`

常用的各种排序算法的JAVA实现

    博客分类:
  • java
阅读更多
 
铭铭<!---->
2005-10-12 03:36
[转贴]常用的各种排序算法的JAVA实现

[align=center]常用的各种排序算法的JAVA实现
作者:Linyco  
[/align]  
用JAVA把《Data Structure and Algoritm Analysis in C》里面的排序算法实现了。整个结构我使用的是Strategy模式。由Sort类扮演环境角色,SortStrategy扮演抽象策略角色。具体策略角 色有六个,分别是InsertSort、BubbleSort、ChooseSort、ShellSort、MergeSort、QuickSort。分 别是插入排序、冒泡排序、选择排序、希尔排序、归并排序和快速排序。
因为代码量比较大,所以分为几次贴出,这次只贴出Sort和SortStrategy的代码。

SortStratey接口:
package Utils.Sort;
/**
*排序算法的接口
*/
interface SortStrategy
{
       /**
       *利用各种算法对实现了Comparable接口的数组进行升序排列
       */
       public void sort(Comparable[] obj);
}
Sort类:
package Utils.Sort;
/**
*排序类,通过此类的sort()可以对实现了Comparable接口的数组进行升序排序
*/
public class Sort
{
       private SortStrategy strategy;

       /**
       *构造方法,由type决定由什么算法进行排序,排序方法的单词守字母要大字,如对于快速排序应该是
uickSort
       *@param type 排序算法的类型
       */
       public Sort(String type)
       {  try
              {    type = "Utils.Sort." + type.trim();
                     Class c = Class.forName(type);
                     strategy = (SortStrategy)c.newInstance();
              }
              catch (Exception e)
              {  e.printStackTrace();
              }            
       }
      
       /**
       *排序方法,要求待排序的数组必须实现Comparable接口
       */
       public void sort(Comparable[] obj)
       {
              strategy.sort(obj);
       }}


[b]插入排序算法的JAVA实现[/b]

package Utils.Sort;
/**
*插入排序,要求待排序的数组必须实现Comparable接口
*/
public class InsertSort implements SortStrategy
{    /**
       *利用插入排序算法对obj进行排序
       */
       public void sort(Comparable []obj)
       {  if (obj == null)
              {  throw new NullPointerException("The argument can not be null!");
              }
              /*
              *对数组中的第i个元素,认为它前面的i - 1个已经排序好,然后将它插入到前面的i - 1个元素中
              */
              int size = 1;
              while (size
              {  insert(obj, size++, obj[size - 1]);
              }        }
       /**
       *在已经排序好的数组中插入一个元素,使插入后的数组仍然有序
       *@param obj 已经排序好的数组
       *@param size 已经排序好的数组的大小
       *@param c 待插入的元素
       */
       private void insert(Comparable []obj, int size, Comparable c)
       { for (int i = 0 ;i
              {  if (c.compareTo(obj[i])
                     { System.out.println(obj[i]);
                            //如果待插入的元素小于当前元素,则把当前元素后面的元素依次后移一位
                            for (int j = size ;j > i ;j-- )
                            { obj[j] = obj[j - 1];
                            }
                            obj[i] = c;
                            break;
                     }               }        } }

(待续2)
来源:[url=http://blog.csdn.net/Linyco/]http://blog.csdn.net/Linyco/[/url]

[[i] 本帖最后由 铭铭 于 2005-10-13 09:01 AM 编辑 [/i]]

