extrusionok="f" o:connecttype="rect" gradientshapeok="t"></v:path><o:lock v:ext="edit" aspectratio="t"></o:lock></v:shapetype><o:p></o:p>

机器内每一个安装到GAC的GCFWK.dll在GCFWK中都会有一个子目录。这里只有一个目录表明只有一个版本的GCFWK程序集被安装。实际的程序集保存在每一个对应的版本目录下。目录的名称以下划线的形式分割为“(Version)_(Culture)_(PublicKeyToken)”。<o:p></o:p>
GCFWK的语言文化信息为netture,就表示为1.0.0.0__bf5779af662fc055”。<o:p></o:p>
表示得意义是:<o:p></o:p>
“GCFWK, Version=1.0.0.0, Culture=neutral, PublicKeyToken=bf5779af662fc055”<o:p></o:p>
如果语言文化信息为”ja”,就表示为”1.0.0.0_ja_bf5779af662fc055”<o:p></o:p>
表示得意义是:<o:p></o:p>
“GCFWK, Version=1.0.0.0, Culture=ja, PublicKeyToken=bf5779af662fc055”<o:p></o:p>
<o:p>?</o:p>c)部署强命名程序集到GAC<o:p></o:p>
GAC包含很多子目录,这些子目录是用一种算法来产生的,我们最好不要手动将程序集拷贝到GAC中,相反,我们应使用工具来完成这样的工作。因为这些工具知道GAC的内部结构J<o:p></o:p>
在开发和测试中,最常用的工具就是GACUtil.exe。<o:p></o:p>
在GAC中注册程序集跟COM注册差不多,但相对更容易:<o:p></o:p>
1.把程序集添加到GAC中:
GACUtil /i sample.dll
(参数/i是安装的意思)<o:p></o:p>
2.把程序集移出GAC<o:p></o:p>
GACUtil /u sample.dll
(参数/u就移除的意思)<o:p></o:p>
注意:不能将一个弱命名程序集安装到GAC中。<o:p></o:p>
如果你试图把弱命名程序集加入到GAC中,会收到错误信息:” Failure adding assembly to the cache: Attempt to install an assembly without a strong name”<o:p></o:p>
<o:p></o:p>
d) 强命名程序集的私有部署<o:p></o:p>
把程序集安装到GAC有几个好处。首先,GAC使得很多程序可以共享程序集,这从整体上减少了使用的物理内存;其次,我们很容易将一个新版的程序集部署到GAC中,并通过一种发布者策略(差不多就是一种重定向方法,比如将原来引用版本为1.0.0.0程序集的程序,通过更改它的配置文件,转而让程序去引用版本为2.0.0.0的程序集)来使用新版本;最后,GAC还提供了对不同版本程序集的并存(side-by-side)管理方式。但是,GAC的安全策略通常只允许管理员更改,同时,向GAC中安装程序集也破坏了.NET框架的简单拷贝部署的许诺。<o:p></o:p>
除了向GAC或者以私有部署方式部署强命名程序集之外,我们还可以将强命名程序集部署在仅为一小部分程序知道的某个任意目录下。配置每一个应用程序的XML配置文件,让它们指向一个公有目录,这样,在运行时,CLR将知道到哪里去找这个强命名程序集。但这样又有可能会引发”DLL Hell”的问题,因为没有哪个程序可以控制这个程序集何时被卸载。这在.NET中也是不被鼓励的。<o:p></o:>
相关推荐
