1、在 UE4 中使用 zip 库的时候编译遇到以下问题:
if (!has_seeded) srand(GetTickCount()^(unsigned long)GetDesktopWindow());
error C4302: “类型强制转换”: 从“HWND”到“unsigned long”截断。
GetDesktopWindow() 为 HWND 类型,是一个窗口的句柄引用类型。它是一个 unsigned long int 值,表示 windows 指定当前窗口的句柄。
HWND 其他用法:
//查找窗口 HWND _h = ::FindWindow(_T("xxx"), NULL); //创建窗口 HWND _h = WindowEx::Create(NULL, L"", WS_POPUP, WS_EX_TOOLWINDOWS); //获取控制台窗口 HWND _h= GetConsoleWindow();
解决方式:
HWND hwnd = GetDesktopWindow(); if (!has_seeded) srand(GetTickCount()^ static_cast<unsigned long>(hwnd->unused));
2、在 UE5 中使用 zip 库,遇到以下问题:
UE4 error C4668: "_WIN32_WINNT_WIN10_TH2" is not defined as a preprocessor macro, replace "# if / # elif" with "0"
The #include <windows.h> macro conflicts with UE4, you need to use the following header file package <windows.h> header file:
#include "Windows/AllowWindowsPlatformTypes.h" #include "Windows/PreWindowsApi.h" #include <windows.h> // Conflict header file #include "Windows/PostWindowsApi.h" #include "Windows/HideWindowsPlatformTypes.h"
Add .Build.cs to the plugins:
bEnableUndefinedIdentifierWarnings = false; PublicIncludePaths.AddRange( new string[] { // ... add public include paths required here ... Path.Combine(ModuleDirectory, "Public"), } ); PrivateIncludePaths.AddRange( new string[] { // ... add other private include paths required here ... Path.Combine(ModuleDirectory, "Private"), } );
顺便贴上我修改后编译通过的 zip 库 [UE5]:
zip.h
#include "Windows/AllowWindowsPlatformTypes.h" #include "Windows/PreWindowsApi.h" #include <windows.h> // Conflict header file #include "Windows/PostWindowsApi.h" #include "Windows/HideWindowsPlatformTypes.h" #ifndef _zip_H #define _zip_H // ZIP functions -- for creating zip files // This file is a repackaged form of the Info-Zip source code available // at www.info-zip.org. The original copyright notice may be found in // zip.cpp. The repackaging was done by Lucian Wischik to simplify and // extend its use in Windows/C++. Also to add encryption and unicode. #ifndef _unzip_H DECLARE_HANDLE(HZIP); #endif // An HZIP identifies a zip file that is being created typedef DWORD ZRESULT; // return codes from any of the zip functions. Listed later. HZIP CreateZip(const TCHAR *fn, const char *password); HZIP CreateZip(void *buf,unsigned int len, const char *password); HZIP CreateZipHandle(HANDLE h, const char *password); // CreateZip - call this to start the creation of a zip file. // As the zip is being created, it will be stored somewhere: // to a pipe: CreateZipHandle(hpipe_write); // in a file (by handle): CreateZipHandle(hfile); // in a file (by name): CreateZip("c:\\test.zip"); // in memory: CreateZip(buf, len); // or in pagefile memory: CreateZip(0, len); // The final case stores it in memory backed by the system paging file, // where the zip may not exceed len bytes. This is a bit friendlier than // allocating memory with new[]: it won't lead to fragmentation, and the // memory won't be touched unless needed. That means you can give very // large estimates of the maximum-size without too much worry. // As for the password, it lets you encrypt every file in the archive. // (This api doesn't support per-file encryption.) // Note: because pipes don't allow random access, the structure of a zipfile // created into a pipe is slightly different from that created into a file // or memory. In particular, the compressed-size of the item cannot be // stored in the zipfile until after the item itself. (Also, for an item added // itself via a pipe, the uncompressed-size might not either be known until // after.) This is not normally a problem. But if you try to unzip via a pipe // as well, then the unzipper will not know these things about the item until // after it has been unzipped. Therefore: for unzippers which don't just write // each item to disk or to a pipe, but instead pre-allocate memory space into // which to unzip them, then either you have to create the zip not to a pipe, // or you have to add items not from a pipe, or at least when adding items // from a pipe you have to specify the length. // Note: for windows-ce, you cannot close the handle until after CloseZip. // but for real windows, the zip makes its own copy of your handle, so you // can close yours anytime. ZRESULT ZipAdd(HZIP hz,const TCHAR *dstzn, const TCHAR *fn); ZRESULT ZipAdd(HZIP hz,const TCHAR *dstzn, void *src,unsigned int len); ZRESULT ZipAddHandle(HZIP hz,const TCHAR *dstzn, HANDLE h); ZRESULT ZipAddHandle(HZIP hz,const TCHAR *dstzn, HANDLE h, unsigned int len); ZRESULT ZipAddFolder(HZIP hz,const TCHAR *dstzn); // ZipAdd - call this for each file to be added to the zip. // dstzn is the name that the file will be stored as in the zip file. // The file to be added to the zip can come // from a pipe: ZipAddHandle(hz,"file.dat", hpipe_read); // from a file: ZipAddHandle(hz,"file.dat", hfile); // from a filen: ZipAdd(hz,"file.dat", "c:\\docs\\origfile.dat"); // from memory: ZipAdd(hz,"subdir\\file.dat", buf,len); // (folder): ZipAddFolder(hz,"subdir"); // Note: if adding an item from a pipe, and if also creating the zip file itself // to a pipe, then you might wish to pass a non-zero length to the ZipAddHandle // function. This will let the zipfile store the item's size ahead of the // compressed item itself, which in turn makes it easier when unzipping the // zipfile from a pipe. ZRESULT ZipGetMemory(HZIP hz, void **buf, unsigned long *len); // ZipGetMemory - If the zip was created in memory, via ZipCreate(0,len), // then this function will return information about that memory block. // buf will receive a pointer to its start, and len its length. // Note: you can't add any more after calling this. ZRESULT CloseZip(HZIP hz); // CloseZip - the zip handle must be closed with this function. unsigned int FormatZipMessage(ZRESULT code, TCHAR *buf,unsigned int len); // FormatZipMessage - given an error code, formats it as a string. // It returns the length of the error message. If buf/len points // to a real buffer, then it also writes as much as possible into there. // These are the result codes: #define ZR_OK 0x00000000 // nb. the pseudo-code zr-recent is never returned, #define ZR_RECENT 0x00000001 // but can be passed to FormatZipMessage. // The following come from general system stuff (e.g. files not openable) #define ZR_GENMASK 0x0000FF00 #define ZR_NODUPH 0x00000100 // couldn't duplicate the handle #define ZR_NOFILE 0x00000200 // couldn't create/open the file #define ZR_NOALLOC 0x00000300 // failed to allocate some resource #define ZR_WRITE 0x00000400 // a general error writing to the file #define ZR_NOTFOUND 0x00000500 // couldn't find that file in the zip #define ZR_MORE 0x00000600 // there's still more data to be unzipped #define ZR_CORRUPT 0x00000700 // the zipfile is corrupt or not a zipfile #define ZR_READ 0x00000800 // a general error reading the file // The following come from mistakes on the part of the caller #define ZR_CALLERMASK 0x00FF0000 #define ZR_ARGS 0x00010000 // general mistake with the arguments #define ZR_NOTMMAP 0x00020000 // tried to ZipGetMemory, but that only works on mmap zipfiles, which yours wasn't #define ZR_MEMSIZE 0x00030000 // the memory size is too small #define ZR_FAILED 0x00040000 // the thing was already failed when you called this function #define ZR_ENDED 0x00050000 // the zip creation has already been closed #define ZR_MISSIZE 0x00060000 // the indicated input file size turned out mistaken #define ZR_PARTIALUNZ 0x00070000 // the file had already been partially unzipped #define ZR_ZMODE 0x00080000 // tried to mix creating/opening a zip // The following come from bugs within the zip library itself #define ZR_BUGMASK 0xFF000000 #define ZR_NOTINITED 0x01000000 // initialisation didn't work #define ZR_SEEK 0x02000000 // trying to seek in an unseekable file #define ZR_NOCHANGE 0x04000000 // changed its mind on storage, but not allowed #define ZR_FLATE 0x05000000 // an internal error in the de/inflation code // e.g. // // (1) Traditional use, creating a zipfile from existing files // HZIP hz = CreateZip("c:\\simple1.zip",0); // ZipAdd(hz,"znsimple.bmp", "c:\\simple.bmp"); // ZipAdd(hz,"znsimple.txt", "c:\\simple.txt"); // CloseZip(hz); // // (2) Memory use, creating an auto-allocated mem-based zip file from various sources // HZIP hz = CreateZip(0,100000, 0); // // adding a conventional file... // ZipAdd(hz,"src1.txt", "c:\\src1.txt"); // // adding something from memory... // char buf[1000]; for (int i=0; i<1000; i++) buf[i]=(char)(i&0x7F); // ZipAdd(hz,"file.dat", buf,1000); // // adding something from a pipe... // HANDLE hread,hwrite; CreatePipe(&hread,&hwrite,NULL,0); // HANDLE hthread = CreateThread(0,0,ThreadFunc,(void*)hwrite,0,0); // ZipAdd(hz,"unz3.dat", hread,1000); // the '1000' is optional. // WaitForSingleObject(hthread,INFINITE); // CloseHandle(hthread); CloseHandle(hread); // ... meanwhile DWORD WINAPI ThreadFunc(void *dat) // { HANDLE hwrite = (HANDLE)dat; // char buf[1000]={17}; // DWORD writ; WriteFile(hwrite,buf,1000,&writ,NULL); // CloseHandle(hwrite); // return 0; // } // // and now that the zip is created, let's do something with it: // void *zbuf; unsigned long zlen; ZipGetMemory(hz,&zbuf,&zlen); // HANDLE hfz = CreateFile("test2.zip",GENERIC_WRITE,0,0,CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,0); // DWORD writ; WriteFile(hfz,zbuf,zlen,&writ,NULL); // CloseHandle(hfz); // CloseZip(hz); // // (3) Handle use, for file handles and pipes // HANDLE hzread,hzwrite; CreatePipe(&hzread,&hzwrite,0,0); // HANDLE hthread = CreateThread(0,0,ZipReceiverThread,(void*)hzread,0,0); // HZIP hz = CreateZipHandle(hzwrite,0); // // ... add to it // CloseZip(hz); // CloseHandle(hzwrite); // WaitForSingleObject(hthread,INFINITE); // CloseHandle(hthread); // ... meanwhile DWORD WINAPI ZipReceiverThread(void *dat) // { HANDLE hread = (HANDLE)dat; // char buf[1000]; // while (true) // { DWORD red; ReadFile(hread,buf,1000,&red,NULL); // // ... and do something with this zip data we're receiving // if (red==0) break; // } // CloseHandle(hread); // return 0; // } // Now we indulge in a little skullduggery so that the code works whether // the user has included just zip or both zip and unzip. // Idea: if header files for both zip and unzip are present, then presumably // the cpp files for zip and unzip are both present, so we will call // one or the other of them based on a dynamic choice. If the header file // for only one is present, then we will bind to that particular one. ZRESULT CloseZipZ(HZIP hz); unsigned int FormatZipMessageZ(ZRESULT code, char *buf,unsigned int len); bool IsZipHandleZ(HZIP hz); #ifdef _unzip_H #undef CloseZip #define CloseZip(hz) (IsZipHandleZ(hz)?CloseZipZ(hz):CloseZipU(hz)) #else #define CloseZip CloseZipZ #define FormatZipMessage FormatZipMessageZ #endif #endif
unzip.h
#include <windows.h> // Conflict header file #ifndef _unzip_H #define _unzip_H // UNZIPPING functions -- for unzipping. // This file is a repackaged form of extracts from the zlib code available // at www.gzip.org/zlib, by Jean-Loup Gailly and Mark Adler. The original // copyright notice may be found in unzip.cpp. The repackaging was done // by Lucian Wischik to simplify and extend its use in Windows/C++. Also // encryption and unicode filenames have been added. #ifndef _zip_H DECLARE_HANDLE(HZIP); #endif // An HZIP identifies a zip file that has been opened typedef DWORD ZRESULT; // return codes from any of the zip functions. Listed later. typedef struct { int index; // index of this file within the zip TCHAR name[MAX_PATH]; // filename within the zip DWORD attr; // attributes, as in GetFileAttributes. FILETIME atime,ctime,mtime;// access, create, modify filetimes long comp_size; // sizes of item, compressed and uncompressed. These long unc_size; // may be -1 if not yet known (e.g. being streamed in) } ZIPENTRY; HZIP OpenZip(const TCHAR *fn, const char *password); HZIP OpenZip(void *z,unsigned int len, const char *password); HZIP OpenZipHandle(HANDLE h, const char *password); // OpenZip - opens a zip file and returns a handle with which you can // subsequently examine its contents. You can open a zip file from: // from a pipe: OpenZipHandle(hpipe_read,0); // from a file (by handle): OpenZipHandle(hfile,0); // from a file (by name): OpenZip("c:\\test.zip","password"); // from a memory block: OpenZip(bufstart, buflen,0); // If the file is opened through a pipe, then items may only be // accessed in increasing order, and an item may only be unzipped once, // although GetZipItem can be called immediately before and after unzipping // it. If it's opened in any other way, then full random access is possible. // Note: pipe input is not yet implemented. // Note: zip passwords are ascii, not unicode. // Note: for windows-ce, you cannot close the handle until after CloseZip. // but for real windows, the zip makes its own copy of your handle, so you // can close yours anytime. ZRESULT GetZipItem(HZIP hz, int index, ZIPENTRY *ze); // GetZipItem - call this to get information about an item in the zip. // If index is -1 and the file wasn't opened through a pipe, // then it returns information about the whole zipfile // (and in particular ze.index returns the number of index items). // Note: the item might be a directory (ze.attr & FILE_ATTRIBUTE_DIRECTORY) // See below for notes on what happens when you unzip such an item. // Note: if you are opening the zip through a pipe, then random access // is not possible and GetZipItem(-1) fails and you can't discover the number // of items except by calling GetZipItem on each one of them in turn, // starting at 0, until eventually the call fails. Also, in the event that // you are opening through a pipe and the zip was itself created into a pipe, // then then comp_size and sometimes unc_size as well may not be known until // after the item has been unzipped. ZRESULT FindZipItem(HZIP hz, const TCHAR *name, bool ic, int *index, ZIPENTRY *ze); // FindZipItem - finds an item by name. ic means 'insensitive to case'. // It returns the index of the item, and returns information about it. // If nothing was found, then index is set to -1 and the function returns // an error code. ZRESULT UnzipItem(HZIP hz, int index, const TCHAR *fn); ZRESULT UnzipItem(HZIP hz, int index, void *z,unsigned int len); ZRESULT UnzipItemHandle(HZIP hz, int index, HANDLE h); // UnzipItem - given an index to an item, unzips it. You can unzip to: // to a pipe: UnzipItemHandle(hz,i, hpipe_write); // to a file (by handle): UnzipItemHandle(hz,i, hfile); // to a file (by name): UnzipItem(hz,i, ze.name); // to a memory block: UnzipItem(hz,i, buf,buflen); // In the final case, if the buffer isn't large enough to hold it all, // then the return code indicates that more is yet to come. If it was // large enough, and you want to know precisely how big, GetZipItem. // Note: zip files are normally stored with relative pathnames. If you // unzip with ZIP_FILENAME a relative pathname then the item gets created // relative to the current directory - it first ensures that all necessary // subdirectories have been created. Also, the item may itself be a directory. // If you unzip a directory with ZIP_FILENAME, then the directory gets created. // If you unzip it to a handle or a memory block, then nothing gets created // and it emits 0 bytes. ZRESULT SetUnzipBaseDir(HZIP hz, const TCHAR *dir); // if unzipping to a filename, and it's a relative filename, then it will be relative to here. // (defaults to current-directory). ZRESULT CloseZip(HZIP hz); // CloseZip - the zip handle must be closed with this function. unsigned int FormatZipMessage(ZRESULT code, TCHAR *buf,unsigned int len); // FormatZipMessage - given an error code, formats it as a string. // It returns the length of the error message. If buf/len points // to a real buffer, then it also writes as much as possible into there. // These are the result codes: #define ZR_OK 0x00000000 // nb. the pseudo-code zr-recent is never returned, #define ZR_RECENT 0x00000001 // but can be passed to FormatZipMessage. // The following come from general system stuff (e.g. files not openable) #define ZR_GENMASK 0x0000FF00 #define ZR_NODUPH 0x00000100 // couldn't duplicate the handle #define ZR_NOFILE 0x00000200 // couldn't create/open the file #define ZR_NOALLOC 0x00000300 // failed to allocate some resource #define ZR_WRITE 0x00000400 // a general error writing to the file #define ZR_NOTFOUND 0x00000500 // couldn't find that file in the zip #define ZR_MORE 0x00000600 // there's still more data to be unzipped #define ZR_CORRUPT 0x00000700 // the zipfile is corrupt or not a zipfile #define ZR_READ 0x00000800 // a general error reading the file #define ZR_PASSWORD 0x00001000 // we didn't get the right password to unzip the file // The following come from mistakes on the part of the caller #define ZR_CALLERMASK 0x00FF0000 #define ZR_ARGS 0x00010000 // general mistake with the arguments #define ZR_NOTMMAP 0x00020000 // tried to ZipGetMemory, but that only works on mmap zipfiles, which yours wasn't #define ZR_MEMSIZE 0x00030000 // the memory size is too small #define ZR_FAILED 0x00040000 // the thing was already failed when you called this function #define ZR_ENDED 0x00050000 // the zip creation has already been closed #define ZR_MISSIZE 0x00060000 // the indicated input file size turned out mistaken #define ZR_PARTIALUNZ 0x00070000 // the file had already been partially unzipped #define ZR_ZMODE 0x00080000 // tried to mix creating/opening a zip // The following come from bugs within the zip library itself #define ZR_BUGMASK 0xFF000000 #define ZR_NOTINITED 0x01000000 // initialisation didn't work #define ZR_SEEK 0x02000000 // trying to seek in an unseekable file #define ZR_NOCHANGE 0x04000000 // changed its mind on storage, but not allowed #define ZR_FLATE 0x05000000 // an internal error in the de/inflation code // e.g. // // SetCurrentDirectory("c:\\docs\\stuff"); // HZIP hz = OpenZip("c:\\stuff.zip",0); // ZIPENTRY ze; GetZipItem(hz,-1,&ze); int numitems=ze.index; // for (int i=0; i<numitems; i++) // { GetZipItem(hz,i,&ze); // UnzipItem(hz,i,ze.name); // } // CloseZip(hz); // // // HRSRC hrsrc = FindResource(hInstance,MAKEINTRESOURCE(1),RT_RCDATA); // HANDLE hglob = LoadResource(hInstance,hrsrc); // void *zipbuf=LockResource(hglob); // unsigned int ziplen=SizeofResource(hInstance,hrsrc); // HZIP hz = OpenZip(zipbuf, ziplen, 0); // - unzip to a membuffer - // ZIPENTRY ze; int i; FindZipItem(hz,"file.dat",true,&i,&ze); // char *ibuf = new char[ze.unc_size]; // UnzipItem(hz,i, ibuf, ze.unc_size); // delete[] ibuf; // - unzip to a fixed membuff - // ZIPENTRY ze; int i; FindZipItem(hz,"file.dat",true,&i,&ze); // char ibuf[1024]; ZRESULT zr=ZR_MORE; unsigned long totsize=0; // while (zr==ZR_MORE) // { zr = UnzipItem(hz,i, ibuf,1024); // unsigned long bufsize=1024; if (zr==ZR_OK) bufsize=ze.unc_size-totsize; // totsize+=bufsize; // } // - unzip to a pipe - // HANDLE hwrite; HANDLE hthread=CreateWavReaderThread(&hwrite); // int i; ZIPENTRY ze; FindZipItem(hz,"sound.wav",true,&i,&ze); // UnzipItemHandle(hz,i, hwrite); // CloseHandle(hwrite); // WaitForSingleObject(hthread,INFINITE); // CloseHandle(hwrite); CloseHandle(hthread); // - finished - // CloseZip(hz); // // note: no need to free resources obtained through Find/Load/LockResource // // // SetCurrentDirectory("c:\\docs\\pipedzipstuff"); // HANDLE hread,hwrite; CreatePipe(&hread,&hwrite,0,0); // CreateZipWriterThread(hwrite); // HZIP hz = OpenZipHandle(hread,0); // for (int i=0; ; i++) // { ZIPENTRY ze; // ZRESULT zr=GetZipItem(hz,i,&ze); if (zr!