Java对象的生命周期大致包括三个阶段:对象的创建,对象的使用,对象的清除。因此,对象的生命周期长度可用如下的表达式表示:T = T1 + T2 +T3。其中T1表示对象的创建时间,T2表示对象的使用时间,而T3则表示其清除时间。由此,我们可以看出,只有T2是真正有效的时间,而T1、T3则 是对象本身的开销。下面再看看T1、T3在对象的整个生命周期中所占的比例。
我们知道,Java对象是通过构造函数来创建的,在这一过程中,该构造函数链中的所有构造函数也都会被自动调用。另外,默认情况下,调用类的构造函数 时,Java会把变量初始化成确定的值:所有的对象被设置成null,整数变量(byte、short、int、long)设置成0,float和 double变量设置成0.0,逻辑值设置成false。所以用new关键字来新建一个对象的时间开销是很大的,如表1所示。
表1 一些操作所耗费时间的对照表
运算操作 示例 标准化时间?
本地赋值 i = n 1.0?
实例赋值 this.i = n 1.2?
方法调用 Funct() 5.9?
新建对象 New Object()? 980?
新建数组 New int[10]? 3100?
从表1可以看出,新建一个对象需要980个单位的时间,是本地赋值时间的980倍,是方法调用时间的166倍,而若新建一个数组所花费的时间就更多了。
再看清除对象的过程。我们知道,Java语言的一个优势,就是Java程序员勿需再像C/C++程序员那样,显式地释放对象,而由称为垃圾收集器 (Garbage Collector)的自动内存管理系统,定时或在内存凸现出不足时,自动回收垃圾对象所占的内存。凡事有利总也有弊,这虽然为Java程序设计者提供了 极大的方便,但同时它也带来了较大的性能开销。这种开销包括两方面,首先是对象管理开销,GC为了能够正确释放对象,它必须监控每一个对象的运行状态,包 括对象的申请、引用、被引用、赋值等。其次,在GC开始回收?垃圾?对象时,系统会暂停应用程序的执行,而独自占用CPU。
因此,如果要改善应用程序的性能,一方面应尽量减少创建新对象的次数;同时,还应尽量减少T1、T3的时间,而这些均可以通过对象池技术来实现。
对象池技术的基本原理
对象池技术基本原理的核心有两点:缓存和共享,即对于那些被频繁使用的对象,在使用完后,不立即将它们释放,而是将它们缓存起来,以供后续的应用程序重 复使用,从而减少创建对象和释放对象的次数,进而改善应用程序的性能。事实上,由于对象池技术将对象限制在一定的数量,也有效地减少了应用程序内存上的开 销。
实现一个对象池,一般会涉及到如下的类:
1)对象池工厂(ObjectPoolFactory)类
该类主要用于管理相同类型和设置的对象池(ObjectPool),它一般包含如下两个方法:
?createPool:用于创建特定类型和设置的对象池;
?destroyPool:用于释放指定的对象池;
同时为保证ObjectPoolFactory的单一实例,可以采用Singleton设计模式,见下述getInstance方法的实现:
public static ObjectPoolFactory getInstance() {
if (poolFactory == null) {
poolFactory = new ObjectPoolFactory();
}
return poolFactory;
}
2)参数对象(ParameterObject)类
该类主要用于封装所创建对象池的一些属性参数,如池中可存放对象的数目的最大值(maxCount)、最小值(minCount)等。
3)对象池(ObjectPool)类
用于管理要被池化对象的借出和归还,并通知PoolableObjectFactory完成相应的工作。它一般包含如下两个方法:
?getObject:用于从池中借出对象;
?returnObject:将池化对象返回到池中,并通知所有处于等待状态的线程;
4)池化对象工厂(PoolableObjectFactory)类
该类主要负责管理池化对象的生命周期,就简单来说,一般包括对象的创建及销毁。该类同ObjectPoolFactory一样,也可将其实现为单实例。
?
通用对象池的实现
对象池的构造和管理可以按照多种方式实现。最灵活的方式是将池化对象的Class类型在对象池之外指定,即在ObjectPoolFactory类创建对象池时,动态指定该对象池所池化对象的Class类型,其实现代码如下:
. . .
public ObjectPool createPool(ParameterObject paraObj,Class clsType) {
return new ObjectPool(paraObj, clsType);
}
. . .