11KW OBC两电平pfc+cllc仿真源码实现:单相与三相兼容版双向控制研究,11KW OBC两电平pfc+cllc仿真源码实现:单相与三相兼容版,实现双向控制策略,11KW OBC两电平pfc+cllc仿真,源代码实现。 注意:已成单相,三相兼容版仿真文件。 双向控制。 ,核心关键词:11KW OBC两电平pfc; CLLC仿真; 源代码实现; 单相三相兼容; 双向控制。,11KW OBC单相与三相兼容版仿真:两电平PFC+CLLC双向控制源代码实现
3GPP R15 38.331 5G NR无线资源控制(RRC)协议规范解析
五运六气YUNQI_V471_SRC_D1023
19考试真题最近的t63.txt
基于MATLAB的牛拉法电力系统潮流计算程序,结合BPA方法,附参考文献,适合基础学习与拓展创新,基于MATLAB的牛拉法电力系统潮流计算程序:涵盖基础学习与拓展创新,附参考文献,牛拉法电力系统潮流计算 MATLAB编写潮流计算程序 BPA计算潮流 另外包含参考文献 这个程序把潮流计算的一般流程包括了,非常适合基础学习,并进一步的进行拓展创新 ,牛拉法; 电力系统潮流计算; MATLAB; BPA计算; 程序编写; 流程; 基础学习; 创新拓展,基于MATLAB的牛拉法电力系统潮流计算程序:基础学习与拓展创新指南
YOLOv11m权重文件
高一-语文-2025年1月张家界市高一期末联考-缺考不计、违纪不计、0分不计_2025-01-16-12-21 (1).zip
android kotlin 版本的贪吃蛇游戏
19考试真题最近的t57.txt
基于疫情封控区域的生活物资配送优化模型:结合遗传算法与模拟退火,实现时间最短和综合满意率最高的路径优化。,疫情下封控区域生活物资配送优化模型:结合遗传算法与模拟退火算法求解路径优化问题,实现时间与满意率双重目标优化。,模型及MATLAB代码:考充分考虑并结合疫情下封控区域生活物资配送问题及车辆路径问题的特点构建物资配送优化模型。 在一般单一目标——时间最短的基础上,加入综合满意率优化目标的路径优化问题 关键词:遗传算法、改进、模拟 火算法,路径优化、CVRP 完整模型+代码+注释 主要内容:以配送时间最短及综合满足率最高为目标,充分考虑并结合疫情下封控区域生活物资配送问题及车辆路径问题的特点构建物资配送优化模型,为疫情下生活物资配送找到了更好的思路。 在模型设计与求解问题上,首先设计标准遗传算法,继而对算法加以改进,最后设计出了改进遗传-模拟 火算法对模型进行求解。 还有参数灵敏度分析等。 服务内容:脚本 工具 部分展示如下: ,关键词:疫情下物资配送;车辆路径问题;优化模型;遗传算法;改进;模拟退火算法;CVRP;参数灵敏度分析;脚本工具;时间最短;综合满意率。 核心关键词用分号分
## 01、数据介绍 动态能力理论最早由提斯(Teece)与皮萨洛(Pisano)于1994年正式提出,他们将动态能力定义为“能够创造新产品和新过程,以及对变化的市场环境做出响应的一系列能力”。 动态能力具体体现在吸收能力、创新能力和适应能力三个方面。这些能力使公司能够快速适应市场变化,抓住新的商业机会,从而保持或提升竞争优势。 数据名称:上市公司-动态能力数据 数据年份:2012-2023年 ## 02、相关数据及指标 证券代码 证券名称 年份 Symbol RD IA ACV DC
基于ASIO的插件式服务器,支持TCP, UDP, 串口,Http, Websocket,统一化的数据接口,隔离开发人员和IO之间的操作。可以快速迭代。PSS 是针对不同 IO 逻辑的插件管理系统。您可以忽略 IO 建立的细节,构建自己的 logic 应用程序。PSS 封装了 Tcp、udp、kcp、串行端口、http、websocket 和 ssl 的统一接口。您可以使用 配置文件 或 统一接口 来创建和使用它们。logic plug-in 是完成数据到达后的 logic 处理,全部以动态库的形式加载,将 IO 和 logic 本身的耦合分开。简单的逻辑开发。本项目由三部分组成 (1) 主机(2) 数据包分析插件(3) 逻辑处理插件。您可以实现后两个插件来完成您的业务逻辑部署。