铭铭<!---->
2005-10-13 01:04
快速排序算法和冒泡排序算法的JAVA实现

[b]快速排序算法的JAVA实现[/b]

package Utils.Sort;
/**
*快速排序,要求待排序的数组必须实现Comparable接口
*/
public class QuickSort implements SortStrategy
{    private static final int CUTOFF = 3;             //当元素数大于此值时采用快速排序
       /**
       *利用快速排序算法对数组obj进行排序,要求待排序的数组必须实现了Comparable接口
       */
       public void sort(Comparable[] obj)
       {   if (obj == null)
              {  throw new NullPointerException("The argument can not be null!");
              }
              quickSort(obj, 0, obj.length - 1);
       }
       /**
       *对数组obj快速排序
       *@param obj 待排序的数组
       *@param left 数组的下界
       *@param right 数组的上界
       */
       private void quickSort(Comparable[] obj, int left, int right)
       {    if (left + CUTOFF > right)
              {     SortStrategy ss = new ChooseSort();
                     ss.sort(obj);
              }  else
              {   //找出枢轴点,并将它放在数组最后面的位置
                     pivot(obj, left, right);
                     int i = left, j = right - 1;
                     Comparable tmp = null;
                     while (true)
                     {    //将i, j分别移到大于/小于枢纽值的位置
                            //因为数组的第一个和倒数第二个元素分别小于和大于枢纽元,所以不会发生数组越界
                            while (obj[++i].compareTo(obj[right - 1])     {}
                            while (obj[--j].compareTo(obj[right - 1]) > 0)      {}
                           //交换
                            if (i
                            {  tmp = obj[i];
                                   obj[i] = obj[j];
                                   obj[j] = tmp;
                            }
                            else    break;
                     }
                     //将枢纽值与i指向的值交换
                     tmp = obj[i];
                     obj[i] = obj[right - 1];
                     obj[right - 1] = tmp;
                     //对枢纽值左侧和右侧数组继续进行快速排序
                     quickSort(obj, left, i - 1);
                     quickSort(obj, i + 1, right); }
       }
       /**
       *在数组obj中选取枢纽元,选取方法为取数组第一个、中间一个、最后一个元素中中间的一个。将枢纽元置于倒数第二个位置,三个中最大的放在数组最后一个位置,最小的放在第一个位置
       *@param obj 要选择枢纽元的数组
       *@param left 数组的下界
       *@param right 数组的上界
       */
       private void pivot(Comparable[] obj, int left, int right)
       {  int center = (left + right) / 2;
              Comparable tmp = null;
              if (obj[left].compareTo(obj[center]) > 0)
              {  tmp = obj[left];
                     obj[left] = obj[center];
                     obj[center] = tmp;
              }
              if (obj[left].compareTo(obj[right]) > 0)
              {  tmp = obj[left];
                     obj[left] = obj[right];
                     obj[right] = tmp;
              }
              if (obj[center].compareTo(obj[right]) > 0)
              { tmp = obj[center];
                     obj[center] = obj[right];
                     obj[center] = tmp;
              }
              //将枢纽元置于数组的倒数第二个
                tmp = obj[center];
              obj[center] = obj[right - 1];
              obj[right - 1] = tmp;
       } }
[b]冒泡排序算法的JAVA实现[/b]

package Utils.Sort;
/**
*@author Linyco
*利用冒泡排序法对数组排序,数组中元素必须实现了Comparable接口。
*/
public class BubbleSort implements SortStrategy
{
  /**
       *对数组obj中的元素以冒泡排序算法进行排序
       */
       public void sort(Comparable[] obj)
       {     if (obj == null)
              {    throw new NullPointerException("The argument can not be null!");
              }
              Comparable tmp;
              for (int i = 0 ;i
              {    //切记,每次都要从第一个开始比。最后的不用再比。
                     for (int j = 0 ;j
                     {   //对邻接的元素进行比较,如果后面的小,就交换
                            if (obj[j].compareTo(obj[j + 1]) > 0)
                            {  tmp = obj[j];
                                   obj[j] = obj[j + 1];
                                   obj[j + 1] = tmp;
                            }   }
              }  }
}

作者:Linyco
来源:
[url=http://blog.csdn.net/Linyco/]
[color=#003366]http://blog.csdn.net/Linyco/[/color]
[/url]