其中,paraObj参数用于指定对象池的特征属性,clsType参数则指定了该对象池所存放对象的类型。对象池(ObjectPool)创建以后,下面就是利用它来管理对象了,具体实现如下:
public class ObjectPool {
private ParameterObject paraObj;//该对象池的属性参数对象
private Class clsType;//该对象池中所存放对象的类型
private int currentNum = 0; //该对象池当前已创建的对象数目
private Object currentObj;//该对象池当前可以借出的对象
private Vector pool;//用于存放对象的池
public ObjectPool(ParameterObject paraObj, Class clsType) {
this.paraObj = paraObj;
this.clsType = clsType;
pool = new Vector();
}
public Object getObject() {
if (pool.size() <!----> if (currentNum <!----> //如果当前池中无对象可用,而且已创建的对象数目小于所限制的最大值,就利用
//PoolObjectFactory创建一个新的对象
PoolableObjectFactory objFactory =PoolableObjectFactory.getInstance();
currentObj = objFactory.create Object (clsType);
currentNum++;
} else {
//如果当前池中无对象可用,而且所创建的对象数目已达到所限制的最大值,
//就只能等待其它线程返回对象到池中
synchronized (this) {
try {
wait();
} catch (InterruptedException e) {
System.out.println(e.getMessage());
e.printStackTrace();
}
currentObj = pool.firstElement();
}
}
} else {
//如果当前池中有可用的对象,就直接从池中取出对象
currentObj = pool.firstElement();
}
return currentObj;
}
public void returnObject(Object obj) {
// 确保对象具有正确的类型
if (obj.isInstance(clsType)) {
pool.addElement(obj);
synchronized (this) {
notifyAll();
}
} else {
throw new IllegalArgumentException("该对象池不能存放指定的对象类型");
}
}
}
从上述代码可以看出,ObjectPool利用一个java.util.Vector作为可扩展的对象池,并通过它的构造函数来指定池化对象的 Class类型及对象池的一些属性。在有对象返回到对象池时,它将检查对象的类型是否正确。当对象池里不再有可用对象时,它或者等待已被使用的池化对象返 回池中,或者创建一个新的对象实例。不过,新对象实例的创建并不在ObjectPool类中,而是由PoolableObjectFactory类的 createObject方法来完成的,具体实现如下:
. . .
public Object createObject(Class clsType) {
Object obj = null;
try {
obj = clsType.newInstance();
} catch (Exception e) {
e.printStackTrace();
}
return obj;
}
. . .
这样,通用对象池的实现就算完成了,下面再看看客户端(Client)如何来使用它,假定池化对象的Class类型为StringBuffer:
. . .
//创建对象池工厂
ObjectPoolFactory poolFactory = ObjectPoolFactory. getInstance ();
//定义所创建对象池的属性
ParameterObject paraObj = new ParameterObject(2,1);
//利用对象池工厂,创建一个存放StringBuffer类型对象的对象池
ObjectPool pool = poolFactory.createPool(paraObj,String Buffer.class);
//从池中取出一个StringBuffer对象
StringBuffer buffer = (StringBuffer)pool.getObject();
//使用从池中取出的StringBuffer对象
buffer.append("hello");
System.out.println(buffer.toString());
. . .
可以看出,通用对象池使用起来还是很方便的,不仅可以方便地避免频繁创建对象的开销,而且通用程度高。但遗憾的是,由于需要使用大量的类型定型 (cast)操作,再加上一些对Vector类的同步操作,使得它在某些情况下对性能的改进非常有限,尤其对那些创建周期比较短的对象。
专用对象池的实现
由于通用对象池的管理开销比较大,某种程度上抵消了重用对象所带来的大部分优势。为解决该问题,可以采用专用对象池的方法。即对象池所池化对象的 Class类型不是动态指定的,而是预先就已指定。这样,它在实现上也会较通用对象池简单些,可以不要ObjectPoolFactory和 PoolableObjectFactory类,而将它们的功能直接融合到ObjectPool类,具体如下(假定被池化对象的Class类型仍为 StringBuffer,而用省略号表示的地方,表示代码同通用对象池的实现):
public class ObjectPool {
private ParameterObject paraObj;//该对象池的属性参数对象
private int currentNum = 0; //该对象池当前已创建的对象数目
private StringBuffer currentObj;//该对象池当前可以借出的对象
private Vector pool;//用于存放对象的池
public ObjectPool(ParameterObject paraObj) {
this.paraObj = paraObj;
pool = new Vector();
}
public StringBuffer getObject() {
if (pool.size() < = paraObj.getMinCount()) {
if (currentNum < = paraObj.getMaxCount()) {
currentObj = new StringBuffer();
currentNum++;
}
. . .
}
return currentObj;
}
public void returnObject(Object obj) {
// 确保对象具有正确的类型
if (StringBuffer.isInstance(obj)) {
. . .
}
}
结束语
恰当地使用对象池技术,能有效地改善应用程序的性能。目前,对象池技术已得到广泛的应用,如对于网络和数据库连接这类重量级的对象,一般都会采用对象池技术。但在使用对象池技术时也要注意如下问题:
?并非任何情况下都适合采用对象池技术。基本上,只在重复生成某种对象的操作成为影响性能的关键因素的时候,才适合采用对象池技术。而如果进行池化所能带来的性能提高并不重要的话,还是不采用对象池化技术为佳,以保持代码的简明。
?要根据具体情况正确选择对象池的实现方式。如果是创建一个公用的对象池技术实现包,或需要在程序中动态指定所池化对象的Class类型时,才选择通用对象池。而大部分情况下,采用专用对象池就可以了。
分享到:
相关推荐
在这个过程中,理解JVM(Java虚拟机)的角色至关重要,因为它是对象生命周期的主要管理者。 首先,让我们了解一下JVM的结构。JVM是Java虚拟机的缩写,它的主要任务是执行符合Java字节码规范的.class文件。JRE(Java...