电机控制器源码:通用无感BLDC方波控制,高效参数化启动,转速达12w,环控系统一键调节,电机控制器源码:通用无感BLDC方波控制,高效调速,参数宏定义便捷调试,最高电转速达12w,电机控制器,低压无感BLDC方波控制,全部源码,方便调试移植 1.通用性极高,图片中的电机,一套参数即可启动。 2. ADC方案 3.电转速最高12w 4.电感法和普通三段式 5.按键启动和调速 6.开环,速度环,限流环 7.参数调整全部宏定义,方便调试 代码全部源码 ,电机控制器;低压无感BLDC方波控制;全部源码;通用性极高;电转速最高12w;电感法与普通三段式;按键启动调速;开环、速度环、限流环;参数调整宏定义。,通用电机控制器:低压无感BLDC方波控制源码,支持高转速12W,便捷调试移植
基于MPC的电动汽车分布式协同自适应巡航控制:上下分层控制与仿真结果展示,基于MPC的电动汽车协同自适应巡航控制:上下分层控制与仿真结果展示,基于MPC的分布式电动汽车协同自适应巡航控制,采用上下分层控制方式,上层控制器采用模型预测控制mpc方式,产生期望的加速度,下层根据期望的加速度分配扭矩;仿真结果良好,能够实现前车在加减速情况下,规划期望的跟车距离,产生期望的加速度进行自适应巡航控制。 ,关键词:MPC(模型预测控制); 分布式电动汽车; 协同自适应巡航控制; 上下分层控制方式; 期望加速度; 扭矩分配; 仿真结果良好; 前车加减速; 跟车距离。,基于MPC的分层控制电动汽车自适应巡航系统,仿真实现前车加减速跟车距离自适应
多维度购电与售电模型构建及基于CVaR与WOA优化的收益风险评估方法研究,基于CVaR风险评价及WOA优化的新型售电公司购售电模型与策略仿真研究,建立了一个电公司的购电侧模型和电侧模型,其中购电侧模型包括长期市场业务,现市场业务,可再生能源购电市场业务,分布式电源购电市场业务以及储能租赁市场业务五种类型。 电侧包括均 电价合同和实时电价合同两种类型。 然后在购电模型的基础上,提出了一种基于CVaR的购电收益风险评价方法。 根据电公司的CVaR购电收益风险数学模型,提出了一种基于WOA优化算法的新型购电收益计算方法。 该方法将购电收益风险计算公式作为WOA优化算法的目标函数,然后通过WOA的鲸鱼行走觅食、鲸鱼包围以及鲸鱼螺旋捕食三个步骤计算电公司的最优购电策略。 最后,通过MATLAB仿真工具对本文所研究的基于WOA优化的新型购电收益计算方法进行了仿真分析。 仿真结论验证了通过WOA优化算法得到的购电策略为最优购电策略。 matlab代码 仿真平台:MATLAB平台 代码具有一定的深度和创新性,注释清晰 ,关键词: 1. 购电侧模型; 2. 售电侧模型; 3. 长期/现货/可再生
迅雷软件下载原理介绍.md
## 01、数据简介 碳排放是指在人类活动中,如能源消耗、工业生产、交通运输、农业活动等过程中向大气中释放的二氧化碳等温室气体的行为。这些温室气体在大气中形成隔热层,导致地球气温升高,引发全球气候变化。分行业碳排放则是指按照不同的经济活动或产业部门来划分和统计碳排放量。 按省市县整理成面板数据,其中包括电力行业、工业过程、工业燃烧、建筑物能源、浪费、农业、燃料能源和运输八种指标排放量各省市县的最大值、最小值、平均值、总和。 数据名称:省市县分行业碳排放月度数据 数据年份:2023年 ## 02、相关数据 name 指标 时间 数值 更多数据 ## 03、数据截图
基于OpenCV 相机校准 姿势估计 线性几何 立体图像的深度图
电力系统潮流计算标准算例库:涵盖多种格式与节点拓扑图的数据集(从3节点至300节点),电力系统潮流计算标准算例库:涵盖多种格式与节点拓扑图的数据集(从3节点至300节点全量收录),电力系统潮流计算标准算例的数据(从3节点到300节点都齐了)。 包含IEEE格式、BPA格式、清华格式,同时有各个节点的拓扑图 ,关键词:电力系统;潮流计算;标准算例;数据;节点;IEEE格式;BPA格式;清华格式;拓扑图,电力系统多节点潮流计算标准算例数据及拓扑图解析