=ZR_OK) break; // no more // UnzipItem(hz,i, ze.name); // } // CloseZip(hz); // // // Now we indulge in a little skullduggery so that the code works whether // the user has included just zip or both zip and unzip. // Idea: if header files for both zip and unzip are present, then presumably // the cpp files for zip and unzip are both present, so we will call // one or the other of them based on a dynamic choice. If the header file // for only one is present, then we will bind to that particular one. ZRESULT CloseZipU(HZIP hz); unsigned int FormatZipMessageU(ZRESULT code, TCHAR *buf,unsigned int len); bool IsZipHandleU(HZIP hz); #ifdef _zip_H #undef CloseZip #define CloseZip(hz) (IsZipHandleU(hz)?CloseZipU(hz):CloseZipZ(hz)) #else #define CloseZip CloseZipU #define FormatZipMessage FormatZipMessageU #endif #endif // _unzip_H
zip.cpp
#include "zip.h" #include <stdio.h> #include <tchar.h> // THIS FILE is almost entirely based upon code by info-zip. // It has been modified by Lucian Wischik. The modifications // were a complete rewrite of the bit of code that generates the // layout of the zipfile, and support for zipping to/from memory // or handles or pipes or pagefile or diskfiles, encryption, unicode. // The original code may be found at http://www.info-zip.org // The original copyright text follows. // // // // This is version 1999-Oct-05 of the Info-ZIP copyright and license. // The definitive version of this document should be available at // ftp://ftp.cdrom.com/pub/infozip/license.html indefinitely. // // Copyright (c) 1990-1999 Info-ZIP. All rights reserved. // // For the purposes of this copyright and license, "Info-ZIP" is defined as // the following set of individuals: // // Mark Adler, John Bush, Karl Davis, Harald Denker, Jean-Michel Dubois, // Jean-loup Gailly, Hunter Goatley, Ian Gorman, Chris Herborth, Dirk Haase, // Greg Hartwig, Robert Heath, Jonathan Hudson, Paul Kienitz, David Kirschbaum, // Johnny Lee, Onno van der Linden, Igor Mandrichenko, Steve P. Miller, // Sergio Monesi, Keith Owens, George Petrov, Greg Roelofs, Kai Uwe Rommel, // Steve Salisbury, Dave Smith, Christian Spieler, Antoine Verheijen, // Paul von Behren, Rich Wales, Mike White // // This software is provided "as is," without warranty of any kind, express // or implied. In no event shall Info-ZIP or its contributors be held liable // for any direct, indirect, incidental, special or consequential damages // arising out of the use of or inability to use this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. Redistributions of source code must retain the above copyright notice, // definition, disclaimer, and this list of conditions. // // 2. Redistributions in binary form must reproduce the above copyright // notice, definition, disclaimer, and this list of conditions in // documentation and/or other materials provided with the distribution. // // 3. Altered versions--including, but not limited to, ports to new operating // systems, existing ports with new graphical interfaces, and dynamic, // shared, or static library versions--must be plainly marked as such // and must not be misrepresented as being the original source. Such // altered versions also must not be misrepresented as being Info-ZIP // releases--including, but not limited to, labeling of the altered // versions with the names "Info-ZIP" (or any variation thereof, including, // but not limited to, different capitalizations), "Pocket UnZip," "WiZ" // or "MacZip" without the explicit permission of Info-ZIP. Such altered // versions are further prohibited from misrepresentative use of the // Zip-Bugs or Info-ZIP e-mail addresses or of the Info-ZIP URL(s). // // 4. Info-ZIP retains the right to use the names "Info-ZIP," "Zip," "UnZip," // "WiZ," "Pocket UnZip," "Pocket Zip," and "MacZip" for its own source and // binary releases. // typedef unsigned char uch; // unsigned 8-bit value typedef unsigned short ush; // unsigned 16-bit value typedef unsigned long ulg; // unsigned 32-bit value typedef size_t extent; // file size typedef unsigned Pos; // must be at least 32 bits typedef unsigned IPos; // A Pos is an index in the character window. Pos is used only for parameter passing #ifndef EOF #define EOF (-1) #endif // Error return values. The values 0..4 and 12..18 follow the conventions // of PKZIP. The values 4..10 are all assigned to "insufficient memory" // by PKZIP, so the codes 5..10 are used here for other purposes. #define ZE_MISS -1 // used by procname(), zipbare() #define ZE_OK 0 // success #define ZE_EOF 2 // unexpected end of zip file #define ZE_FORM 3 // zip file structure error #define ZE_MEM 4 // out of memory #define ZE_LOGIC 5 // internal logic error #define ZE_BIG 6 // entry too large to split #define ZE_NOTE 7 // invalid comment format #define ZE_TEST 8 // zip test (-T) failed or out of memory #define ZE_ABORT 9 // user interrupt or termination #define ZE_TEMP 10 // error using a temp file #define ZE_READ 11 // read or seek error #define ZE_NONE 12 // nothing to do #define ZE_NAME 13 // missing or empty zip file #define ZE_WRITE 14 // error writing to a file #define ZE_CREAT 15 // couldn't open to write #define ZE_PARMS 16 // bad command line #define ZE_OPEN 18 // could not open a specified file to read #define ZE_MAXERR 18 // the highest error number // internal file attribute #define UNKNOWN (-1) #define BINARY 0 #define ASCII 1 #define BEST -1 // Use best method (deflation or store) #define STORE 0 // Store method #define DEFLATE 8 // Deflation method #define CRCVAL_INITIAL 0L // MSDOS file or directory attributes #define MSDOS_HIDDEN_ATTR 0x02 #define MSDOS_DIR_ATTR 0x10 // Lengths of headers after signatures in bytes #define LOCHEAD 26 #define CENHEAD 42 #define ENDHEAD 18 // Definitions for extra field handling: #define EB_HEADSIZE 4 /* length of a extra field block header */ #define EB_LEN 2 /* offset of data length field in header */ #define EB_UT_MINLEN 1 /* minimal UT field contains Flags byte */ #define EB_UT_FLAGS 0 /* byte offset of Flags field */ #define EB_UT_TIME1 1 /* byte offset of 1st time value */ #define EB_UT_FL_MTIME (1 << 0) /* mtime present */ #define EB_UT_FL_ATIME (1 << 1) /* atime present */ #define EB_UT_FL_CTIME (1 << 2) /* ctime present */ #define EB_UT_LEN(n) (EB_UT_MINLEN + 4 * (n)) #define EB_L_UT_SIZE (EB_HEADSIZE + EB_UT_LEN(3)) #define EB_C_UT_SIZE (EB_HEADSIZE + EB_UT_LEN(1)) // Macros for writing machine integers to little-endian format #define PUTSH(a,f) {char _putsh_c=(char)((a)&0xff); wfunc(param,&_putsh_c,1); _putsh_c=(char)((a)>>8); wfunc(param,&_putsh_c,1);} #define PUTLG(a,f) {PUTSH((a) & 0xffff,(f)) PUTSH((a) >> 16,(f))} // -- Structure of a ZIP file -- // Signatures for zip file information headers #define LOCSIG 0x04034b50L #define CENSIG 0x02014b50L #define ENDSIG 0x06054b50L #define EXTLOCSIG 0x08074b50L #define MIN_MATCH 3 #define MAX_MATCH 258 // The minimum and maximum match lengths #define WSIZE (0x8000) // Maximum window size = 32K. If you are really short of memory, compile // with a smaller WSIZE but this reduces the compression ratio for files // of size > WSIZE. WSIZE must be a power of two in the current implementation. // #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) // Minimum amount of lookahead, except at the end of the input file. // See deflate.c for comments about the MIN_MATCH+1. // #define MAX_DIST (WSIZE-MIN_LOOKAHEAD) // In order to simplify the code, particularly on 16 bit machines, match // distances are limited to MAX_DIST instead of WSIZE. // #define ZIP_HANDLE 1 #define ZIP_FILENAME 2 #define ZIP_MEMORY 3 #define ZIP_FOLDER 4 // =========================================================================== // Constants // #define MAX_BITS 15 // All codes must not exceed MAX_BITS bits #define MAX_BL_BITS 7 // Bit length codes must not exceed MAX_BL_BITS bits #define LENGTH_CODES 29 // number of length codes, not counting the special END_BLOCK code #define LITERALS 256 // number of literal bytes 0..255 #define END_BLOCK 256 // end of block literal code #define L_CODES (LITERALS+1+LENGTH_CODES) // number of Literal or Length codes, including the END_BLOCK code #define D_CODES 30 // number of distance codes #define BL_CODES 19 // number of codes used to transfer the bit lengths #define STORED_BLOCK 0 #define STATIC_TREES 1 #define DYN_TREES 2 // The three kinds of block type #define LIT_BUFSIZE 0x8000 #define DIST_BUFSIZE LIT_BUFSIZE // Sizes of match buffers for literals/lengths and distances. There are // 4 reasons for limiting LIT_BUFSIZE to 64K: // - frequencies can be kept in 16 bit counters // - if compression is not successful for the first block, all input data is // still in the window so we can still emit a stored block even when input // comes from standard input. (This can also be done for all blocks if // LIT_BUFSIZE is not greater than 32K.) // - if compression is not successful for a file smaller than 64K, we can // even emit a stored file instead of a stored block (saving 5 bytes). // - creating new Huffman trees less frequently may not provide fast // adaptation to changes in the input data statistics. (Take for // example a binary file with poorly compressible code followed by // a highly compressible string table.) Smaller buffer sizes give // fast adaptation but have of course the overhead of transmitting trees // more frequently. // - I can't count above 4 // The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save // memory at the expense of compression). Some optimizations would be possible // if we rely on DIST_BUFSIZE == LIT_BUFSIZE. // #define REP_3_6 16 // repeat previous bit length 3-6 times (2 bits of repeat count) #define REPZ_3_10 17 // repeat a zero length 3-10 times (3 bits of repeat count) #define REPZ_11_138 18 // repeat a zero length 11-138 times (7 bits of repeat count) #define HEAP_SIZE (2*L_CODES+1) // maximum heap size // =========================================================================== // Local data used by the "bit string" routines. // #define Buf_size (8 * 2*sizeof(char)) // Number of bits used within bi_buf. (bi_buf may be implemented on // more than 16 bits on some systems.) // Output a 16 bit value to the bit stream, lower (oldest) byte first #define PUTSHORT(state,w) \ { if (state.bs.out_offset >= state.bs.out_size-1) \ state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset); \ state.bs.out_buf[state.bs.out_offset++] = (char) ((w) & 0xff); \ state.bs.out_buf[state.bs.out_offset++] = (char) ((ush)(w) >> 8); \ } #define PUTBYTE(state,b) \ { if (state.bs.out_offset >= state.bs.out_size) \ state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset); \ state.bs.out_buf[state.bs.out_offset++] = (char) (b); \ } // DEFLATE.CPP HEADER #define HASH_BITS 15 // For portability to 16 bit machines, do not use values above 15. #define HASH_SIZE (unsigned)(1<<HASH_BITS) #define HASH_MASK (HASH_SIZE-1) #define WMASK (WSIZE-1) // HASH_SIZE and WSIZE must be powers of two #define NIL 0 // Tail of hash chains #define FAST 4 #define SLOW 2 // speed options for the general purpose bit flag #define TOO_FAR 4096 // Matches of length 3 are discarded if their distance exceeds TOO_FAR #define EQUAL 0 // result of memcmp for equal strings // =========================================================================== // Local data used by the "longest match" routines. #define H_SHIFT ((HASH_BITS+MIN_MATCH-1)/MIN_MATCH) // Number of bits by which ins_h and del_h must be shifted at each // input step. It must be such that after MIN_MATCH steps, the oldest // byte no longer takes part in the hash key, that is: // H_SHIFT * MIN_MATCH >= HASH_BITS #define max_insert_length max_lazy_match // Insert new strings in the hash table only if the match length // is not greater than this length. This saves time but degrades compression. // max_insert_length is used only for compression levels <= 3. const int extra_lbits[LENGTH_CODES] // extra bits for each length code = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; const int extra_dbits[D_CODES] // extra bits for each distance code = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; const int extra_blbits[BL_CODES]// extra bits for each bit length code = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; const uch bl_order[BL_CODES] = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; // The lengths of the bit length codes are sent in order of decreasing // probability, to avoid transmitting the lengths for unused bit length codes. typedef struct config { ush good_length; // reduce lazy search above this match length ush max_lazy; // do not perform lazy search above this match length ush nice_length; // quit search above this match length ush max_chain; } config; // Values for max_lazy_match, good_match, nice_match and max_chain_length, // depending on the desired pack level (0..9). The values given below have // been tuned to exclude worst case performance for pathological files. // Better values may be found for specific files. // const config configuration_table[10] = { // good lazy nice chain {0, 0, 0, 0}, // 0 store only {4, 4, 8, 4}, // 1 maximum speed, no lazy matches {4, 5, 16, 8}, // 2 {4, 6, 32, 32}, // 3 {4, 4, 16, 16}, // 4 lazy matches */ {8, 16, 32, 32}, // 5 {8, 16, 128, 128}, // 6 {8, 32, 128, 256}, // 7 {32, 128, 258, 1024}, // 8 {32, 258, 258, 4096}};// 9 maximum compression */ // Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 // For deflate_fast() (levels <= 3) good is ignored and lazy has a different meaning. // Data structure describing a single value and its code string. typedef struct ct_data { union { ush freq; // frequency count ush code; // bit string } fc; union { ush dad; // father node in Huffman tree ush len; // length of bit string } dl; } ct_data; typedef struct tree_desc { ct_data *dyn_tree; // the dynamic tree ct_data *static_tree; // corresponding static tree or NULL const int *extra_bits; // extra bits for each code or NULL int extra_base; // base index for extra_bits int elems; // max number of elements in the tree int max_length; // max bit length for the codes int max_code; // largest code with non zero frequency } tree_desc; class TTreeState { public: TTreeState(); ct_data dyn_ltree[HEAP_SIZE]; // literal and length tree ct_data dyn_dtree[2*D_CODES+1]; // distance tree ct_data static_ltree[L_CODES+2]; // the static literal tree... // ... Since the bit lengths are imposed, there is no need for the L_CODES // extra codes used during heap construction. However the codes 286 and 287 // are needed to build a canonical tree (see ct_init below). ct_data static_dtree[D_CODES]; // the static distance tree... // ... (Actually a trivial tree since all codes use 5 bits.) ct_data bl_tree[2*BL_CODES+1]; // Huffman tree for the bit lengths tree_desc l_desc; tree_desc d_desc; tree_desc bl_desc; ush bl_count[MAX_BITS+1]; // number of codes at each bit length for an optimal tree int heap[2*L_CODES+1]; // heap used to build the Huffman trees int heap_len; // number of elements in the heap int heap_max; // element of largest frequency // The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. // The same heap array is used to build all trees. uch depth[2*L_CODES+1]; // Depth of each subtree used as tie breaker for trees of equal frequency uch length_code[MAX_MATCH-MIN_MATCH+1]; // length code for each normalized match length (0 == MIN_MATCH) uch dist_code[512]; // distance codes. The first 256 values correspond to the distances // 3 .. 