铭铭<!---->
2005-10-13 01:08
选择排序、归并排序和希尔排序算法的JAVA实现

[b]归并排序算法的JAVA实现[/b]

package Utils.Sort;
/**
*归并排序,要求待排序的数组必须实现Comparable接口
*/
public class MergeSort implements SortStrategy
{  private Comparable[] bridge;
       /**
       *利用归并排序算法对数组obj进行排序
       */
       public void sort(Comparable[] obj)
       {   if (obj == null)
              {    throw new NullPointerException("The param can not be null!");
              }
              bridge = new Comparable[obj.length];                //初始化中间数组
              mergeSort(obj, 0, obj.length - 1);                       //归并排序
              bridge = null;
       }
       /**
       *将下标从left到right的数组进行归并排序
       *@param obj 要排序的数组的句柄
       *@param left 要排序的数组的第一个元素下标
       *@param right 要排序的数组的最后一个元素的下标
       */
       private void mergeSort(Comparable[] obj, int left, int right)
       {    if (left
              {     int center = (left + right)/2;
                     mergeSort(obj, left, center);
                     mergeSort(obj, center + 1, right);
                     merge(obj, left, center, right);
              }
       }
       /**
       *将两个对象数组进行归并,并使归并后为升序。归并前两个数组分别有序
       *@param obj 对象数组的句柄
       *@param left 左数组的第一个元素的下标
       *@param center 左数组的最后一个元素的下标
       *@param right 右数组的最后一个元素的下标
       */
       private void merge(Comparable[] obj, int left, int center, int right)
       {   int mid = center + 1;
              int third = left;
              int tmp = left;
              while (left
              {     //从两个数组中取出小的放入中间数组
                     if (obj[left].compareTo(obj[mid])
                     {      bridge[third++] = obj[left++];
                     }    else
                            bridge[third++] = obj[mid++];
              }
              //剩余部分依次置入中间数组
              while (mid
              {  bridge[third++] = obj[mid++];
              }
              while (left
              {    bridge[third++] = obj[left++];
              }
              //将中间数组的内容拷贝回原数组
              copy(obj, tmp, right);
       }
       /**
       *将中间数组bridge中的内容拷贝到原数组中
       *@param obj 原数组的句柄
       *@param left 要拷贝的第一个元素的下标
       *@param right 要拷贝的最后一个元素的下标
       */
       private void copy(Comparable[] obj, int left, int right)
       {   while (left
              {   obj[left] = bridge[left];
                     left++;
              } }
}

[b]选择排序算法的JAVA实现[/b]

package Utils.Sort;
/**
*@author Linyco
*利用选择排序法对数组排序,数组中元素必须实现了Comparable接口。
*/
public class ChooseSort implements SortStrategy
{    /**
       *对数组obj中的元素以选择排序算法进行排序
       */
       public void sort(Comparable[] obj)
       {  if (obj == null)
              {    throw new NullPointerException("The argument can not be null!");
              }
              Comparable tmp = null;
              int index = 0;
              for (int i = 0 ;i
              {    index = i;
                     tmp = obj[i];
                     for (int j = i + 1 ;j
                     {  //对邻接的元素进行比较,如果后面的小,就记下它的位置
                            if (tmp.compareTo(obj[j]) > 0)
                            {    tmp = obj[j];   //要每次比较都记录下当前小的这个值!
                                   index = j;
                            }
                     }
                     //将最小的元素交换到前面
                     tmp = obj[i];
                     obj[i] = obj[index];
                     obj[index] = tmp;
              }        } }

