What’s a model store?
The model store is a central storage for data scientists to take and manage their models and experiments, including the model files, artifacts, and metadata.
With model stores, you control the complexity of managing multiple machine learning models. Including below:
1. Compare multiple, newly trained model versions against existing deployed versions;
2. Compare completely new models against versions of other models on labeled data;
3. Track model performance over time;
4. Track organization-wide experiments;
5. Manage serving needs for organization-wide machine learning models.
Why do you need a model store for your MLOps projects?
1. Reproducibility of the model(s).
2. Ensuring the model(s) is production-ready.
3. Managing the model(s) effectively.
Model stores guarantee reproducibility in the following ways:
Tracking and collecting experiment– and ML pipeline-related metadata (experiment author/owner, description, etc.).
Collecting dataset metadata, including version, location, and description of the dataset. Also, how a user chose the data or where the data links to in the feature store.
Collecting model artifacts, metadata (packages, frameworks, language, environment files, git files, etc), and configuration files.
Collecting container artifacts.
Project documentation, including demos and examples on how to run a model.
What you can find in a model store?
1.
Diverse metadata: From models, data, and experiments.
Artifacts: Like the metadata, the store contains all artifacts relevant to how you develop, deploy, and manage models.
2.
Documentation and reporting tools: Documentation is crucial for reviews and reproducible projects. Model stores enable documentation relevant to how you develop your model, deploy, and manage them.
3.
Catalog: The information in the model stores needs to be searchable, and the catalog enables this. Searching for models to use? How about related metadata? Searching for which models were trained on a particular dataset? The catalog makes the store searchable.
4.
Staging tools: Another feature of the model store is the staging integration tests it can carry out on models. You can find tools for staging models for testing within the model store.
5.
Automation tools: One of the goals of model stores is to automate some repetitive tasks after you have trained and validated a model to increase the productivity of teams deploying lots of models. Within the store you can find automation tools and workflows that enable this process.
Different Model Stores
1.
Modelstore
Modelstore (how original, Neal! ) is an open-source Python library that allows you to version, export, and save/retrieve machine learning models to and from your filesystem or a cloud storage provider (AWS or GCP).
2.
ClearML Model Stores
ClearML states on their website that it’s the only open-source tool to manage all your MLOps in a unified and robust platform providing collaborative experiment management, powerful orchestration, easy-to-build data stores, and one-click model deployment.
3.
MLflow Model Registry
MLflow is an open-source platform to manage the ML lifecycle, including experimentation, reproducibility, deployment, and a central model registry. The MLflow Model Registry component is a centralized model store, set of APIs, and UI, to collaboratively manage the entire lifecycle of an MLflow Model across data teams.
Some of the features of the MLflow Model Registry include:
Provides a central repository to store and manage uniquely named registered models for collaboration and visibility across data teams.
Provides a UI and API for registry operations and a smooth workflow experience.
Allows multiple versions of the model in different stages environments (staging and production environments).
Allows transition and model promotion schemes across different environments and stages. Models can be moved from staging, loaded to the production environment, rolled back, and retired or archived.
Integrated with CI/CD pipelines to quickly load a specific model version for testing, review, approval, release, and rollback.
Model lineage tracking feature that provides model description, lineage, and activity.
4.
neptune.ai
Neptune is a metadata store for MLOps, built for research and production teams that run many experiments. It gives you a central place to log, store, display, organize, compare, and query all metadata generated during the machine learning lifecycle. Neptune is more of a metadata store than an actual artifact store
5.
Verta.ai
Verta.ai uses a suite of tools to empower data science and machine learning teams to rapidly develop and deploy production-ready models, thereby enabling efficient integration of ML into various products. One of the tools in their platform is the Model Registry, a central repository to find, publish, collaborate on and use production-ready models.
分享到:
相关推荐
"人工智能行业从CHAT-GPT到生成式AI(Generative AI):人工智能新范式,重新定义生产力" 本报告介绍了人工智能行业的最新发展趋势,从CHAT-GPT到生成式AI(Generative AI),探讨了人工智能新范式对生产力的重新...