258, the last 256 values correspond to the top 8 bits of // the 15 bit distances. int base_length[LENGTH_CODES]; // First normalized length for each code (0 = MIN_MATCH) int base_dist[D_CODES]; // First normalized distance for each code (0 = distance of 1) uch far l_buf[LIT_BUFSIZE]; // buffer for literals/lengths ush far d_buf[DIST_BUFSIZE]; // buffer for distances uch flag_buf[(LIT_BUFSIZE/8)]; // flag_buf is a bit array distinguishing literals from lengths in // l_buf, and thus indicating the presence or absence of a distance. unsigned last_lit; // running index in l_buf unsigned last_dist; // running index in d_buf unsigned last_flags; // running index in flag_buf uch flags; // current flags not yet saved in flag_buf uch flag_bit; // current bit used in flags // bits are filled in flags starting at bit 0 (least significant). // Note: these flags are overkill in the current code since we don't // take advantage of DIST_BUFSIZE == LIT_BUFSIZE. ulg opt_len; // bit length of current block with optimal trees ulg static_len; // bit length of current block with static trees ulg cmpr_bytelen; // total byte length of compressed file ulg cmpr_len_bits; // number of bits past 'cmpr_bytelen' ulg input_len; // total byte length of input file // input_len is for debugging only since we can get it by other means. ush *file_type; // pointer to UNKNOWN, BINARY or ASCII // int *file_method; // pointer to DEFLATE or STORE }; TTreeState::TTreeState() { tree_desc a = {dyn_ltree, static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS, 0}; l_desc = a; tree_desc b = {dyn_dtree, static_dtree, extra_dbits, 0, D_CODES, MAX_BITS, 0}; d_desc = b; tree_desc c = {bl_tree, NULL, extra_blbits, 0, BL_CODES, MAX_BL_BITS, 0}; bl_desc = c; last_lit=0; last_dist=0; last_flags=0; } class TBitState { public: int flush_flg; // unsigned bi_buf; // Output buffer. bits are inserted starting at the bottom (least significant // bits). The width of bi_buf must be at least 16 bits. int bi_valid; // Number of valid bits in bi_buf. All bits above the last valid bit // are always zero. char *out_buf; // Current output buffer. unsigned out_offset; // Current offset in output buffer. // On 16 bit machines, the buffer is limited to 64K. unsigned out_size; // Size of current output buffer ulg bits_sent; // bit length of the compressed data only needed for debugging??? }; class TDeflateState { public: TDeflateState() {window_size=0;} uch window[2L*WSIZE]; // Sliding window. Input bytes are read into the second half of the window, // and move to the first half later to keep a dictionary of at least WSIZE // bytes. With this organization, matches are limited to a distance of // WSIZE-MAX_MATCH bytes, but this ensures that IO is always // performed with a length multiple of the block size. Also, it limits // the window size to 64K, which is quite useful on MSDOS. // To do: limit the window size to WSIZE+CBSZ if SMALL_MEM (the code would // be less efficient since the data would have to be copied WSIZE/CBSZ times) Pos prev[WSIZE]; // Link to older string with same hash index. To limit the size of this // array to 64K, this link is maintained only for the last 32K strings. // An index in this array is thus a window index modulo 32K. Pos head[HASH_SIZE]; // Heads of the hash chains or NIL. If your compiler thinks that // HASH_SIZE is a dynamic value, recompile with -DDYN_ALLOC. ulg window_size; // window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the // input file length plus MIN_LOOKAHEAD. long block_start; // window position at the beginning of the current output block. Gets // negative when the window is moved backwards. int sliding; // Set to false when the input file is already in memory unsigned ins_h; // hash index of string to be inserted unsigned int prev_length; // Length of the best match at previous step. Matches not greater than this // are discarded. This is used in the lazy match evaluation. unsigned strstart; // start of string to insert unsigned match_start; // start of matching string int eofile; // flag set at end of input file unsigned lookahead; // number of valid bytes ahead in window unsigned max_chain_length; // To speed up deflation, hash chains are never searched beyond this length. // A higher limit improves compression ratio but degrades the speed. unsigned int max_lazy_match; // Attempt to find a better match only when the current match is strictly // smaller than this value. This mechanism is used only for compression // levels >= 4. unsigned good_match; // Use a faster search when the previous match is longer than this int nice_match; // Stop searching when current match exceeds this }; typedef struct iztimes { __int64 atime,mtime,ctime; } iztimes; // access, modify, create times typedef struct zlist { ush vem, ver, flg, how; // See central header in zipfile.c for what vem..off are ulg tim, crc, siz, len; extent nam, ext, cext, com; // offset of ext must be >= LOCHEAD ush dsk, att, lflg; // offset of lflg must be >= LOCHEAD ulg atx, off; char name[MAX_PATH]; // File name in zip file char *extra; // Extra field (set only if ext != 0) char *cextra; // Extra in central (set only if cext != 0) char *comment; // Comment (set only if com != 0) char iname[MAX_PATH]; // Internal file name after cleanup char zname[MAX_PATH]; // External version of internal name int mark; // Marker for files to operate on int trash; // Marker for files to delete int dosflag; // Set to force MSDOS file attributes struct zlist far *nxt; // Pointer to next header in list } TZipFileInfo; struct TState; typedef unsigned (*READFUNC)(TState &state, char *buf,unsigned size); typedef unsigned (*FLUSHFUNC)(void *param, const char *buf, unsigned *size); typedef unsigned (*WRITEFUNC)(void *param, const char *buf, unsigned size); struct TState { void *param; int level; bool seekable; READFUNC readfunc; FLUSHFUNC flush_outbuf; TTreeState ts; TBitState bs; TDeflateState ds; const char *err; }; void Assert(TState &state,bool cond, const char *msg) { if (cond) return; state.err=msg; } void __cdecl ZTrace(const char *x, ...) {va_list paramList; va_start(paramList, x); paramList; va_end(paramList);} void __cdecl Tracec(bool ,const char *x, ...) {va_list paramList; va_start(paramList, x); paramList; va_end(paramList);} // =========================================================================== // Local (static) routines in this file. // void init_block (TState &); void pqdownheap (TState &,ct_data *tree, int k); void gen_bitlen (TState &,tree_desc *desc); void gen_codes (TState &state,ct_data *tree, int max_code); void build_tree (TState &,tree_desc *desc); void scan_tree (TState &,ct_data *tree, int max_code); void send_tree (TState &state,ct_data *tree, int max_code); int build_bl_tree (TState &); void send_all_trees (TState &state,int lcodes, int dcodes, int blcodes); void compress_block (TState &state,ct_data *ltree, ct_data *dtree); void set_file_type (TState &); void send_bits (TState &state, int value, int length); unsigned bi_reverse (unsigned code, int len); void bi_windup (TState &state); void copy_block (TState &state,char *buf, unsigned len, int header); #define send_code(state, c, tree) send_bits(state, tree[c].fc.code, tree[c].dl.len) // Send a code of the given tree. c and tree must not have side effects // alternatively... //#define send_code(state, c, tree) // { if (state.verbose>1) fprintf(stderr,"\ncd %3d ",(c)); // send_bits(state, tree[c].fc.code, tree[c].dl.len); } #define d_code(dist) ((dist) < 256 ? state.ts.dist_code[dist] : state.ts.dist_code[256+((dist)>>7)]) // Mapping from a distance to a distance code. dist is the distance - 1 and // must not have side effects. dist_code[256] and dist_code[257] are never used. #define _Max(a,b) (a >= b ? a : b) /* the arguments must not have side effects */ /* =========================================================================== * Allocate the match buffer, initialize the various tables and save the * location of the internal file attribute (ascii/binary) and method * (DEFLATE/STORE). */ void ct_init(TState &state, ush *attr) { int n; /* iterates over tree elements */ int dist; /* distance index */ state.ts.file_type = attr; //state.ts.file_method = method; state.ts.cmpr_bytelen = state.ts.cmpr_len_bits = 0L; state.ts.input_len = 0L; if (state.ts.static_dtree[0].dl.len != 0) return; /* ct_init already called */ /* Initialize the mapping length (0..255) -> length code (0..28) */ int length = 0; int code = 0; int _bits = 0; for (code = 0; code < LENGTH_CODES-1; code++) { state.ts.base_length[code] = length; for (n = 0; n < (1<<extra_lbits[code]); n++) { state.ts.length_code[length++] = (uch)code; } } Assert(state,length == 256, "ct_init: length != 256"); /* Note that the length 255 (match length 258) can be represented * in two different ways: code 284 + 5 bits or code 285, so we * overwrite length_code[255] to use the best encoding: */ state.ts.length_code[length-1] = (uch)code; /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ dist = 0; for (code = 0 ; code < 16; code++) { state.ts.base_dist[code] = dist; for (n = 0; n < (1<<extra_dbits[code]); n++) { state.ts.dist_code[dist++] = (uch)code; } } Assert(state,dist == 256, "ct_init: dist != 256"); dist >>= 7; /* from now on, all distances are divided by 128 */ for ( ; code < D_CODES; code++) { state.ts.base_dist[code] = dist << 7; for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { state.ts.dist_code[256 + dist++] = (uch)code; } } Assert(state,dist == 256, "ct_init: 256+dist != 512"); /* Construct the codes of the static literal tree */ for (_bits = 0; _bits <= MAX_BITS; _bits++) state.ts.bl_count[_bits] = 0; n = 0; while (n <= 143) state.ts.static_ltree[n++].dl.len = 8, state.ts.bl_count[8]++; while (n <= 255) state.ts.static_ltree[n++].dl.len = 9, state.ts.bl_count[9]++; while (n <= 279) state.ts.static_ltree[n++].dl.len = 7, state.ts.bl_count[7]++; while (n <= 287) state.ts.static_ltree[n++].dl.len = 8, state.ts.bl_count[8]++; /* fc.codes 286 and 287 do not exist, but we must include them in the * tree construction to get a canonical Huffman tree (longest code * all ones) */ gen_codes(state,(ct_data *)state.ts.static_ltree, L_CODES+1); /* The static distance tree is trivial: */ for (n = 0; n < D_CODES; n++) { state.ts.static_dtree[n].dl.len = 5; state.ts.static_dtree[n].fc.code = (ush)bi_reverse(n, 5); } /* Initialize the first block of the first file: */ init_block(state); } /* =========================================================================== * Initialize a new block. */ void init_block(TState &state) { int n; /* iterates over tree elements */ /* Initialize the trees. */ for (n = 0; n < L_CODES; n++) state.ts.dyn_ltree[n].fc.freq = 0; for (n = 0; n < D_CODES; n++) state.ts.dyn_dtree[n].fc.freq = 0; for (n = 0; n < BL_CODES; n++) state.ts.bl_tree[n].fc.freq = 0; state.ts.dyn_ltree[END_BLOCK].fc.freq = 1; state.ts.opt_len = state.ts.static_len = 0L; state.ts.last_lit = state.ts.last_dist = state.ts.last_flags = 0; state.ts.flags = 0; state.ts.flag_bit = 1; } #define SMALLEST 1 /* Index within the heap array of least frequent node in the Huffman tree */ /* =========================================================================== * Remove the smallest element from the heap and recreate the heap with * one less element. Updates heap and heap_len. */ #define pqremove(tree, top) \ {\ top = state.ts.heap[SMALLEST]; \ state.ts.heap[SMALLEST] = state.ts.heap[state.ts.heap_len--]; \ pqdownheap(state,tree, SMALLEST); \ } /* =========================================================================== * Compares to subtrees, using the tree depth as tie breaker when * the subtrees have equal frequency. This minimizes the worst case length. */ #define smaller(tree, n, m) \ (tree[n].fc.freq < tree[m].fc.freq || \ (tree[n].fc.freq == tree[m].fc.freq && state.ts.depth[n] <= state.ts.depth[m])) /* =========================================================================== * Restore the heap property by moving down the tree starting at node k, * exchanging a node with the smallest of its two sons if necessary, stopping * when the heap property is re-established (each father smaller than its * two sons). */ void pqdownheap(TState &state,ct_data *tree, int k) { int v = state.ts.heap[k]; int j = k << 1; /* left son of k */ int htemp; /* required because of bug in SASC compiler */ while (j <= state.ts.heap_len) { /* Set j to the smallest of the two sons: */ if (j < state.ts.heap_len && smaller(tree, state.ts.heap[j+1], state.ts.heap[j])) j++; /* Exit if v is smaller than both sons */ htemp = state.ts.heap[j]; if (smaller(tree, v, htemp)) break; /* Exchange v with the smallest son */ state.ts.heap[k] = htemp; k = j; /* And continue down the tree, setting j to the left son of k */ j <<= 1; } state.ts.heap[k] = v; } /* =========================================================================== * Compute the optimal bit lengths for a tree and update the total bit length * for the current block. * IN assertion: the fields freq and dad are set, heap[heap_max] and * above are the tree nodes sorted by increasing frequency. * OUT assertions: the field len is set to the optimal bit length, the * array bl_count contains the frequencies for each bit length. * The length opt_len is updated; static_len is also updated if stree is * not null. */ void gen_bitlen(TState &state,tree_desc *desc) { ct_data *tree = desc->dyn_tree; const int *extra = desc->extra_bits; int base = desc->extra_base; int max_code = desc->max_code; int max_length = desc->max_length; ct_data *stree = desc->static_tree; int h; /* heap index */ int n, m; /* iterate over the tree elements */ int _bits; /* bit length */ int xbits; /* extra bits */ ush f; /* frequency */ int overflow = 0; /* number of elements with bit length too large */ for (_bits = 0; _bits <= MAX_BITS; _bits++) state.ts.bl_count[_bits] = 0; /* In a first pass, compute the optimal bit lengths (which may * overflow in the case of the bit length tree). */ tree[state.ts.heap[state.ts.heap_max]].dl.len = 0; /* root of the heap */ for (h = state.ts.heap_max+1; h < HEAP_SIZE; h++) { n = state.ts.heap[h]; _bits = tree[tree[n].dl.dad].dl.len + 1; if (_bits > max_length) _bits = max_length, overflow++; tree[n].dl.len = (ush)_bits; /* We overwrite tree[n].dl.dad which is no longer needed */ if (n > max_code) continue; /* not a leaf node */ state.ts.bl_count[_bits]++; xbits = 0; if (n >= base) xbits = extra[n-base]; f = tree[n].fc.freq; state.ts.opt_len += (ulg)f * (_bits + xbits); if (stree) state.ts.static_len += (ulg)f * (stree[n].dl.len + xbits); } if (overflow == 0) return; ZTrace("\nbit length overflow\n"); /* This happens for example on obj2 and pic of the Calgary corpus */ /* Find the first bit length which could increase: */ do { _bits = max_length-1; while (state.ts.bl_count[_bits] == 0) _bits--; state.ts.bl_count[_bits]--; /* move one leaf down the tree */ state.ts.bl_count[_bits +1] += (ush)2; /* move one overflow item as its brother */ state.ts.bl_count[max_length]--; /* The brother of the overflow item also moves one step up, * but this does not affect bl_count[max_length] */ overflow -= 2; } while (overflow > 0); /* Now recompute all bit lengths, scanning in increasing frequency. * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all * lengths instead of fixing only the wrong ones. This idea is taken * from 'ar' written by Haruhiko Okumura.) */ for (_bits = max_length; _bits != 0; _bits--) { n = state.ts.bl_count[_bits]; while (n != 0) { m = state.ts.heap[--h]; if (m > max_code) continue; if (tree[m].dl.len != (ush)_bits) { ZTrace("code %d _bits %d->%d\n", m, tree[m].dl.len, _bits); state.ts.opt_len += ((long)_bits -(long)tree[m].dl.len)*(long)tree[m].fc.freq; tree[m].dl.len = (ush)_bits; } n--; } } } /* =========================================================================== * Generate the codes for a given tree and bit counts (which need not be * optimal). * IN assertion: the array bl_count contains the bit length statistics for * the given tree and the field len is set for all tree elements. * OUT assertion: the field code is set for all tree elements of non * zero code length. */ void gen_codes (TState &state, ct_data *tree, int max_code) { ush next_code[MAX_BITS+1]; /* next code value for each bit length */ ush code = 0; /* running code value */ int _bits; /* bit index */ int n; /* code index */ /* The distribution counts are first used to generate the code values * without bit reversal. */ for (_bits = 1; _bits <= MAX_BITS; _bits++) { next_code[_bits] = code = (ush)((code + state.ts.bl_count[_bits -1]) << 1); } /* Check that the bit counts in bl_count are consistent. The last code * must be all ones. */ Assert(state,code + state.ts.bl_count[MAX_BITS]-1 == (1<< ((ush) MAX_BITS)) - 1, "inconsistent bit counts"); ZTrace("\ngen_codes: max_code %d ", max_code); for (n = 0; n <= max_code; n++) { int len = tree[n].dl.len; if (len == 0) continue; /* Now reverse the bits */ tree[n].fc.code = (ush)bi_reverse(next_code[len]++, len); //Tracec(tree != state.ts.static_ltree, "\nn %3d %c