[b]希尔排序算法的JAVA实现[/b]

package Utils.Sort;
/**
*希尔排序,要求待排序的数组必须实现Comparable接口
*/
public class ShellSort implements SortStrategy
{ private int[] increment;
/**
*利用希尔排序算法对数组obj进行排序
*/
public void sort(Comparable[] obj)
{ if (obj == null)
{ throw new NullPointerException("The argument can not be null!");
}
//初始化步长
initGap(obj);
//步长依次变化(递减)
for (int i = increment.length - 1 ;i >= 0 ;i-- )
{ int step = increment[i];
//由步长位置开始
for (int j = step ;j
{ Comparable tmp;
//如果后面的小于前面的(相隔step),则与前面的交换
for (int m = j ;m >= step ;m = m - step )
{ if (obj[m].compareTo(obj[m - step])
{ tmp = obj[m - step];
obj[m - step] = obj[m];
obj[m] = tmp;
}
//因为之前的位置必定已经比较过,所以这里直接退出循环
else
{ break;
} } } }
}
/**
*根据数组的长度确定求增量的公式的最大指数,公式为pow(4, i) - 3 * pow(2, i) + 1和9 * pow(4, i) - 9 * pow(2, i) + 1
*@return int[] 两个公式的最大指数
*@param length 数组的长度
*/
private int[] initExponent(int length)
{ int[] exp = new int[2];
exp[0] = 1;
exp[1] = -1;
int[] gap = new int[2];
gap[0] = gap[1] = 0;
//确定两个公式的最大指数
while (gap[0]
{ exp[0]++;
gap[0] = (int)(Math.pow(4, exp[0]) - 3 * Math.pow(2, exp[0]) + 1);
}
exp[0]--;
while (gap[1]
{
exp[1]++;
gap[1] = (int)(9 * Math.pow(4, exp[1]) - 9 * Math.pow(2, exp[1]) + 1);
}
exp[1]--;
return exp;
}
private void initGap(Comparable[] obj)
{ //利用公式初始化增量序列
int exp[] = initExponent(obj.length);
int[] gap = new int[2];
increment = new int[exp[0] + exp[1]];
//将增量数组由大到小赋值
for (int i = exp[0] + exp[1] - 1 ;i >= 0 ;i-- )
{ gap[0] = (int)(Math.pow(4, exp[0]) - 3 * Math.pow(2, exp[0]) + 1);
gap[1] = (int)(9 * Math.pow(4, exp[1]) - 9 * Math.pow(2, exp[1]) + 1);
//将大的增量先放入增量数组,这里实际上是一个归并排序
//不需要考虑gap[0] == gap[1]的情况,因为不可能出现相等。
if (gap[0] > gap[1])
{ increment[i] = gap[0];
exp[0]--;
} else
{ increment[i] = gap[1];
exp[1]--;
} } } }

作者:Linyco
来源:
[url=http://blog.csdn.net/Linyco/]
[color=#003366]http://blog.csdn.net/Linyco/[/color]
[/url]
分享到:
评论

相关推荐

    常用各种排序算法Java的实现_差不多了__.rar

    本资源"常用各种排序算法Java的实现_差不多了__.rar"显然是一个包含了各种经典排序算法Java实现的压缩文件,对于学习和理解这些算法的开发者来说极具价值。 首先,我们来概述一下常见的排序算法: 1. 冒泡排序:是...

    常用排序算法java演示

    本文将深入探讨标题"常用排序算法java演示"中涉及的知识点,包括排序算法的原理、Java实现方式以及其在实际应用中的图形演示。 首先,让我们逐一了解几种常见的排序算法: 1. **冒泡排序(Bubble Sort)**:这是一...

    常用的排序算法(java实现),附带一个PPT动画演示、详解了其中三种

    总的来说,这个资源包为学习和教学排序算法提供了一个全面的平台,通过Java代码和生动的PPT演示,使学习者能够更好地掌握各种排序算法的原理和实现,进一步提升编程能力。无论是初学者还是经验丰富的开发者,都能...

    常用排序算法的java实现(冒泡、插入、选择、希尔、归并、快排)

    本篇文章将详细讲解标题中提到的六种常见排序算法的Java实现。 1. **冒泡排序**:冒泡排序是最基础的排序算法之一,它通过不断交换相邻的逆序元素来逐渐将较大的元素“浮”到数组的前端。在Java中,冒泡排序的基本...