在Java中,对象可以通过多种方式创建,这些创建过程标志着对象生命周期的开始。本章节详细介绍了四种常见的创建对象的方法: 1. **使用`new`语句创建对象**:这是创建Java对象最常见的方法。通过这种方式,我们可以...
在IT行业中,尤其是在Java开发领域,实体对象的生命周期管理是至关重要的一个环节,尤其是在使用ORM(Object-Relational Mapping)框架如Hibernate时。本文将详细探讨“测试实体对象的生命周期”,并结合给定的标签...
综上所述,本文提出的基于逃逸分析的对象生命周期分析方法,不仅为Java内存管理技术的发展作出了理论上的贡献,而且为工程实践提供了可行的技术路线,预示着未来Java虚拟机优化和垃圾回收机制的发展方向。...
本文提出了一种改进Java库方法调用分析策略,该策略使用指向逃逸图来描述库方法对堆中对象的影响,并将堆变化模式应用于Java程序的对象生命周期分析中。实验结果表明,该策略可以提高编译时对象回收的精确性,并且...
3. **老年代(Tenured Generation)**:存储生命周期较长的对象。当Eden和Survivor区无法容纳新对象时,老年代会被用来存储这些对象。 4. **栈内存(Stack)**:每个线程都有自己的程序计数器、虚拟机栈、本地方法...
#### Java对象的生命周期分析 Java对象的生命周期主要包括三个阶段:创建、使用与清除。每个阶段都对对象的整体生命周期有所贡献,但并非所有阶段都是高效的。 - **创建**:对象的创建通常涉及分配内存空间并调用...
Java 线程的生命周期完整实例分析 Java 线程的生命周期是指线程从创建到销毁的整个过程。Java 中的线程生命周期主要包括以下几个阶段:新建(New)、可运行(Runnable)、运行(Running)、等待(Waiting)、阻塞...
- **资源管理**:有效地管理对象生命周期,包括对象的创建、使用和回收过程。 #### 对象池技术的重要性 对象池技术的核心优势在于能够显著降低对象创建与销毁所带来的开销,特别是在高并发场景下,这种技术可以极...
同时,变量的作用域和生命周期管理也是语法分析器必须考虑的问题。 总的来说,"java 实现Pascal语法分析"是一个涵盖编译原理、Java编程和Pascal语言知识的综合项目。通过这个项目,我们可以学习到如何将高级语言的...
- **分析heapdump**:接着,使用heapdump分析工具查找内存占用大的对象,分析其生命周期,找出可能导致内存泄漏的嫌疑对象。 - **排查与修复**:定位到问题后,分析代码逻辑,找出导致问题的原因,如无用对象未被...
堆内存则用于存储所有对象实例,其生命周期较长,由垃圾回收器(Garbage Collector,GC)管理。当一个对象不再被引用时,GC会自动回收该对象占用的内存,防止内存泄漏。 在Java中,对象的创建过程涉及内存分配和...
这个“Java内存使用系列一Java对象的内存占用”主题旨在深入探讨Java对象在内存中的表现,以及如何有效地管理这些资源。Java开发人员需要理解内存分配、垃圾回收机制以及如何避免内存泄漏,以确保程序的高效运行。 ...
通常,当我们通过`new`关键字实例化一个View对象时,它的生命周期与Activity或Fragment的生命周期紧密关联。以下是一些关键的生命周期方法: 1. `onCreate()`:在这个阶段,View的构造函数会被调用,初始化属性和...
- **对象生存期分析**:跟踪对象的生命周期,识别长期存在的对象,可能就是内存泄漏的源头。 - **内存泄漏检测**:通过算法检测潜在的内存泄漏,提供泄漏对象和引用链的详细信息。 - **线程分析**:查看线程状态...
- **对象生命周期分析**:分析对象的创建、存活和销毁过程,揭示可能的内存占用异常。 - **内存碎片分析**:识别内存中的碎片化问题,帮助优化内存分配。 - **对象引用关系图**:通过图形化展示对象间的引用关系...
浅析Java语言中线程的生命周期及实现方式 Java语言中的线程(Thread)是指在同一个进程中可以并发执行的多个控制流程。线程是Java语言中定义的非常重要的基本概念和技术标准。随着整个社会信息化的发展,传统服务器...
4. **JAVA对象的生命周期管理**:创建的Java对象需要合理地管理,包括适时释放对象,防止内存泄漏。在易语言中,这通常通过`释放JAVA对象`命令来实现。 5. **调用Java方法**:源码会展示如何在易语言中调用Java类的...
5. 分析对象间的引用关系,理解对象生命周期和内存的使用模式。 通过以上步骤,开发者可以逐步排查并解决Java应用程序中的性能和内存问题。在实际操作中,还需要结合代码审查、日志分析等多方面手段,以确保问题...
MAT可以帮助我们理解对象生命周期,查看类实例的数量和大小,分析类装载器的内存消耗,以及定位静态字段导致的内存占用。 在实际操作中,首先我们需要获取Java应用的堆转储文件(通常通过JVM的`jmap`命令或者Java ...