l %2d c %4x (%x) ", n, (isgraph(n) ? n : ' '), len, tree[n].fc.code, next_code[len]-1); } } /* =========================================================================== * Construct one Huffman tree and assigns the code bit strings and lengths. * Update the total bit length for the current block. * IN assertion: the field freq is set for all tree elements. * OUT assertions: the fields len and code are set to the optimal bit length * and corresponding code. The length opt_len is updated; static_len is * also updated if stree is not null. The field max_code is set. */ void build_tree(TState &state,tree_desc *desc) { ct_data *tree = desc->dyn_tree; ct_data *stree = desc->static_tree; int elems = desc->elems; int n, m; /* iterate over heap elements */ int max_code = -1; /* largest code with non zero frequency */ int node = elems; /* next internal node of the tree */ /* Construct the initial heap, with least frequent element in * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. * heap[0] is not used. */ state.ts.heap_len = 0, state.ts.heap_max = HEAP_SIZE; for (n = 0; n < elems; n++) { if (tree[n].fc.freq != 0) { state.ts.heap[++state.ts.heap_len] = max_code = n; state.ts.depth[n] = 0; } else { tree[n].dl.len = 0; } } /* The pkzip format requires that at least one distance code exists, * and that at least one bit should be sent even if there is only one * possible code. So to avoid special checks later on we force at least * two codes of non zero frequency. */ while (state.ts.heap_len < 2) { int newcp = state.ts.heap[++state.ts.heap_len] = (max_code < 2 ? ++max_code : 0); tree[newcp].fc.freq = 1; state.ts.depth[newcp] = 0; state.ts.opt_len--; if (stree) state.ts.static_len -= stree[newcp].dl.len; /* new is 0 or 1 so it does not have extra bits */ } desc->max_code = max_code; /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, * establish sub-heaps of increasing lengths: */ for (n = state.ts.heap_len/2; n >= 1; n--) pqdownheap(state,tree, n); /* Construct the Huffman tree by repeatedly combining the least two * frequent nodes. */ do { pqremove(tree, n); /* n = node of least frequency */ m = state.ts.heap[SMALLEST]; /* m = node of next least frequency */ state.ts.heap[--state.ts.heap_max] = n; /* keep the nodes sorted by frequency */ state.ts.heap[--state.ts.heap_max] = m; /* Create a new node father of n and m */ tree[node].fc.freq = (ush)(tree[n].fc.freq + tree[m].fc.freq); state.ts.depth[node] = (uch) (_Max(state.ts.depth[n], state.ts.depth[m]) + 1); tree[n].dl.dad = tree[m].dl.dad = (ush)node; /* and insert the new node in the heap */ state.ts.heap[SMALLEST] = node++; pqdownheap(state,tree, SMALLEST); } while (state.ts.heap_len >= 2); state.ts.heap[--state.ts.heap_max] = state.ts.heap[SMALLEST]; /* At this point, the fields freq and dad are set. We can now * generate the bit lengths. */ gen_bitlen(state,(tree_desc *)desc); /* The field len is now set, we can generate the bit codes */ gen_codes (state,(ct_data *)tree, max_code); } /* =========================================================================== * Scan a literal or distance tree to determine the frequencies of the codes * in the bit length tree. Updates opt_len to take into account the repeat * counts. (The contribution of the bit length codes will be added later * during the construction of bl_tree.) */ void scan_tree (TState &state,ct_data *tree, int max_code) { int n; /* iterates over all tree elements */ int prevlen = -1; /* last emitted length */ int curlen; /* length of current code */ int nextlen = tree[0].dl.len; /* length of next code */ int count = 0; /* repeat count of the current code */ int max_count = 7; /* max repeat count */ int min_count = 4; /* min repeat count */ if (nextlen == 0) max_count = 138, min_count = 3; tree[max_code+1].dl.len = (ush)-1; /* guard */ for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[n+1].dl.len; if (++count < max_count && curlen == nextlen) { continue; } else if (count < min_count) { state.ts.bl_tree[curlen].fc.freq = (ush)(state.ts.bl_tree[curlen].fc.freq + count); } else if (curlen != 0) { if (curlen != prevlen) state.ts.bl_tree[curlen].fc.freq++; state.ts.bl_tree[REP_3_6].fc.freq++; } else if (count <= 10) { state.ts.bl_tree[REPZ_3_10].fc.freq++; } else { state.ts.bl_tree[REPZ_11_138].fc.freq++; } count = 0; prevlen = curlen; if (nextlen == 0) { max_count = 138, min_count = 3; } else if (curlen == nextlen) { max_count = 6, min_count = 3; } else { max_count = 7, min_count = 4; } } } /* =========================================================================== * Send a literal or distance tree in compressed form, using the codes in * bl_tree. */ void send_tree (TState &state, ct_data *tree, int max_code) { int n; /* iterates over all tree elements */ int prevlen = -1; /* last emitted length */ int curlen; /* length of current code */ int nextlen = tree[0].dl.len; /* length of next code */ int count = 0; /* repeat count of the current code */ int max_count = 7; /* max repeat count */ int min_count = 4; /* min repeat count */ /* tree[max_code+1].dl.len = -1; */ /* guard already set */ if (nextlen == 0) max_count = 138, min_count = 3; for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[n+1].dl.len; if (++count < max_count && curlen == nextlen) { continue; } else if (count < min_count) { do { send_code(state, curlen, state.ts.bl_tree); } while (--count != 0); } else if (curlen != 0) { if (curlen != prevlen) { send_code(state, curlen, state.ts.bl_tree); count--; } Assert(state,count >= 3 && count <= 6, " 3_6?"); send_code(state,REP_3_6, state.ts.bl_tree); send_bits(state,count-3, 2); } else if (count <= 10) { send_code(state,REPZ_3_10, state.ts.bl_tree); send_bits(state,count-3, 3); } else { send_code(state,REPZ_11_138, state.ts.bl_tree); send_bits(state,count-11, 7); } count = 0; prevlen = curlen; if (nextlen == 0) { max_count = 138, min_count = 3; } else if (curlen == nextlen) { max_count = 6, min_count = 3; } else { max_count = 7, min_count = 4; } } } /* =========================================================================== * Construct the Huffman tree for the bit lengths and return the index in * bl_order of the last bit length code to send. */ int build_bl_tree(TState &state) { int max_blindex; /* index of last bit length code of non zero freq */ /* Determine the bit length frequencies for literal and distance trees */ scan_tree(state,(ct_data *)state.ts.dyn_ltree, state.ts.l_desc.max_code); scan_tree(state,(ct_data *)state.ts.dyn_dtree, state.ts.d_desc.max_code); /* Build the bit length tree: */ build_tree(state,(tree_desc *)(&state.ts.bl_desc)); /* opt_len now includes the length of the tree representations, except * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. */ /* Determine the number of bit length codes to send. The pkzip format * requires that at least 4 bit length codes be sent. (appnote.txt says * 3 but the actual value used is 4.) */ for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { if (state.ts.bl_tree[bl_order[max_blindex]].dl.len != 0) break; } /* Update opt_len to include the bit length tree and counts */ state.ts.opt_len += 3*(max_blindex+1) + 5+5+4; ZTrace("\ndyn trees: dyn %ld, stat %ld", state.ts.opt_len, state.ts.static_len); return max_blindex; } /* =========================================================================== * Send the header for a block using dynamic Huffman trees: the counts, the * lengths of the bit length codes, the literal tree and the distance tree. * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. */ void send_all_trees(TState &state,int lcodes, int dcodes, int blcodes) { int rank; /* index in bl_order */ Assert(state,lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); Assert(state,lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, "too many codes"); ZTrace("\nbl counts: "); send_bits(state,lcodes-257, 5); /* not +255 as stated in appnote.txt 1.93a or -256 in 2.04c */ send_bits(state,dcodes-1, 5); send_bits(state,blcodes-4, 4); /* not -3 as stated in appnote.txt */ for (rank = 0; rank < blcodes; rank++) { ZTrace("\nbl code %2d ", bl_order[rank]); send_bits(state,state.ts.bl_tree[bl_order[rank]].dl.len, 3); } ZTrace("\nbl tree: sent %ld", state.bs.bits_sent); send_tree(state,(ct_data *)state.ts.dyn_ltree, lcodes-1); /* send the literal tree */ ZTrace("\nlit tree: sent %ld", state.bs.bits_sent); send_tree(state,(ct_data *)state.ts.dyn_dtree, dcodes-1); /* send the distance tree */ ZTrace("\ndist tree: sent %ld", state.bs.bits_sent); } /* =========================================================================== * Determine the best encoding for the current block: dynamic trees, static * trees or store, and output the encoded block to the zip file. This function * returns the total compressed length (in bytes) for the file so far. */ ulg flush_block(TState &state,char *buf, ulg stored_len, int eof) { ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ int max_blindex; /* index of last bit length code of non zero freq */ state.ts.flag_buf[state.ts.last_flags] = state.ts.flags; /* Save the flags for the last 8 items */ /* Check if the file is ascii or binary */ if (*state.ts.file_type == (ush)UNKNOWN) set_file_type(state); /* Construct the literal and distance trees */ build_tree(state,(tree_desc *)(&state.ts.l_desc)); ZTrace("\nlit data: dyn %ld, stat %ld", state.ts.opt_len, state.ts.static_len); build_tree(state,(tree_desc *)(&state.ts.d_desc)); ZTrace("\ndist data: dyn %ld, stat %ld", state.ts.opt_len, state.ts.static_len); /* At this point, opt_len and static_len are the total bit lengths of * the compressed block data, excluding the tree representations. */ /* Build the bit length tree for the above two trees, and get the index * in bl_order of the last bit length code to send. */ max_blindex = build_bl_tree(state); /* Determine the best encoding. Compute first the block length in bytes */ opt_lenb = (state.ts.opt_len+3+7)>>3; static_lenb = (state.ts.static_len+3+7)>>3; state.ts.input_len += stored_len; /* for debugging only */ ZTrace("\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ", opt_lenb, state.ts.opt_len, static_lenb, state.ts.static_len, stored_len, state.ts.last_lit, state.ts.last_dist); if (static_lenb <= opt_lenb) opt_lenb = static_lenb; // Originally, zip allowed the file to be transformed from a compressed // into a stored file in the case where compression failed, there // was only one block, and it was allowed to change. I've removed this // possibility since the code's cleaner if no changes are allowed. //if (stored_len <= opt_lenb && eof && state.ts.cmpr_bytelen == 0L // && state.ts.cmpr_len_bits == 0L && state.seekable) //{ // && state.ts.file_method != NULL // // Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: // Assert(state,buf!=NULL,"block vanished"); // copy_block(state,buf, (unsigned)stored_len, 0); // without header // state.ts.cmpr_bytelen = stored_len; // Assert(state,false,"unimplemented *state.ts.file_method = STORE;"); // //*state.ts.file_method = STORE; //} //else if (stored_len+4 <= opt_lenb && buf != (char*)NULL) { /* 4: two words for the lengths */ /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. * Otherwise we can't have processed more than WSIZE input bytes since * the last block flush, because compression would have been * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to * transform a block into a stored block. */ send_bits(state,(STORED_BLOCK<<1)+eof, 3); /* send block type */ state.ts.cmpr_bytelen += ((state.ts.cmpr_len_bits + 3 + 7) >> 3) + stored_len + 4; state.ts.cmpr_len_bits = 0L; copy_block(state,buf, (unsigned)stored_len, 1); /* with header */ } else if (static_lenb == opt_lenb) { send_bits(state,(STATIC_TREES<<1)+eof, 3); compress_block(state,(ct_data *)state.ts.static_ltree, (ct_data *)state.ts.static_dtree); state.ts.cmpr_len_bits += 3 + state.ts.static_len; state.ts.cmpr_bytelen += state.ts.cmpr_len_bits >> 3; state.ts.cmpr_len_bits &= 7L; } else { send_bits(state,(DYN_TREES<<1)+eof, 3); send_all_trees(state,state.ts.l_desc.max_code+1, state.ts.d_desc.max_code+1, max_blindex+1); compress_block(state,(ct_data *)state.ts.dyn_ltree, (ct_data *)state.ts.dyn_dtree); state.ts.cmpr_len_bits += 3 + state.ts.opt_len; state.ts.cmpr_bytelen += state.ts.cmpr_len_bits >> 3; state.ts.cmpr_len_bits &= 7L; } Assert(state,((state.ts.cmpr_bytelen << 3) + state.ts.cmpr_len_bits) == state.bs.bits_sent, "bad compressed size"); init_block(state); if (eof) { // Assert(state,input_len == isize, "bad input size"); bi_windup(state); state.ts.cmpr_len_bits += 7; /* align on byte boundary */ } ZTrace("\n"); return state.ts.cmpr_bytelen + (state.ts.cmpr_len_bits >> 3); } /* =========================================================================== * Save the match info and tally the frequency counts. Return true if * the current block must be flushed. */ int ct_tally (TState &state,int dist, int lc) { state.ts.l_buf[state.ts.last_lit++] = (uch)lc; if (dist == 0) { /* lc is the unmatched char */ state.ts.dyn_ltree[lc].fc.freq++; } else { /* Here, lc is the match length - MIN_MATCH */ dist--; /* dist = match distance - 1 */ Assert(state,(ush)dist < (ush)MAX_DIST && (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && (ush)d_code(dist) < (ush)D_CODES, "ct_tally: bad match"); state.ts.dyn_ltree[state.ts.length_code[lc]+LITERALS+1].fc.freq++; state.ts.dyn_dtree[d_code(dist)].fc.freq++; state.ts.d_buf[state.ts.last_dist++] = (ush)dist; state.ts.flags |= state.ts.flag_bit; } state.ts.flag_bit <<= 1; /* Output the flags if they fill a byte: */ if ((state.ts.last_lit & 7) == 0) { state.ts.flag_buf[state.ts.last_flags++] = state.ts.flags; state.ts.flags = 0, state.ts.flag_bit = 1; } /* Try to guess if it is profitable to stop the current block here */ if (state.level > 2 && (state.ts.last_lit & 0xfff) == 0) { /* Compute an upper bound for the compressed length */ ulg out_length = (ulg)state.ts.last_lit*8L; ulg in_length = (ulg)state.ds.strstart-state.ds.block_start; int dcode; for (dcode = 0; dcode < D_CODES; dcode++) { out_length += (ulg)state.ts.dyn_dtree[dcode].fc.freq*(5L+extra_dbits[dcode]); } out_length >>= 3; ZTrace("\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ", state.ts.last_lit, state.ts.last_dist, in_length, out_length, 100L - out_length*100L/in_length); if (state.ts.last_dist < state.ts.last_lit/2 && out_length < in_length/2) return 1; } return (state.ts.last_lit == LIT_BUFSIZE-1 || state.ts.last_dist == DIST_BUFSIZE); /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K * on 16 bit machines and because stored blocks are restricted to * 64K-1 bytes. */ } /* =========================================================================== * Send the block data compressed using the given Huffman trees */ void compress_block(TState &state,ct_data *ltree, ct_data *dtree) { unsigned dist; /* distance of matched string */ int lc; /* match length or unmatched char (if dist == 0) */ unsigned lx = 0; /* running index in l_buf */ unsigned dx = 0; /* running index in d_buf */ unsigned fx = 0; /* running index in flag_buf */ uch flag = 0; /* current flags */ unsigned code; /* the code to send */ int extra; /* number of extra bits to send */ if (state.ts.last_lit != 0) do { if ((lx & 7) == 0) flag = state.ts.flag_buf[fx++]; lc = state.ts.l_buf[lx++]; if ((flag & 1) == 0) { send_code(state,lc, ltree); /* send a literal byte */ } else { /* Here, lc is the match length - MIN_MATCH */ code = state.ts.length_code[lc]; send_code(state,code+LITERALS+1, ltree); /* send the length code */ extra = extra_lbits[code]; if (extra != 0) { lc -= state.ts.base_length[code]; send_bits(state,lc, extra); /* send the extra length bits */ } dist = state.ts.d_buf[dx++]; /* Here, dist is the match distance - 1 */ code = d_code(dist); Assert(state,code < D_CODES, "bad d_code"); send_code(state,code, dtree); /* send the distance code */ extra = extra_dbits[code]; if (extra != 0) { dist -= state.ts.base_dist[code]; send_bits(state,dist, extra); /* send the extra distance bits */ } } /* literal or match pair ? */ flag >>= 1; } while (lx < state.ts.last_lit); send_code(state,END_BLOCK, ltree); } /* =========================================================================== * Set the file type to ASCII or BINARY, using a crude approximation: * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise. * IN assertion: the fields freq of dyn_ltree are set and the total of all * frequencies does not exceed 64K (to fit in an int on 16 bit machines). */ void set_file_type(TState &state) { int n = 0; unsigned ascii_freq = 0; unsigned bin_freq = 0; while (n < 7) bin_freq += state.ts.dyn_ltree[n++].fc.freq; while (n < 128) ascii_freq += state.ts.dyn_ltree[n++].fc.freq; while (n < LITERALS) bin_freq += state.ts.dyn_ltree[n++].fc.freq; *state.ts.file_type = (ush)(bin_freq > (ascii_freq >> 2) ? BINARY : ASCII); } /* =========================================================================== * Initialize the bit string routines. */ void bi_init (TState &state,char *tgt_buf, unsigned tgt_size, int flsh_allowed) { state.bs.out_buf = tgt_buf; state.bs.out_size = tgt_size; state.bs.out_offset = 0; state.bs.flush_flg = flsh_allowed; state.bs.bi_buf = 0; state.bs.bi_valid = 0; state.bs.bits_sent = 0L; } /* =========================================================================== * Send a value on a given number of bits. * IN assertion: length <= 16 and value fits in length bits. */ void send_bits(TState &state,int value, int length) { Assert(state,length > 0 && length <= 15, "invalid length"); state.bs.bits_sent += (ulg)length; /* If not enough room in bi_buf, use (bi_valid) bits from bi_buf and * (Buf_size - bi_valid) bits from value to flush the filled bi_buf, * then fill in the rest of (value), leaving (length - (Buf_size-bi_valid)) * unused bits in bi_buf. */ state.bs.bi_buf |= (value << state.bs.bi_valid); state.bs.bi_valid += length; if (state.bs.bi_valid > (int)Buf_size) { PUTSHORT(state,state.bs.bi_buf); state.bs.bi_valid -= Buf_size; state.bs.bi_buf = (unsigned)value >> (length - state.bs.bi_valid); } } /* =========================================================================== * Reverse the first len bits of a code, using straightforward code (a faster * method would use a table) * IN assertion: 1 <= len <= 15 */ unsigned bi_reverse(unsigned code, int len) { register unsigned res = 0; do { res |= code & 1; code >>= 1, res <<= 1; } while (--len > 0); return res >> 1; } /* =========================================================================== * Write out any remaining bits in an incomplete byte. */ void bi_windup(TState &state) { if (state.bs.bi_valid > 8) { PUTSHORT(state,state.bs.bi_buf); } else if (state.bs.bi_valid > 0) { PUTBYTE(state,state.bs.bi_buf); } if (state.bs.flush_flg) { state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset); } state.bs.bi_buf = 0; state.bs.bi_valid = 0; state.bs.bits_sent = (state.bs.bits_sent+7) & ~7; } /* =========================================================================== * Copy a stored block to the zip file, storing first the length and its * one's complement if requested. */ void copy_block(TState &state, char *block, unsigned len, int header) { bi_windup(state); /* align on byte boundary */ if (header) { PUTSHORT(state,(ush)len); PUTSHORT(state,(ush)~len); state.bs.bits_sent += 2*16; } if (state.bs.flush_flg) { state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset); state.bs.out_offset = len; state.flush_outbuf(state.param,block, &state.bs.out_offset); } else if (state.bs.out_offset + len > state.bs.out_size) { Assert(state,false,"output buffer too small for in-memory compression"); } else { memcpy(state.bs.out_buf + state.bs.out_offset, block, len); state.bs.out_offset += len; } state.bs.bits_sent += (ulg)len<<3; } /* =========================================================================== * Prototypes for functions. */ void fill_window (TState &state); ulg deflate_fast (TState &state); int longest_match (TState &state,IPos cur_match); /* =========================================================================== * Update a hash value with the given input byte * IN assertion: all calls to to UPDATE_HASH are made with consecutive * input characters, so that a running hash key can be computed from the * previous key instead of complete recalculation each time. */ #define UPDATE_HASH(h,c) (h = (((h)<<H_SHIFT) ^ (c)) & HASH_MASK) /* =========================================================================== * Insert string s in the dictionary and set match_head to the previous head * of the hash chain (the most recent string with same hash key). Return * the previous length of the hash chain. * IN assertion: all calls to to INSERT_STRING are made with consecutive * input characters and the first MIN_MATCH bytes of s are valid * (except for the last MIN_MATCH-1 bytes of the input file). */ #define INSERT_STRING(s, match_head) \ (UPDATE_HASH(state.ds.ins_h, state.ds.window[(s) + (MIN_MATCH-1)]), \ state.ds.prev[(s) & WMASK] = match_head = state.ds.head[state.ds.ins_h], \ state.ds.head[state.ds.ins_h] = (s)) /* =========================================================================== * Initialize the "longest match" routines for a new file * * IN assertion: window_size is > 0 if the input file is already read or * mmap'ed in the window[] array, 0 otherwise. In the first case, * window_size is sufficient to contain the whole input file plus * MIN_LOOKAHEAD bytes (to avoid referencing memory beyond the end * of window[] when looking for matches towards the end). */ void lm_init (TState &state, int pack_level, ush *flags) { register unsigned j; Assert(state,pack_level>=1 && pack_level<=8,"bad pack level"); /* Do not slide the window if the whole input is already in memory * (window_size > 0) */ state.ds.sliding = 0; if (state.ds.window_size == 0L) { state.ds.sliding = 1; state.ds.window_size = (ulg)2L*WSIZE; } /* Initialize the hash table (avoiding 64K overflow for 16 bit systems). * prev[] will be initialized on the fly. */ state.ds.head[HASH_SIZE-1] = NIL; memset((char*)state.ds.head, NIL, (unsigned)(HASH_SIZE-1)*sizeof(*state.ds.head)); /* Set the default configuration parameters: */ state.ds.max_lazy_match = configuration_table[pack_level].max_lazy; state.ds.good_match = configuration_table[pack_level].good_length; state.ds.nice_match = configuration_table[pack_level].nice_length; state.ds.max_chain_length = configuration_table[pack_level].max_chain; if (pack_level <= 2) { *flags |= FAST; } else if (pack_level >= 8) { *flags |= SLOW; } /* ??? reduce max_chain_length for binary files */ state.ds.strstart = 0; state.ds.block_start = 0L; j = WSIZE; j <<= 1; // Can read 64K in one step state.ds.lookahead = state.readfunc(state, (char*)state.ds.window, j); if (state.ds.lookahead == 0 || state.ds.lookahead == (unsigned)EOF) { state.ds.eofile = 1, state.ds.lookahead = 0; return; } state.ds.eofile = 0; /* Make sure that we always have enough lookahead. This is important * if input comes from a device such as a tty. */ if (state.ds.lookahead < MIN_LOOKAHEAD) fill_window(state); state.ds.ins_h = 0; for (j=0; j<MIN_MATCH-1; j++) UPDATE_HASH(state.ds.ins_h, state.ds.window[j]); /* If lookahead < MIN_MATCH, ins_h is garbage, but this is * not important since only literal bytes will be emitted. */ } /* =========================================================================== * Set match_start to the longest match starting at the given string and * return its length. Matches shorter or equal to prev_length are discarded, * in which case the result is equal to prev_length and match_start is * garbage. * IN assertions: cur_match is the head of the hash chain for the current * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 */ // For 80x86 and 680x0 and ARM, an optimized version is in match.asm or // match.S. The code is functionally equivalent, so you can use the C version // if desired. Which I do so desire! int longest_match(TState &state,IPos cur_match) { unsigned chain_length = state.ds.max_chain_length; /* max hash chain length */ register uch far *scan = state.ds.window + state.ds.strstart; /* current string */ register uch far *match; /* matched string */ register int len; /* length of current match */ int best_len = state.ds.prev_length; /* best match length so far */ IPos limit = state.ds.strstart > (IPos)MAX_DIST ? state.ds.strstart - (IPos)MAX_DIST : NIL; /* Stop when cur_match becomes <= limit. To simplify the code, * we prevent matches with the string of window index 0. */ // The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. // It is easy to get rid of this optimization if necessary. Assert(state,HASH_BITS>=8 && MAX_MATCH==258,"Code too clever"); register uch far *strend = state.ds.window + state.ds.strstart + MAX_MATCH; register uch scan_end1 = scan[best_len-1]; register uch scan_end = scan[best_len]; /* Do not waste too much time if we already have a good match: */ if (state.ds.prev_length >= state.ds.good_match) { chain_length >>= 2; } Assert(state,state.ds.strstart <= state.ds.window_size-MIN_LOOKAHEAD, "insufficient lookahead"); do { Assert(state,cur_match < state.ds.strstart, "no future"); match = state.ds.window + cur_match; /* Skip to next match if the match length cannot increase * or if the match length is less than 2: */ if (match[best_len] != scan_end || match[best_len-1] != scan_end1 || *match != *scan || *++match != scan[1]) continue; /* The check at best_len-1 can be removed because it will be made * again later. (This heuristic is not always a win.) * It is not necessary to compare scan[2] and match[2] since they * are always equal when the other bytes match, given that * the hash keys are equal and that HASH_BITS >= 8. */ scan += 2, match++; /* We check for insufficient lookahead only every 8th comparison; * the 256th check will be made at strstart+258. */ do { } while (*++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && scan < strend); Assert(state,scan <= state.ds.window+(unsigned)(state.ds.window_size-1), "wild scan"); len = MAX_MATCH - (int)(strend - scan); scan = strend - MAX_MATCH; if (len > best_len) { state.ds.match_start = cur_match; best_len = len; if (len >= state.ds.nice_match) break; scan_end1 = scan[best_len-1]; scan_end = scan[best_len]; } } while ((cur_match = state.ds.prev[cur_match & WMASK]) > limit && --chain_length != 0); return best_len; } #define check_match(state,start, match, length) // or alternatively... //void check_match(TState &state,IPos start, IPos match, int length) //{ // check that the match is indeed a match // if (memcmp((char*)state.ds.window + match, // (char*)state.ds.window + start, length) != EQUAL) { // fprintf(stderr, // " start %d, match %d, length %d\n", // start, match, length); // error("invalid match"); // } // if (state.verbose > 1) { // fprintf(stderr,"\\[%d,%d]", start-match, length); // do { fprintf(stdout,"%c",state.ds.window[start++]); } while (--length != 0); // } //} /* =========================================================================== * Fill the window when the lookahead becomes insufficient. * Updates strstart and lookahead, and sets eofile if end of input file. * * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD * At least one byte has been read, or eofile is set; file reads are * performed for at least two bytes (required for the translate_eol option). */ void fill_window(TState &state) { register unsigned n, m; unsigned more; /* Amount of free space at the end of the window. */ do { more = (unsigned)(state.ds.window_size - (ulg)state.ds.lookahead - (ulg)state.ds.strstart); /* If the window is almost full and there is insufficient lookahead, * move the upper half to the lower one to make room in the upper half. */ if (more == (unsigned)EOF) { /* Very unlikely, but possible on 16 bit machine if strstart == 0 * and lookahead == 1 (input done one byte at time) */ more--; /* For MMAP or BIG_MEM, the whole input file is already in memory so * we must not perform sliding. We must however call (*read_buf)() in * order to compute the crc, update lookahead and possibly set eofile. */ } else if (state.ds.strstart >= WSIZE+MAX_DIST && state.ds.sliding) { /* By the IN assertion, the window is not empty so we can't confuse * more == 0 with more == 64K on a 16 bit machine. */ memcpy((char*)state.ds.window, (char*)state.ds.window+WSIZE, (unsigned)WSIZE); state.ds.match_start -= WSIZE; state.ds.strstart -= WSIZE; /* we now have strstart >= MAX_DIST: */ state.ds.block_start -= (long) WSIZE; for (n = 0; n < HASH_SIZE; n++) { m = state.ds.head[n]; state.ds.head[n] = (Pos)(m >= WSIZE ? m-WSIZE : NIL); } for (n = 0; n < WSIZE; n++) { m = state.ds.prev[n]; state.ds.prev[n] = (Pos)(m >= WSIZE ? m-WSIZE : NIL); /* If n is not on any hash chain, prev[n] is garbage but * its value will never be used. */ } more += WSIZE; } if (state.ds.eofile) return; /* If there was no sliding: * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && * more == window_size - lookahead - strstart * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) * => more >= window_size - 2*WSIZE + 2 * In the MMAP or BIG_MEM case (not yet supported in gzip), * window_size == input_size + MIN_LOOKAHEAD && * strstart + lookahead <= input_size => more >= MIN_LOOKAHEAD. * Otherwise, window_size == 2*WSIZE so more >= 2. * If there was sliding, more >= WSIZE. So in all cases, more >= 2. */ Assert(state,more >= 2, "more < 2"); n = state.readfunc(state, (char*)state.ds.window+state.ds.strstart+state.ds.lookahead, more); if (n == 0 || n == (unsigned)EOF) { state.ds.eofile = 1; } else { state.ds.lookahead += n; } } while (state.ds.lookahead < MIN_LOOKAHEAD && !state.ds.eofile); } /* =========================================================================== * Flush the current block, with given end-of-file flag. * IN assertion: strstart is set to the end of the current match. */ #define FLUSH_BLOCK(state,eof) \ flush_block(state,state.ds.block_start >= 0L ? (char*)&state.ds.window[(unsigned)state.ds.block_start] : \ (char*)NULL, (long)state.ds.strstart - state.ds.block_start, (eof)) /* =========================================================================== * Processes a new input file and return its compressed length. This * function does not perform lazy evaluation of matches and inserts * new strings in the dictionary only for unmatched strings or for short * matches. It is used only for the fast compression options. */ ulg deflate_fast(TState &state) { IPos hash_head = NIL; /* head of the hash chain */ int flush; /* set if current block must be flushed */ unsigned match_length = 0; /* length of best match */ state.ds.prev_length = MIN_MATCH-1; while (state.ds.lookahead != 0) { /* Insert the string window[strstart .. strstart+2] in the * dictionary, and set hash_head to the head of the hash chain: */ if (state.ds.lookahead >= MIN_MATCH) INSERT_STRING(state.ds.strstart, hash_head); /* Find the longest match, discarding those <= prev_length. * At this point we have always match_length < MIN_MATCH */ if (hash_head != NIL && state.ds.strstart - hash_head <= MAX_DIST) { /* To simplify the code, we prevent matches with the string * of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ /* Do not look for matches beyond the end of the input. * This is necessary to make deflate deterministic. */ if ((unsigned)state.ds.nice_match > state.ds.lookahead) state.ds.nice_match = (int)state.ds.lookahead; match_length = longest_match (state,hash_head); /* longest_match() sets match_start */ if (match_length > state.ds.lookahead) match_length = state.ds.lookahead; } if (match_length >= MIN_MATCH) { check_match(state,state.ds.strstart, state.ds.match_start, match_length); flush = ct_tally(state,state.ds.strstart-state.ds.match_start, match_length - MIN_MATCH); state.ds.lookahead -= match_length; /* Insert new strings in the hash table only if the match length * is not too large. This saves time but degrades compression. */ if (match_length <= state.ds.max_insert_length && state.ds.lookahead >= MIN_MATCH) { match_length--; /* string at strstart already in hash table */ do { state.ds.strstart++; INSERT_STRING(state.ds.strstart, hash_head); /* strstart never exceeds WSIZE-MAX_MATCH, so there are * always MIN_MATCH bytes ahead. */ } while (--match_length != 0); state.ds.strstart++; } else { state.ds.strstart += match_length; match_length = 0; state.ds.ins_h = state.ds.window[state.ds.strstart]; UPDATE_HASH(state.ds.ins_h, state.ds.window[state.ds.strstart+1]); Assert(state,MIN_MATCH==3,"Call UPDATE_HASH() MIN_MATCH-3 more times"); } } else { /* No match, output a literal byte */ flush = ct_tally (state,0, state.ds.window[state.ds.strstart]); state.ds.lookahead--; state.ds.strstart++; } if (flush) FLUSH_BLOCK(state,0), state.ds.block_start = state.ds.strstart; /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ if (state.ds.lookahead < MIN_LOOKAHEAD) fill_window(state); } return FLUSH_BLOCK(state,1); /* eof */ } /* =========================================================================== * Same as above, but achieves better compression. We use a lazy * evaluation for matches: a match is finally adopted only if there is * no better match at the next window position. */ ulg deflate(TState &state) { IPos hash_head = NIL; /* head of hash chain */ IPos prev_match; /* previous match */ int flush; /* set if current block must be flushed */ int match_available = 0; /* set if previous match exists */ register unsigned match_length = MIN_MATCH-1; /* length of best match */ if (state.level <= 3) return deflate_fast(state); /* optimized for speed */ /* Process the input block. */ while (state.ds.lookahead != 0) { /* Insert the string window[strstart .. strstart+2] in the * dictionary, and set hash_head to the head of the hash chain: */ if (state.ds.lookahead >= MIN_MATCH) INSERT_STRING(state.ds.strstart, hash_head); /* Find the longest match, discarding those <= prev_length. */ state.ds.prev_length = match_length, prev_match = state.ds.match_start; match_length = MIN_MATCH-1; if (hash_head != NIL && state.ds.prev_length < state.ds.max_lazy_match && state.ds.strstart - hash_head <= MAX_DIST) { /* To simplify the code, we prevent matches with the string * of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ /* Do not look for matches beyond the end of the input. * This is necessary to make deflate deterministic. */ if ((unsigned)state.ds.nice_match > state.ds.lookahead) state.ds.nice_match = (int)state.ds.lookahead; match_length = longest_match (state,hash_head); /* longest_match() sets match_start */ if (match_length > state.ds.lookahead) match_length = state.ds.lookahead; /* Ignore a length 3 match if it is too distant: */ if (match_length == MIN_MATCH && state.ds.strstart-state.ds.match_start > TOO_FAR){ /* If prev_match is also MIN_MATCH, match_start is garbage * but we will ignore the current match anyway. */ match_length = MIN_MATCH-1; } } /* If there was a match at the previous step and the current * match is not better, output the previous match: */ if (state.ds.prev_length >= MIN_MATCH && match_length <= state.ds.prev_length) { unsigned max_insert = state.ds.strstart + state.ds.lookahead - MIN_MATCH; check_match(state,state.ds.strstart-1, prev_match, state.ds.prev_length); flush = ct_tally(state,state.ds.strstart-1-prev_match, state.ds.prev_length - MIN_MATCH); /* Insert in hash table all strings up to the end of the match. * strstart-1 and strstart are already inserted. */ state.ds.lookahead -= state.ds.prev_length-1; state.ds.prev_length -= 2; do { if (++state.ds.strstart <= max_insert) { INSERT_STRING(state.ds.strstart, hash_head); /* strstart never exceeds WSIZE-MAX_MATCH, so there are * always MIN_MATCH bytes ahead. */ } } while (--state.ds.prev_length != 0); state.ds.strstart++; match_available = 0; match_length = MIN_MATCH-1; if (flush) FLUSH_BLOCK(state,0), state.ds.block_start = state.ds.strstart; } else if (match_available) { /* If there was no match at the previous position, output a * single literal. If there was a match but the current match * is longer, truncate the previous match to a single literal. */ if (ct_tally (state,0, state.ds.window[state.ds.strstart-1])) { FLUSH_BLOCK(state,0), state.ds.block_start = state.ds.strstart; } state.ds.strstart++; state.ds.lookahead--; } else { /* There is no previous match to compare with, wait for * the next step to decide. */ match_available = 1; state.ds.strstart++; state.ds.lookahead--; } // Assert(state,strstart <= isize && lookahead <= isize, "a bit too far"); /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ if (state.ds.lookahead < MIN_LOOKAHEAD) fill_window(state); } if (match_available) ct_tally (state,0, state.ds.window[state.ds.strstart-1]); return FLUSH_BLOCK(state,1); /* eof */ } int putlocal(struct zlist far *z, WRITEFUNC wfunc,void *param) { // Write a local header described by *z to file *f. Return a ZE_ error code. PUTLG(LOCSIG, f); PUTSH(z->ver, f); PUTSH(z->lflg, f); PUTSH(z->how, f); PUTLG(z->tim, f); PUTLG(z->crc, f); PUTLG(z->siz, f); PUTLG(z->len, f); PUTSH(z->nam, f); PUTSH(z->ext, f); size_t res = (size_t)wfunc(param, z->iname, (unsigned int)z->nam); if (res!