    常用排序算法Java实现

    这里我们主要关注Java实现的七大经典排序算法:冒泡排序、插入排序、选择排序、希尔排序、快速排序、归并排序以及堆排序。 1. 冒泡排序(Bubble Sort): 冒泡排序是最简单的排序方法之一,它通过重复遍历待排序的...

    JAVA写的6种内部排序算法简单实现

    以上就是六种常用的内部排序算法在Java语言中的实现。理解这些排序算法的原理和性能特点,有助于在实际编程中选择合适的排序方法,提高程序效率。对于面试或者笔试,熟练掌握这些算法将大大提高你的竞争力。在实践中...

    常用排序算法分析与实现(Java版)

    ### 常用排序算法分析与实现(Java版) #### 插入排序 **1. 直接插入排序** 直接插入排序是一种简单的排序方法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并...

    Java实现常用排序算法

    本文将深入探讨Java中实现的四种基本排序算法:插入排序、交换排序(包括快速排序和冒泡排序)、选择排序以及归并排序。虽然树形选择排序和堆排序在这次实现中未涵盖,但理解这四种排序算法的基本原理和Java实现方式...

    八大排序算法总结(含Java实现源代码)

    这里我们将深入探讨八大排序算法,并结合Java语言来理解它们的实现原理。 1. 冒泡排序(Bubble Sort) 冒泡排序是一种简单的交换式排序算法。它通过重复遍历待排序的元素列表,比较相邻元素并根据需要交换它们,...

    Java常用8大排序算法

    ### Java常用八大排序算法详解 #### 一、直接插入排序 **基本思想:** 直接插入排序的基本思路是在要排序的一组数中,假设前面 (n-1) [n&gt;=2] 个数已经排好顺序,现在要把第 n 个数插入到前面的有序数列中,使得这 ...

    常用排序算法Java

    以上就是Java中实现的一些常用排序算法,它们各有优缺点,适用于不同的场景。理解并熟练掌握这些排序算法,有助于优化代码性能,提高编程能力。在实际开发中,应根据具体需求选择合适的排序算法,以达到最佳的效率和...

    常用排序算法实现(java)

    在编程领域,排序算法是数据结构与算法学习中的基础部分,尤其在Java编程中,掌握各种排序算法的实现对于提升程序性能至关重要。本资源提供了五种经典的排序算法的Java实现,包括选择排序(Selection Sort)、插入排序...

    常用排序算法JAVA版

    这个名为"常用排序算法JAVA版"的压缩包文件很可能包含了Java实现的各种经典排序算法,如冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序等。 1. **冒泡排序**:是最简单的排序算法之一,通过不断交换...

    Java常用排序算法源码

    在编程领域,排序算法是计算机科学中的核心概念,特别是在Java这样的高级编程语言中。排序算法是用来组织和优化数据结构的关键工具,使得数据按照特定规则(如升序或降序)排列。以下是对Java中几种常见排序算法的...

    常用排序算法总结(含Java代码)

    冒泡排序和快速排序是两种基础但广泛使用的数据排序算法。冒泡排序由于其简单直观的特性,易于理解和实现,而快速排序则以其较高的效率在数据量较大时展现出优势。 首先,让我们来看冒泡排序算法。冒泡排序通过重复...

    常用排序算法源码下载(Java实现)

    常用排序算法的Java实现源码,包括冒泡排序,快速排序,直接插入排序,希尔排序,直接选择排序,堆排序,归并排序,基数排序,计数排序。

    java常用的7大排序算法汇总

    ### Java常用的七大排序算法 #### 1. 插入排序算法 插入排序是一种简单直观的排序算法。它的基本思想是:对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。 - **算法步骤**: 1. 将第一待排序...

Global site tag (gtag.js) - Google Analytics