均指向人工智能模型的新范式“生成式AI模型(Generative Model)” 。 此前的决策式AI模型(Discriminant Model)是根据已有数据进行分析、判断、预测,典 型应用为内容的智能推荐(短视频)、自动驾驶等;而生成式...
美国尖端人工智能视频教程 人工智能AI课程视频教程 785集 英文带字幕.part1.rar 2G 美国尖端人工智能视频教程 人工智能AI课程视频教程 785集 英文带字幕.part2.rar 1.02G
人工智能概览 56 了解人工智能基本定义、发展历史、技术架构、落地挑战、发展趋势、华为全栈全场景AI解决方案 人工智能应用集成需求分析 31 了解人工智能应用开发需求分析过程 华为云EI-API服务介绍 124 掌握华为云...
近几年,随着人工智能的迅速发展,人工智能对各行各业也产生...所以,今天专知小编给大家带来的是Google可解释人工智能白皮书《AI Explainability Whitepaper》,总共27页pdf,主要介绍谷歌的AI平台上的AI的可解释性。
标题中的“人工智能行业从CHAT-GPT到生成式AI(GenerativeAI):人工智能新范式,重新定义生产力”揭示了当前AI领域的热点话题,即从对话式AI模型如CHAT-GPT到更广泛的生成式AI技术的发展,以及这些技术对生产力的深远...
人工智能产品经理:AI时代PM修炼手册 本书旨在帮助读者成为合格的产品经理,掌握时代的产品研发和管理技能。在时代,人工智能技术的发展和应用对产品经理的要求也发生了深刻的变化。产品经理需要掌握人工智能技术的...
人工智能——机器学习概述AI人工智能+区块链+物联网人工智能——机器学习概述AI人工智能+区块链+物联网人工智能——机器学习概述AI人工智能+区块链+物联网人工智能——机器学习概述AI人工智能+区块链+物联网人工智能...
糖尿病肾病预测模型 AI Prediction model of diabetes nephropathy-人工智能-机器学习
给大家分享一套课程——【完结31周】AI人工智能算法工程师
《人工智能系列深度报告:AIGC行业综述篇——开启AI新篇章》 人工智能(AI)作为科技进步的重要驱动力,正在逐步迈入新发展阶段,走向通用人工智能(AGI)。AI的发展经历了规则导向、机器学习、深度学习和自主学习...
【清华大学AI人工智能概论课程】全面涵盖了人工智能领域的基础知识和核心概念,旨在为学生提供一个全面了解AI的平台。课程从AI的起源和发展历程入手,详细讲述了AI从20世纪40年代至今的波折起伏,其中包括重要的里程...
这一章节介绍了人工智能的基本概念,包括人工智能的定义、分类(如弱AI与强AI)以及它在各个领域的应用。同时,会讨论AI系统的工作原理和组成,以便测试工程师理解如何进行有效的测试。 ### 2. AI质量特征 本章深入...
《HCIA-AI(人工智能)H13-311培训教材V3.0》是华为认证体系中针对人工智能领域的初级认证课程,旨在为学员提供全面的人工智能基础知识和技术实践。该培训教材涵盖了大量的理论知识和实践操作,帮助学员理解和掌握AI...
标题中的"AI人工智能:54份行业重磅报告汇总"表明这是一个关于人工智能领域的综合资源包,其中包含了54份重要的行业报告。这些报告通常由专业机构或权威专家编写,旨在深入剖析AI技术的发展趋势、市场状况、应用案例...
人工智能-从CHAT-GPT到生成式AI(Generative AI):人工智能新范式,重新定义生产力.rar
人工智能(Artificial Intelligence,简称AI)是现代科技领域的热门话题,它涉及计算机科学、机器学习、神经网络、自然语言处理等多个交叉学科。本资料旨在为人工智能初学者提供一个全面且深入的入门指引,帮助你...
3. **人工智能模型(Artificial Intelligence Model)**: 使用一种或多种人工智能技术构建的模型,能够根据给定的目标生成输出,如预测、建议等。 4. **模型风险(Model Risk)**: 基于错误模型或错误使用模型输出进行...