=z->nam) return ZE_TEMP; if (z->ext) { res = (size_t)wfunc(param, z->extra, (unsigned int)z->ext); if (res!=z->ext) return ZE_TEMP; } return ZE_OK; } int putextended(struct zlist far *z, WRITEFUNC wfunc, void *param) { // Write an extended local header described by *z to file *f. Returns a ZE_ code PUTLG(EXTLOCSIG, f); PUTLG(z->crc, f); PUTLG(z->siz, f); PUTLG(z->len, f); return ZE_OK; } int putcentral(struct zlist far *z, WRITEFUNC wfunc, void *param) { // Write a central header entry of *z to file *f. Returns a ZE_ code. PUTLG(CENSIG, f); PUTSH(z->vem, f); PUTSH(z->ver, f); PUTSH(z->flg, f); PUTSH(z->how, f); PUTLG(z->tim, f); PUTLG(z->crc, f); PUTLG(z->siz, f); PUTLG(z->len, f); PUTSH(z->nam, f); PUTSH(z->cext, f); PUTSH(z->com, f); PUTSH(z->dsk, f); PUTSH(z->att, f); PUTLG(z->atx, f); PUTLG(z->off, f); if ((size_t)wfunc(param, z->iname, (unsigned int)z->nam) != z->nam || (z->cext && (size_t)wfunc(param, z->cextra, (unsigned int)z->cext) != z->cext) || (z->com && (size_t)wfunc(param, z->comment, (unsigned int)z->com) != z->com)) return ZE_TEMP; return ZE_OK; } int putend(int n, ulg s, ulg c, extent m, char *z, WRITEFUNC wfunc, void *param) { // write the end of the central-directory-data to file *f. PUTLG(ENDSIG, f); PUTSH(0, f); PUTSH(0, f); PUTSH(n, f); PUTSH(n, f); PUTLG(s, f); PUTLG(c, f); PUTSH(m, f); // Write the comment, if any if (m && wfunc(param, z, (unsigned int)m) != m) return ZE_TEMP; return ZE_OK; } const ulg _crc_table[256] = { 0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L, 0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L, 0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L, 0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL, 0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L, 0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L, 0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L, 0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL, 0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L, 0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL, 0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L, 0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L, 0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L, 0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL, 0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL, 0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L, 0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL, 0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L, 0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L, 0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L, 0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL, 0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L, 0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L, 0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL, 0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L, 0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L, 0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L, 0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L, 0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L, 0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL, 0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL, 0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L, 0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L, 0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL, 0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL, 0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L, 0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL, 0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L, 0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL, 0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L, 0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL, 0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L, 0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L, 0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL, 0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L, 0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L, 0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L, 0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L, 0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L, 0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L, 0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL, 0x2d02ef8dL }; #define _CRC32(c, b) (_crc_table[((int)(c) ^ (b)) & 0xff] ^ ((c) >> 8)) #define DO1(buf) crc = _CRC32(crc, *buf++) #define DO2(buf) DO1(buf); DO1(buf) #define DO4(buf) DO2(buf); DO2(buf) #define DO8(buf) DO4(buf); DO4(buf) ulg crc32(ulg crc, const uch *buf, extent len) { if (buf==NULL) return 0L; crc = crc ^ 0xffffffffL; while (len >= 8) {DO8(buf); len -= 8;} if (len) do {DO1(buf);} while (--len); return crc ^ 0xffffffffL; // (instead of ~c for 64-bit machines) } void update_keys(unsigned long *keys, char c) { keys[0] = _CRC32(keys[0],c); keys[1] += keys[0] & 0xFF; keys[1] = keys[1]*134775813L +1; keys[2] = _CRC32(keys[2], keys[1] >> 24); } char decrypt_byte(unsigned long *keys) { unsigned temp = ((unsigned)keys[2] & 0xffff) | 2; return (char)(((temp * (temp ^ 1)) >> 8) & 0xff); } char zencode(unsigned long *keys, char c) { int t=decrypt_byte(keys); update_keys(keys,c); return (char)(t^c); } bool HasZipSuffix(const TCHAR *fn) { const TCHAR *ext = fn+_tcslen(fn); while (ext>fn && *ext!='.') ext--; if (ext==fn && *ext!='.') return false; if (_tcsicmp(ext,_T(".Z"))==0) return true; if (_tcsicmp(ext,_T(".zip"))==0) return true; if (_tcsicmp(ext,_T(".zoo"))==0) return true; if (_tcsicmp(ext,_T(".arc"))==0) return true; if (_tcsicmp(ext,_T(".lzh"))==0) return true; if (_tcsicmp(ext,_T(".arj"))==0) return true; if (_tcsicmp(ext,_T(".gz"))==0) return true; if (_tcsicmp(ext,_T(".tgz"))==0) return true; return false; } __int64 filetime2timet(const FILETIME ft) { __int64 i = *(__int64*)&ft; return (__int64)((i-116444736000000000)/10000000); } void filetime2dosdatetime(const FILETIME ft, WORD *dosdate,WORD *dostime) { // date: bits 0-4 are day of month 1-31. Bits 5-8 are month 1..12. Bits 9-15 are year-1980 // time: bits 0-4 are seconds/2, bits 5-10 are minute 0..59. Bits 11-15 are hour 0..23 SYSTEMTIME st; FileTimeToSystemTime(&ft,&st); *dosdate = (WORD)(((st.wYear-1980)&0x7f) << 9); *dosdate |= (WORD)((st.wMonth&0xf) << 5); *dosdate |= (WORD)((st.wDay&0x1f)); *dostime = (WORD)((st.wHour&0x1f) << 11); *dostime |= (WORD)((st.wMinute&0x3f) << 5); *dostime |= (WORD)((st.wSecond*2)&0x1f); } ZRESULT GetFileInfo(HANDLE hf, ulg *attr, long *size, iztimes *times, ulg *timestamp) { // The handle must be a handle to a file // The date and time is returned in a long with the date most significant to allow // unsigned integer comparison of absolute times. The attributes have two // high bytes unix attr, and two low bytes a mapping of that to DOS attr. //struct stat s; int res=stat(fn,&s); if (res!=0) return false; // translate windows file attributes into zip ones. BY_HANDLE_FILE_INFORMATION bhi; BOOL res=GetFileInformationByHandle(hf,&bhi); if (!res) return ZR_NOFILE; DWORD fa=bhi.dwFileAttributes; ulg a=0; // Zip uses the lower word for its interpretation of windows stuff if (fa&FILE_ATTRIBUTE_READONLY) a|=0x01; if (fa&FILE_ATTRIBUTE_HIDDEN) a|=0x02; if (fa&FILE_ATTRIBUTE_SYSTEM) a|=0x04; if (fa&FILE_ATTRIBUTE_DIRECTORY)a|=0x10; if (fa&FILE_ATTRIBUTE_ARCHIVE) a|=0x20; // It uses the upper word for standard unix attr, which we manually construct if (fa&FILE_ATTRIBUTE_DIRECTORY)a|=0x40000000; // directory else a|=0x80000000; // normal file a|=0x01000000; // readable if (fa&FILE_ATTRIBUTE_READONLY) {} else a|=0x00800000; // writeable // now just a small heuristic to check if it's an executable: DWORD red, hsize=GetFileSize(hf,NULL); if (hsize>40) { SetFilePointer(hf,0,NULL,FILE_BEGIN); unsigned short magic; ReadFile(hf,&magic,sizeof(magic),&red,NULL); SetFilePointer(hf,36,NULL,FILE_BEGIN); unsigned long hpos; ReadFile(hf,&hpos,sizeof(hpos),&red,NULL); if (magic==0x54AD && hsize>hpos+4+20+28) { SetFilePointer(hf,hpos,NULL,FILE_BEGIN); unsigned long signature; ReadFile(hf,&signature,sizeof(signature),&red,NULL); if (signature==IMAGE_DOS_SIGNATURE || signature==IMAGE_OS2_SIGNATURE || signature==IMAGE_OS2_SIGNATURE_LE || signature==IMAGE_NT_SIGNATURE) { a |= 0x00400000; // executable } } } // if (attr!=NULL) *attr = a; if (size!=NULL) *size = hsize; if (times!=NULL) { // __int64 is 32bit number of seconds elapsed since 0:0:0GMT, Jan1, 1970. // but FILETIME is 64bit number of 100-nanosecs since Jan1, 1601 times->atime = filetime2timet(bhi.ftLastAccessTime); times->mtime = filetime2timet(bhi.ftLastWriteTime); times->ctime = filetime2timet(bhi.ftCreationTime); } if (timestamp!=NULL) { WORD dosdate,dostime; filetime2dosdatetime(bhi.ftLastWriteTime,&dosdate,&dostime); *timestamp = (WORD)dostime | (((DWORD)dosdate)<<16); } return ZR_OK; } class TZip { public: TZip(const char *pwd) : password(0) , hfout(0) , mustclosehfout(false) , hmapout(0) , ooffset(0) , oerr(false) , writ(0) , obuf(0) , hasputcen(false) , encwriting(false) , encbuf(0) , zfis(0) , state(0) , hfin(0) { if (pwd!=0 && *pwd!=0) { password = new char[strlen(pwd)+1]; strcpy_s(password, strlen(pwd) + 1, pwd); } } ~TZip() {if (state!=0) delete state; state=0; if (encbuf!=0) delete[] encbuf; encbuf=0; if (password!=0) delete[] password; password=0;} // These variables say about the file we're writing into // We can write to pipe, file-by-handle, file-by-name, memory-to-memmapfile char *password; // keep a copy of the password HANDLE hfout; // if valid, we'll write here (for files or pipes) bool mustclosehfout; // if true, we are responsible for closing hfout HANDLE hmapout; // otherwise, we'll write here (for memmap) unsigned ooffset; // for hfout, this is where the pointer was initially ZRESULT oerr; // did a write operation give rise to an error? unsigned writ; // how far have we written. This is maintained by Add, not write(), to avoid confusion over seeks bool ocanseek; // can we seek? char *obuf; // this is where we've locked mmap to view. unsigned int opos; // current pos in the mmap unsigned int mapsize; // the size of the map we created bool hasputcen; // have we yet placed the central directory? bool encwriting; // if true, then we'll encrypt stuff using 'keys' before we write it to disk unsigned long keys[3]; // keys are initialised inside Add() char *encbuf; // if encrypting, then this is a temporary workspace for encrypting the data unsigned int encbufsize; // (to be used and resized inside write(), and deleted in the destructor) // TZipFileInfo *zfis; // each file gets added onto this list, for writing the table at the end TState *state; // we use just one state object per zip, because it's big (500k) ZRESULT Create(void *z,unsigned int len,DWORD flags); static unsigned sflush(void *param,const char *buf, unsigned *size); static unsigned swrite(void *param,const char *buf, unsigned size); unsigned int write(const char *buf,unsigned int size); bool oseek(unsigned int pos); ZRESULT GetMemory(void **pbuf, unsigned long *plen); ZRESULT Close(); // some variables to do with the file currently being read: // I haven't done it object-orientedly here, just put them all // together, since OO didn't seem to make the design any clearer. ulg attr; iztimes times; ulg timestamp; // all open_* methods set these bool iseekable; long isize,ired; // size is not set until close() on pips ulg crc; // crc is not set until close(). iwrit is cumulative HANDLE hfin; bool selfclosehf; // for input files and pipes const char *bufin; unsigned int lenin,posin; // for memory // and a variable for what we've done with the input: (i.e. compressed it!) ulg csize; // compressed size, set by the compression routines // and this is used by some of the compression routines char buf[16384]; ZRESULT open_file(const TCHAR *fn); ZRESULT open_handle(HANDLE hf,unsigned int len); ZRESULT open_mem(void *src,unsigned int len); ZRESULT open_dir(); static unsigned sread(TState &s,char *buf,unsigned size); unsigned read(char *buf, unsigned size); ZRESULT iclose(); ZRESULT ideflate(TZipFileInfo *zfi); ZRESULT istore(); ZRESULT Add(const TCHAR *odstzn, void *src,unsigned int len, DWORD flags); ZRESULT AddCentral(); }; ZRESULT TZip::Create(void *z,unsigned int len,DWORD flags) { if (hfout!=0 || hmapout!=0 || obuf!=0 || writ!=0 || oerr!=ZR_OK || hasputcen) return ZR_NOTINITED; // if (flags==ZIP_HANDLE) { HANDLE hf = (HANDLE)z; hfout=hf; mustclosehfout=false; #ifdef DuplicateHandle BOOL res = DuplicateHandle(GetCurrentProcess(),hf,GetCurrentProcess(),&hfout,0,FALSE,DUPLICATE_SAME_ACCESS); if (res) mustclosehandle=true; #endif // now we have hfout. Either we duplicated the handle and we close it ourselves // (while the caller closes h themselves), or we couldn't duplicate it. DWORD res = SetFilePointer(hfout,0,0,FILE_CURRENT); ocanseek = (res!=0xFFFFFFFF); if (ocanseek) ooffset=res; else ooffset=0; return ZR_OK; } else if (flags==ZIP_FILENAME) { const TCHAR *fn = (const TCHAR*)z; hfout = CreateFile(fn,GENERIC_WRITE,0,NULL,CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL); if (hfout==INVALID_HANDLE_VALUE) {hfout=0; return ZR_NOFILE;} ocanseek=true; ooffset=0; mustclosehfout=true; return ZR_OK; } else if (flags==ZIP_MEMORY) { unsigned int size = len; if (size==0) return ZR_MEMSIZE; if (z!=0) obuf=(char*)z; else { hmapout = CreateFileMapping(INVALID_HANDLE_VALUE,NULL,PAGE_READWRITE,0,size,NULL); if (hmapout==NULL) return ZR_NOALLOC; obuf = (char*)MapViewOfFile(hmapout,FILE_MAP_ALL_ACCESS,0,0,size); if (obuf==0) {CloseHandle(hmapout); hmapout=0; return ZR_NOALLOC;} } ocanseek=true; opos=0; mapsize=size; return ZR_OK; } else return ZR_ARGS; } unsigned TZip::sflush(void *param,const char *buf, unsigned *size) { // static if (*size==0) return 0; TZip *zip = (TZip*)param; unsigned int writ = zip->write(buf,*size); if (writ!=0) *size=0; return writ; } unsigned TZip::swrite(void *param,const char *buf, unsigned size) { // static if (size==0) return 0; TZip *zip=(TZip*)param; return zip->write(buf,size); } unsigned int TZip::write(const char *_buf,unsigned int size) { const char *srcbuf = _buf; if (encwriting) { if (encbuf!=0 && encbufsize<size) {delete[] encbuf; encbuf=0;} if (encbuf==0) {encbuf=new char[size*2]; encbufsize=size;} memcpy(encbuf, _buf, size); for (unsigned int i=0; i<size; i++) encbuf[i]=zencode(keys,encbuf[i]); srcbuf=encbuf; } if (obuf!=0) { if (opos+size>=mapsize) {oerr=ZR_MEMSIZE; return 0;} memcpy(obuf+opos, srcbuf, size); opos+=size; return size; } else if (hfout!=0) { DWORD _writ; WriteFile(hfout,srcbuf,size,&_writ,NULL); return _writ; } oerr=ZR_NOTINITED; return 0; } bool TZip::oseek(unsigned int pos) { if (!ocanseek) {oerr=ZR_SEEK; return false;} if (obuf!=0) { if (pos>=mapsize) {oerr=ZR_MEMSIZE; return false;} opos=pos; return true; } else if (hfout!=0) { SetFilePointer(hfout,pos+ooffset,NULL,FILE_BEGIN); return true; } oerr=ZR_NOTINITED; return 0; } ZRESULT TZip::GetMemory(void **pbuf, unsigned long *plen) { // When the user calls GetMemory, they're presumably at the end // of all their adding. In any case, we have to add the central // directory now, otherwise the memory we tell them won't be complete. if (!hasputcen) AddCentral(); hasputcen=true; if (pbuf!=NULL) *pbuf=(void*)obuf; if (plen!=NULL) *plen=writ; if (obuf==NULL) return ZR_NOTMMAP; return ZR_OK; } ZRESULT TZip::Close() { // if the directory hadn't already been added through a call to GetMemory, // then we do it now ZRESULT res=ZR_OK; if (!hasputcen) res=AddCentral(); hasputcen=true; if (obuf!=0 && hmapout!=0) UnmapViewOfFile(obuf); obuf=0; if (hmapout!=0) CloseHandle(hmapout); hmapout=0; if (hfout!=0 && mustclosehfout) CloseHandle(hfout); hfout=0; mustclosehfout=false; return res; } ZRESULT TZip::open_file(const TCHAR *fn) { hfin=0; bufin=0; selfclosehf=false; crc=CRCVAL_INITIAL; isize=0; csize=0; ired=0; if (fn==0) return ZR_ARGS; HANDLE hf = CreateFile(fn,GENERIC_READ,FILE_SHARE_READ,NULL,OPEN_EXISTING,0,NULL); if (hf==INVALID_HANDLE_VALUE) return ZR_NOFILE; ZRESULT res = open_handle(hf,0); if (res!=ZR_OK) {CloseHandle(hf); return res;} selfclosehf=true; return ZR_OK; } ZRESULT TZip::open_handle(HANDLE hf,unsigned int len) { hfin=0; bufin=0; selfclosehf=false; crc=CRCVAL_INITIAL; isize=0; csize=0; ired=0; if (hf==0 || hf==INVALID_HANDLE_VALUE) return ZR_ARGS; DWORD res = SetFilePointer(hfout,0,0,FILE_CURRENT); if (res!=0xFFFFFFFF) { ZRESULT _res = GetFileInfo(hf,&attr,&isize,×,×tamp); if (_res!=ZR_OK) return _res; SetFilePointer(hf,0,NULL,FILE_BEGIN); // because GetFileInfo will have screwed it up iseekable=true; hfin=hf; return ZR_OK; } else { attr= 0x80000000; // just a normal file isize = -1; // can't know size until at the end if (len!=0) isize=len; // unless we were told explicitly! iseekable=false; SYSTEMTIME st; GetLocalTime(&st); FILETIME ft; SystemTimeToFileTime(&st,&ft); WORD dosdate,dostime; filetime2dosdatetime(ft,&dosdate,&dostime); times.atime = filetime2timet(ft); times.mtime = times.atime; times.ctime = times.atime; timestamp = (WORD)dostime | (((DWORD)dosdate)<<16); hfin=hf; return ZR_OK; } } ZRESULT TZip::open_mem(void *src,unsigned int len) { hfin=0; bufin=(const char*)src; selfclosehf=false; crc=CRCVAL_INITIAL; ired=0; csize=0; ired=0; lenin=len; posin=0; if (src==0 || len==0) return ZR_ARGS; attr= 0x80000000; // just a normal file isize = len; iseekable=true; SYSTEMTIME st; GetLocalTime(&st); FILETIME ft; SystemTimeToFileTime(&st,&ft); WORD dosdate,dostime; filetime2dosdatetime(ft,&dosdate,&dostime); times.atime = filetime2timet(ft); times.mtime = times.atime; times.ctime = times.atime; timestamp = (WORD)dostime | (((DWORD)dosdate)<<16); return ZR_OK; } ZRESULT TZip::open_dir() { hfin=0; bufin=0; selfclosehf=false; crc=CRCVAL_INITIAL; isize=0; csize=0; ired=0; attr= 0x41C00010; // a readable writable directory, and again directory isize = 0; iseekable=false; SYSTEMTIME st; GetLocalTime(&st); FILETIME ft; SystemTimeToFileTime(&st,&ft); WORD dosdate,dostime; filetime2dosdatetime(ft,&dosdate,&dostime); times.atime = filetime2timet(ft); times.mtime = times.atime; times.ctime = times.atime; timestamp = (WORD)dostime | (((DWORD)dosdate)<<16); return ZR_OK; } unsigned TZip::sread(TState &s,char *_buf,unsigned size) { // static TZip *zip = (TZip*)s.param; return zip->read(_buf,size); } unsigned TZip::read(char * _buf, unsigned size) { if (bufin!=0) { if (posin>=lenin) return 0; // end of input ulg red = lenin-posin; if (red>size) red=size; memcpy(_buf, bufin+posin, red); posin += red; ired += red; crc = crc32(crc, (uch*)_buf, red); return red; } else if (hfin!=0) { DWORD red; BOOL ok = ReadFile(hfin, _buf,size,&red,NULL); if (!ok) return 0; ired += red; crc = crc32(crc, (uch*)_buf, red); return red; } else {oerr=ZR_NOTINITED; return 0;} } ZRESULT TZip::iclose() { if (selfclosehf && hfin!=0) CloseHandle(hfin); hfin=0; bool mismatch = (isize!=-1 && isize!=ired); isize=ired; // and crc has been being updated anyway if (mismatch) return ZR_MISSIZE; else return ZR_OK; } ZRESULT TZip::ideflate(TZipFileInfo *zfi) { if (state==0) state=new TState(); // It's a very big object! 500k! We allocate it on the heap, because PocketPC's // stack breaks if we try to put it all on the stack. It will be deleted lazily state->err=0; state->readfunc=sread; state->flush_outbuf=sflush; state->param=this; state->level=8; state->seekable=iseekable; state->err=NULL; // the following line will make ct_init realise it has to perform the init state->ts.static_dtree[0].dl.len = 0; // Thanks to Alvin77 for this crucial fix: state->ds.window_size=0; // I think that covers everything that needs to be initted. // bi_init(*state,buf, sizeof(buf), 1); // it used to be just 1024-size, not 16384 as here ct_init(*state,&zfi->att); lm_init(*state,state->level, &zfi->flg); ulg sz = deflate(*state); csize=sz; ZRESULT r=ZR_OK; if (state->err!=NULL) r=ZR_FLATE; return r; } ZRESULT TZip::istore() { ulg size=0; for (;;) { unsigned int cin=read(buf,16384); if (cin<=0 || cin==(unsigned int)EOF) break; unsigned int cout = write(buf,cin); if (cout!=cin) return ZR_MISSIZE; size += cin; } csize=size; return ZR_OK; } bool has_seeded=false; ZRESULT TZip::Add(const TCHAR *odstzn, void *src,unsigned int len, DWORD flags) { if (oerr) return ZR_FAILED; if (hasputcen) return ZR_ENDED; // if we use password encryption, then every isize and csize is 12 bytes bigger int passex=0; if (password!=0 && flags!=ZIP_FOLDER) passex=12; // zip has its own notion of what its names should look like: i.e. dir/file.stuff TCHAR dstzn[MAX_PATH]; _tcscpy_s(dstzn,odstzn); if (*dstzn==0) return ZR_ARGS; TCHAR *d=dstzn; while (*d!=0) {if (*d=='\\') *d='/'; d++;} bool isdir = (flags==ZIP_FOLDER); bool needs_trailing_slash = (isdir && dstzn[_tcslen(dstzn)-1]!='/'); int method=DEFLATE; if (isdir || HasZipSuffix(dstzn)) method=STORE; // now open whatever was our input source: ZRESULT openres; if (flags==ZIP_FILENAME) openres=open_file((const TCHAR*)src); else if (flags==ZIP_HANDLE) openres=open_handle((HANDLE)src,len); else if (flags==ZIP_MEMORY) openres=open_mem(src,len); else if (flags==ZIP_FOLDER) openres=open_dir(); else return ZR_ARGS; if (openres!=ZR_OK) return openres; // A zip "entry" consists of a local header (which includes the file name), // then the compressed data, and possibly an extended local header. // Initialize the local header TZipFileInfo zfi; zfi.nxt=NULL; strcpy_s(zfi.name,""); #ifdef UNICODE WideCharToMultiByte(CP_UTF8,0,dstzn,-1,zfi.iname,MAX_PATH,0,0); #else strcpy(zfi.iname,dstzn); #endif zfi.nam=strlen(zfi.iname); if (needs_trailing_slash) {strcat_s(zfi.iname,"/"); zfi.nam++;} strcpy_s(zfi.zname,""); zfi.extra=NULL; zfi.ext=0; // extra header to go after this compressed data, and its length zfi.cextra=NULL; zfi.cext=0; // extra header to go in the central end-of-zip directory, and its length zfi.comment=NULL; zfi.com=0; // comment, and its length zfi.mark = 1; zfi.dosflag = 0; zfi.att = (ush)BINARY; zfi.vem = (ush)0xB17; // 0xB00 is win32 os-code. 0x17 is 23 in decimal: zip 2.3 zfi.ver = (ush)20; // Needs PKUNZIP 2.0 to unzip it zfi.tim = timestamp; // Even though we write the header now, it will have to be rewritten, since we don't know compressed size or crc. zfi.crc = 0; // to be updated later zfi.flg = 8; // 8 means 'there is an extra header'. Assume for the moment that we need it. if (password!=0 && !isdir) zfi.flg=9; // and 1 means 'password-encrypted' zfi.lflg = zfi.flg; // to be updated later zfi.how = (ush)method; // to be updated later zfi.siz = (ulg)(method==STORE && isize>=0 ? isize+passex : 0); // to be updated later zfi.len = (ulg)(isize); // to be updated later zfi.dsk = 0; zfi.atx = attr; zfi.off = writ+ooffset; // offset within file of the start of this local record // stuff the 'times' structure into zfi.extra // nb. apparently there's a problem with PocketPC CE(zip)->CE(unzip) fails. And removing the following block fixes it up. char xloc[EB_L_UT_SIZE]; zfi.extra=xloc; zfi.ext=EB_L_UT_SIZE; char xcen[EB_C_UT_SIZE]; zfi.cextra=xcen; zfi.cext=EB_C_UT_SIZE; xloc[0] = 'U'; xloc[1] = 'T'; xloc[2] = EB_UT_LEN(3); // length of data part of e.f. xloc[3] = 0; xloc[4] = EB_UT_FL_MTIME | EB_UT_FL_ATIME | EB_UT_FL_CTIME; xloc[5] = (char)(times.mtime); xloc[6] = (char)(times.mtime >> 8); xloc[7] = (char)(times.mtime >> 16); xloc[8] = (char)(times.mtime >> 24); xloc[9] = (char)(times.atime); xloc[10] = (char)(times.atime >> 8); xloc[11] = (char)(times.atime >> 16); xloc[12] = (char)(times.atime >> 24); xloc[13] = (char)(times.ctime); xloc[14] = (char)(times.ctime >> 8); xloc[15] = (char)(times.ctime >> 16); xloc[16] = (char)(times.ctime >> 24); memcpy(zfi.cextra,zfi.extra,EB_C_UT_SIZE); zfi.cextra[EB_LEN] = EB_UT_LEN(1); // (1) Start by writing the local header: int r = putlocal(&zfi,swrite,this); if (r!=ZE_OK) {iclose(); return ZR_WRITE;} writ += 4 + LOCHEAD + (unsigned int)zfi.nam + (unsigned int)zfi.ext; if (oerr!=ZR_OK) {iclose(); return oerr;} // (1.5) if necessary, write the encryption header keys[0]=305419896L; keys[1]=591751049L; keys[2]=878082192L; for (const char *cp=password; cp!=0 && *cp!=0; cp++) update_keys(keys,*cp); // generate some random bytes if (!has_seeded) { HWND hHandle = GetDesktopWindow(); unsigned long i = static_cast<unsigned long>(hHandle->unused); srand(GetTickCount() ^ i); } char _encbuf[12]; for (int i=0; i<12; i++) _encbuf[i]=(char)((rand()>>7)&0xff); _encbuf[11] = (char)((zfi.tim>>8)&0xff); for (int ei=0; ei<12; ei++) _encbuf[ei]=zencode(keys, _encbuf[ei]); if (password!=0 && !isdir) { swrite(this, _encbuf, 12); writ+=12; } //(2) Write deflated/stored file to zip file ZRESULT writeres=ZR_OK; encwriting = (password!=0 && !isdir); // an object member variable to say whether we write to disk encrypted if (!isdir && method==DEFLATE) writeres=ideflate(&zfi); else if (!isdir && method==STORE) writeres=istore(); else if (isdir) csize=0; encwriting = false; iclose(); writ += csize; if (oerr!=ZR_OK) return oerr; if (writeres!=ZR_OK) return ZR_WRITE; // (3) Either rewrite the local header with correct information... bool first_header_has_size_right = (zfi.siz==csize+passex); zfi.crc = crc; zfi.siz = csize+passex; zfi.len = isize; if (ocanseek && (password==0 || isdir)) { zfi.how = (ush)method; if ((zfi.flg & 1) == 0) zfi.flg &= ~8; // clear the extended local header flag zfi.lflg = zfi.flg; // rewrite the local header: if (!oseek(zfi.off-ooffset)) return ZR_SEEK; if ((r = putlocal(&zfi, swrite,this)) != ZE_OK) return ZR_WRITE; if (!oseek(writ)) return ZR_SEEK; } else { // (4) ... or put an updated header at the end if (zfi.how != (ush) method) return ZR_NOCHANGE; if (method==STORE && !first_header_has_size_right) return ZR_NOCHANGE; if ((r = putextended(&zfi, swrite,this)) != ZE_OK) return ZR_WRITE; writ += 16L; zfi.flg = zfi.lflg; // if flg modified by inflate, for the central index } if (oerr!=ZR_OK) return oerr; // Keep a copy of the zipfileinfo, for our end-of-zip directory char *cextra = new char[zfi.cext]; memcpy(cextra,zfi.cextra,zfi.cext); zfi.cextra=cextra; TZipFileInfo *pzfi = new TZipFileInfo; memcpy(pzfi,&zfi,sizeof(zfi)); if (zfis==NULL) zfis=pzfi; else {TZipFileInfo *z=zfis; while (z->nxt!=NULL) z=z->nxt; z->nxt=pzfi;} return ZR_OK; } ZRESULT TZip::AddCentral() { // write central directory int numentries = 0; ulg pos_at_start_of_central = writ; //ulg tot_unc_size=0, tot_compressed_size=0; bool okay=true; for (TZipFileInfo *zfi=zfis; zfi!=NULL; ) { if (okay) { int res = putcentral(zfi, swrite,this); if (res!=ZE_OK) okay=false; } writ += 4 + CENHEAD + (unsigned int)zfi->nam + (unsigned int)zfi->cext + (unsigned int)zfi->com; //tot_unc_size += zfi->len; //tot_compressed_size += zfi->siz; numentries++; // TZipFileInfo *zfinext = zfi->nxt; if (zfi->cextra!=0) delete[] zfi->cextra; delete zfi; zfi = zfinext; } ulg center_size = writ - pos_at_start_of_central; if (okay) { int res = putend(numentries, center_size, pos_at_start_of_central+ooffset, 0, NULL, swrite,this); if (res!=ZE_OK) okay=false; writ += 4 + ENDHEAD + 0; } if (!okay) return ZR_WRITE; return ZR_OK; } ZRESULT lasterrorZ=ZR_OK; unsigned int FormatZipMessageZ(ZRESULT code, char *buf,unsigned int len) { if (code==ZR_RECENT) code=lasterrorZ; const char *msg="unknown zip result code"; switch (code) { case ZR_OK: msg="Success"; break; case ZR_NODUPH: msg="Culdn't duplicate handle"; break; case ZR_NOFILE: msg="Couldn't create/open file"; break; case ZR_NOALLOC: msg="Failed to allocate memory"; break; case ZR_WRITE: msg="Error writing to file"; break; case ZR_NOTFOUND: msg="File not found in the zipfile"; break; case ZR_MORE: msg="Still more data to unzip"; break; case ZR_CORRUPT: msg="Zipfile is corrupt or not a zipfile"; break; case ZR_READ: msg="Error reading file"; break; case ZR_ARGS: msg="Caller: faulty arguments"; break; case ZR_PARTIALUNZ: msg="Caller: the file had already been partially unzipped"; break; case ZR_NOTMMAP: msg="Caller: can only get memory of a memory zipfile"; break; case ZR_MEMSIZE: msg="Caller: not enough space allocated for memory zipfile"; break; case ZR_FAILED: msg="Caller: there was a previous error"; break; case ZR_ENDED: msg="Caller: additions to the zip have already been ended"; break; case ZR_ZMODE: msg="Caller: mixing creation and opening of zip"; break; case ZR_NOTINITED: msg="Zip-bug: internal initialisation not completed"; break; case ZR_SEEK: msg="Zip-bug: trying to seek the unseekable"; break; case ZR_MISSIZE: msg="Zip-bug: the anticipated size turned out wrong"; break; case ZR_NOCHANGE: msg="Zip-bug: tried to change mind, but not allowed"; break; case ZR_FLATE: msg="Zip-bug: an internal error during flation"; break; } unsigned int mlen=(unsigned int)strlen(msg); if (buf==0 || len==0) return mlen; unsigned int n=mlen; if (n+1>len) n=len-1; strncpy_s(buf, sizeof(buf), msg, n); buf[n]=0; return mlen; } typedef struct { DWORD flag; TZip *zip; } TZipHandleData; HZIP CreateZipInternal(void *z,unsigned int len,DWORD flags, const char *password) { TZip *zip = new TZip(password); lasterrorZ = zip->Create(z,len,flags); if (lasterrorZ!=ZR_OK) {delete zip; return 0;} TZipHandleData *han = new TZipHandleData; han->flag=2; han->zip=zip; return (HZIP)han; } HZIP CreateZipHandle(HANDLE h, const char *password) {return CreateZipInternal(h,0,ZIP_HANDLE,password);} HZIP CreateZip(const TCHAR *fn, const char *password) {return CreateZipInternal((void*)fn,0,ZIP_FILENAME,password);} HZIP CreateZip(void *z,unsigned int len, const char *password) {return CreateZipInternal(z,len,ZIP_MEMORY,password);} ZRESULT ZipAddInternal(HZIP hz,const TCHAR *dstzn, void *src,unsigned int len, DWORD flags) { if (hz==0) {lasterrorZ=ZR_ARGS;return ZR_ARGS;} TZipHandleData *han = (TZipHandleData*)hz; if (han->flag!=2) {lasterrorZ=ZR_ZMODE;return ZR_ZMODE;} TZip *zip = han->zip; lasterrorZ = zip->Add(dstzn,src,len,flags); return lasterrorZ; } ZRESULT ZipAdd(HZIP hz,const TCHAR *dstzn, const TCHAR *fn) {return ZipAddInternal(hz,dstzn,(void*)fn,0,ZIP_FILENAME);} ZRESULT ZipAdd(HZIP hz,const TCHAR *dstzn, void *src,unsigned int len) {return ZipAddInternal(hz,dstzn,src,len,ZIP_MEMORY);} ZRESULT ZipAddHandle(HZIP hz,const TCHAR *dstzn, HANDLE h) {return ZipAddInternal(hz,dstzn,h,0,ZIP_HANDLE);} ZRESULT ZipAddHandle(HZIP hz,const TCHAR *dstzn, HANDLE h, unsigned int len) {return ZipAddInternal(hz,dstzn,h,len,ZIP_HANDLE);} ZRESULT ZipAddFolder(HZIP hz,const TCHAR *dstzn) {return ZipAddInternal(hz,dstzn,0,0,ZIP_FOLDER);} ZRESULT ZipGetMemory(HZIP hz, void **buf, unsigned long *len) { if (hz==0) {if (buf!=0) *buf=0; if (len!=0) *len=0; lasterrorZ=ZR_ARGS;return ZR_ARGS;} TZipHandleData *han = (TZipHandleData*)hz; if (han->flag!=2) {lasterrorZ=ZR_ZMODE;return ZR_ZMODE;} TZip *zip = han->zip; lasterrorZ = zip->GetMemory(buf,len); return lasterrorZ; } ZRESULT CloseZipZ(HZIP hz) { if (hz==0) {lasterrorZ=ZR_ARGS;return ZR_ARGS;} TZipHandleData *han = (TZipHandleData*)hz; if (han->flag!=2) {lasterrorZ=ZR_ZMODE;return ZR_ZMODE;} TZip *zip = han->zip; lasterrorZ = zip->Close(); delete zip; delete han; return lasterrorZ; } bool IsZipHandleZ(HZIP hz) { if (hz==0) return false; TZipHandleData *han = (TZipHandleData*)hz; return (han->flag==2); }
unzip.cpp
#include "unzip.h" #include <stdio.h> #include <stdlib.h> #include <string.h> #include <tchar.h> // THIS FILE is almost entirely based upon code by Jean-loup Gailly // and Mark Adler. It has been modified by Lucian Wischik. // The modifications were: incorporate the bugfixes of 1.1.4, allow // unzipping to/from handles/pipes/files/memory, encryption, unicode, // a windowsish api, and putting everything into a single .cpp file. // The original code may be found at http://www.gzip.org/zlib/ // The original copyright text follows. // // // // zlib.h -- interface of the 'zlib' general purpose compression library // version 1.1.3, July 9th, 1998 // // Copyright (C) 1995-1998 Jean-loup Gailly and Mark Adler // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // // Jean-loup Gailly Mark Adler // jloup@gzip.org madler@alumni.caltech.edu // // // The data format used by the zlib library is described by RFCs (Request for // Comments) 1950 to 1952 in the files ftp://ds.internic.net/rfc/rfc1950.txt // (zlib format), rfc1951.txt (deflate format) and rfc1952.txt (gzip format). // // // The 'zlib' compression library provides in-memory compression and // decompression functions, including integrity checks of the uncompressed // data. This version of the library supports only one compression method // (deflation) but other algorithms will be added later and will have the same // stream interface. // // Compression can be done in a single step if the buffers are large // enough (for example if an input file is mmap'ed), or can be done by // repeated calls of the compression function. In the latter case, the // application must provide more input and/or consume the output // (providing more output space) before each call. // // The library also supports reading and writing files in gzip (.gz) format // with an interface similar to that of stdio. // // The library does not install any signal handler. The decoder checks // the consistency of the compressed data, so the library should never // crash even in case of corrupted input. // // for more info about .ZIP format, see ftp://ftp.cdrom.com/pub/infozip/doc/appnote-970311-iz.zip // PkWare has also a specification at ftp://ftp.pkware.com/probdesc.zip #define ZIP_HANDLE 1 #define ZIP_FILENAME 2 #define ZIP_MEMORY 3 #define zmalloc(len) malloc(len) #define zfree(p) free(p) /* void *zmalloc(unsigned int len) { char *buf = new char[len+32]; for (int i=0; i<16; i++) { buf[i]=i; buf[len+31-i]=i; } *((unsigned int*)buf) = len; char c[1000]; wsprintf(c,"malloc 0x%lx - %lu",buf+16,len); OutputDebugString(c); return buf+16; } void zfree(void *buf) { char c[1000]; wsprintf(c,"free 0x%lx",buf); OutputDebugString(c); char *p = ((char*)buf)-16; unsigned int len = *((unsigned int*)p); bool blown=false; for (int i=0; i<16; i++) { char lo = p[i]; char hi = p[len+31-i]; if (hi!=i || (lo!=i && i>4)) blown=true; } if (blown) { OutputDebugString("BLOWN!!!"); } delete[] p; } */ typedef struct tm_unz_s { unsigned int tm_sec; // seconds after the minute - [0,59] unsigned int tm_min; // minutes after the hour - [0,59] unsigned int tm_hour; // hours since midnight - [0,23] unsigned int tm_mday; // day of the month - [1,31] unsigned int tm_mon; // months since January - [0,11] unsigned int tm_year; // years - [1980..2044] } tm_unz; // unz_global_info structure contain global data about the ZIPfile typedef struct unz_global_info_s { unsigned long number_entry; // total number of entries in the central dir on this disk unsigned long size_comment; // size of the global comment of the zipfile } unz_global_info; // unz_file_info contain information about a file in the zipfile typedef struct unz_file_info_s { unsigned long version; // version made by 2 bytes unsigned long version_needed; // version needed to extract 2 bytes unsigned long flag; // general purpose bit flag 2 bytes unsigned long compression_method; // compression method 2 bytes unsigned long dosDate; // last mod file date in Dos fmt 4 bytes unsigned long crc; // crc-32 4 bytes unsigned long compressed_size; // compressed size 4 bytes unsigned long uncompressed_size; // uncompressed size 4 bytes unsigned long size_filename; // filename length 2 bytes unsigned long size_file_extra; // extra field length 2 bytes unsigned long size_file_comment; // file comment length 2 bytes unsigned long disk_num_start; // disk number start 2 bytes unsigned long internal_fa; // internal file attributes 2 bytes unsigned long external_fa; // external file attributes 4 bytes tm_unz tmu_date; } unz_file_info; #define UNZ_OK (0) #define UNZ_END_OF_LIST_OF_FILE (-100) #define UNZ_ERRNO (Z_ERRNO) #define UNZ_EOF (0) #define UNZ_PARAMERROR (-102) #define UNZ_BADZIPFILE (-103) #define UNZ_INTERNALERROR (-104) #define UNZ_CRCERROR (-105) #define UNZ_PASSWORD (-106) #define ZLIB_VERSION "1.1.3" // Allowed flush values; see deflate() for details #define Z_NO_FLUSH 0 #define Z_SYNC_FLUSH 2 #define Z_FULL_FLUSH 3 #define Z_FINISH 4 // compression levels #define Z_NO_COMPRESSION 0 #define Z_BEST_SPEED 1 #define Z_BEST_COMPRESSION 9 #define Z_DEFAULT_COMPRESSION (-1) // compression strategy; see deflateInit2() for details #define Z_FILTERED 1 #define Z_HUFFMAN_ONLY 2 #define Z_DEFAULT_STRATEGY 0 // Possible values of the data_type field #define Z_BINARY 0 #define Z_ASCII 1 #define Z_UNKNOWN 2 // The deflate compression method (the only one supported in this version) #define Z_DEFLATED 8 // for initializing zalloc, zfree, opaque #define Z_NULL 0 // case sensitivity when searching for filenames #define CASE_SENSITIVE 1 #define CASE_INSENSITIVE 2 // Return codes for the compression/decompression functions. Negative // values are errors, positive values are used for special but normal events. #define Z_OK 0 #define Z_STREAM_END 1 #define Z_NEED_DICT 2 #define Z_ERRNO (-1) #define Z_STREAM_ERROR (-2) #define Z_DATA_ERROR (-3) #define Z_MEM_ERROR (-4) #define Z_BUF_ERROR (-5) #define Z_VERSION_ERROR (-6) // Basic data types typedef unsigned char Byte; // 8 bits typedef unsigned int uInt; // 16 bits or more typedef unsigned long uLong; // 32 bits or more typedef void *voidpf; typedef void *voidp; typedef long z_off_t; typedef voidpf (*alloc_func) (voidpf opaque, uInt items, uInt size); typedef void (*free_func) (voidpf opaque, voidpf address); struct internal_state; typedef struct z_stream_s { Byte *next_in; // next input byte uInt avail_in; // number of bytes available at next_in uLong total_in; // total nb of input bytes read so far Byte *next_out; // next output byte should be put there uInt avail_out; // remaining free space at next_out uLong total_out; // total nb of bytes output so far char *msg; // last error message, NULL if no error struct internal_state *state; // not visible by applications alloc_func zalloc; // used to allocate the internal state free_func zfree; // used to free the internal state voidpf opaque; // private data object passed to zalloc and zfree int data_type; // best guess about the data type: ascii or binary uLong adler; // adler32 value of the uncompressed data uLong reserved; // reserved for future use } z_stream; typedef z_stream *z_streamp; // The application must update next_in and avail_in when avail_in has // dropped to zero. It must update next_out and avail_out when avail_out // has dropped to zero. The application must initialize zalloc, zfree and // opaque before calling the init function. All other fields are set by the // compression library and must not be updated by the application. // // The opaque value provided by the application will be passed as the first // parameter for calls of zalloc and zfree. This can be useful for custom // memory management. The compression library attaches no meaning to the // opaque value. // // zalloc must return Z_NULL if there is not enough memory for the object. // If zlib is used in a multi-threaded application, zalloc and zfree must be // thread safe. // // The fields total_in and total_out can be used for statistics or // progress reports. After compression, total_in holds the total size of // the uncompressed data and may be saved for use in the decompressor // (particularly if the decompressor wants to decompress everything in // a single step). // // basic functions const char *zlibVersion (); // The application can compare zlibVersion and ZLIB_VERSION for consistency. // If the first character differs, the library code actually used is // not compatible with the zlib.h header file used by the application. // This check is automatically made by inflateInit. int inflate (z_streamp strm, int flush); // // inflate decompresses as much data as possible, and stops when the input // buffer becomes empty or the output buffer becomes full. It may some // introduce some output latency (reading input without producing any output) // except when forced to flush. // // The detailed semantics are as follows. inflate performs one or both of the // following actions: // // - Decompress more input starting at next_in and update next_in and avail_in // accordingly. If not all input can be processed (because there is not // enough room in the output buffer), next_in is updated and processing // will resume at this point for the next call of inflate(). // // - Provide more output starting at next_out and update next_out and avail_out // accordingly. inflate() provides as much output as possible, until there // is no more input data or no more space in the output buffer (see below // about the flush parameter). // // Before the call of inflate(), the application should ensure that at least // one of the actions is possible, by providing more input and/or consuming // more output, and updating the next_* and avail_* values accordingly. // The application can consume the uncompressed output when it wants, for // example when the output buffer is full (avail_out == 0), or after each // call of inflate(). If inflate returns Z_OK and with zero avail_out, it // must be called again after making room in the output buffer because there // might be more output pending. // // If the parameter flush is set to Z_SYNC_FLUSH, inflate flushes as much // output as possible to the output buffer. The flushing behavior of inflate is // not specified for values of the flush parameter other than Z_SYNC_FLUSH // and Z_FINISH, but the current implementation actually flushes as much output // as possible anyway. // // inflate() should normally be called until it returns Z_STREAM_END or an // error. However if all decompression is to be performed in a single step // (a single call of inflate), the parameter flush should be set to // Z_FINISH. In this case all pending input is processed and all pending // output is flushed; avail_out must be large enough to hold all the // uncompressed data. (The size of the uncompressed data may have been saved // by the compressor for this purpose.) The next operation on this stream must // be inflateEnd to deallocate the decompression state. The use of Z_FINISH // is never required, but can be used to inform inflate that a faster routine // may be used for the single inflate() call. // // If a preset dictionary is needed at this point (see inflateSetDictionary // below), inflate sets strm-adler to the adler32 checksum of the // dictionary chosen by the compressor and returns Z_NEED_DICT; otherwise // it sets strm->adler to the adler32 checksum of all output produced // so far (that is, total_out bytes) and returns Z_OK, Z_STREAM_END or // an error code as described below. At the end of the stream, inflate() // checks that its computed adler32 checksum is equal to that saved by the // compressor and returns Z_STREAM_END only if the checksum is correct. // // inflate() returns Z_OK if some progress has been made (more input processed // or more output produced), Z_STREAM_END if the end of the compressed data has // been reached and all uncompressed output has been produced, Z_NEED_DICT if a // preset dictionary is needed at this point, Z_DATA_ERROR if the input data was // corrupted (input stream not conforming to the zlib format or incorrect // adler32 checksum), Z_STREAM_ERROR if the stream structure was inconsistent // (for example if next_in or next_out was NULL), Z_MEM_ERROR if there was not // enough memory, Z_BUF_ERROR if no progress is possible or if there was not // enough room in the output buffer when Z_FINISH is used. In the Z_DATA_ERROR // case, the application may then call inflateSync to look for a good // compression block. // int inflateEnd (z_streamp strm); // // All dynamically allocated data structures for this stream are freed. // This function discards any unprocessed input and does not flush any // pending output. // // inflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state // was inconsistent. In the error case, msg may be set but then points to a // static string (which must not be deallocated). // Advanced functions // The following functions are needed only in some special applications. int inflateSetDictionary (z_streamp strm, const Byte *dictionary, uInt dictLength); // // Initializes the decompression dictionary from the given uncompressed byte // sequence. This function must be called immediately after a call of inflate // if this call returned Z_NEED_DICT. The dictionary chosen by the compressor // can be determined from the Adler32 value returned by this call of // inflate. The compressor and decompressor must use exactly the same // dictionary. // // inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a // parameter is invalid (such as NULL dictionary) or the stream state is // inconsistent, Z_DATA_ERROR if the given dictionary doesn't match the // expected one (incorrect Adler32 value). inflateSetDictionary does not // perform any decompression: this will be done by subsequent calls of // inflate(). int inflateSync (z_streamp strm); // // Skips invalid compressed data until a full flush point can be found, or until all // available input is skipped. No output is provided. // // inflateSync returns Z_OK if a full flush point has been found, Z_BUF_ERROR // if no more input was provided, Z_DATA_ERROR if no flush point has been found, // or Z_STREAM_ERROR if the stream structure was inconsistent. In the success // case, the application may save the current current value of total_in which // indicates where valid compressed data was found. In the error case, the // application may repeatedly call inflateSync, providing more input each time, // until success or end of the input data. int inflateReset (z_streamp strm); // This function is equivalent to inflateEnd followed by inflateInit, // but does not free and reallocate all the internal decompression state. // The stream will keep attributes that may have been set by inflateInit2. // // inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source // stream state was inconsistent (such as zalloc or state being NULL). // // checksum functions // These functions are not related to compression but are exported // anyway because they might be useful in applications using the // compression library. uLong adler32 (uLong adler, const Byte *buf, uInt len); // Update a running Adler-32 checksum with the bytes buf[0..len-1] and // return the updated checksum. If buf is NULL, this function returns // the required initial value for the checksum. // An Adler-32 checksum is almost as reliable as a CRC32 but can be computed // much faster. Usage example: // // uLong adler = adler32(0L, Z_NULL, 0); // // while (read_buffer(buffer, length) != EOF) { // adler = adler32(adler, buffer, length); // } // if (adler != original_adler) error(); uLong ucrc32 (uLong crc, const Byte *buf, uInt len); // Update a running crc with the bytes buf[0..len-1] and return the updated // crc. If buf is NULL, this function returns the required initial value // for the crc. Pre- and post-conditioning (one's complement) is performed // within this function so it shouldn't be done by the application. // Usage example: // // uLong crc = crc32(0L, Z_NULL, 0); // // while (read_buffer(buffer, length) != EOF) { // crc = crc32(crc, buffer, length); // } // if (crc != original_crc) error(); const char *zError (int err); int inflateSyncPoint (z_streamp z); const uLong *get_crc_table (void); typedef unsigned char uch; typedef uch uchf; typedef unsigned short ush; typedef ush ushf; typedef unsigned long ulg; const char * const z_errmsg[10] = { // indexed by 2-zlib_error "need dictionary", // Z_NEED_DICT 2 "stream end", // Z_STREAM_END 1 "", // Z_OK 0 "file error", // Z_ERRNO (-1) "stream error", // Z_STREAM_ERROR (-2) "data error", // Z_DATA_ERROR (-3) "insufficient memory", // Z_MEM_ERROR (-4) "buffer error", // Z_BUF_ERROR (-5) "incompatible version",// Z_VERSION_ERROR (-6) ""}; #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)] #define ERR_RETURN(strm,err) \ return (strm->msg = (char*)ERR_MSG(err), (err)) // To be used only when the state is known to be valid // common constants #define STORED_BLOCK 0 #define STATIC_TREES 1 #define DYN_TREES 2 // The three kinds of block type #define MIN_MATCH 3 #define MAX_MATCH 258 // The minimum and maximum match lengths #define PRESET_DICT 0x20 // preset dictionary flag in zlib header // target dependencies #define OS_CODE 0x0b // Window 95 & Windows NT // functions #define zmemzero(dest, len) memset(dest, 0, len) // Diagnostic functions #define LuAssert(cond,msg) #define LuTrace(x) #define LuTracev(x) #define LuTracevv(x) #define LuTracec(c,x) #define LuTracecv(c,x) typedef uLong (*check_func) (uLong check, const Byte *buf, uInt len); voidpf zcalloc (voidpf opaque, unsigned items, unsigned size); void zcfree (voidpf opaque, voidpf ptr); #define ZALLOC(strm, items, size) \ (*((strm)->zalloc))((strm)->opaque, (items), (size)) #define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr)) //void ZFREE(z_streamp strm,voidpf addr) //{ *((strm)->zfree))((strm)->opaque, addr); //} #define TRY_FREE(s, p) {if (p) ZFREE(s, p);} // Huffman code lookup table entry--this entry is four bytes for machines // that have 16-bit pointers (e.g. PC's in the small or medium model). typedef struct inflate_huft_s inflate_huft; struct inflate_huft_s { union { struct { Byte Exop; // number of extra bits or operation Byte Bits; // number of bits in this code or subcode } what; uInt pad; // pad structure to a power of 2 (4 bytes for } word; // 16-bit, 8 bytes for 32-bit int's) uInt base; // literal, length base, distance base, or table offset }; // Maximum size of dynamic tree. The maximum found in a long but non- // exhaustive search was 1004 huft structures (850 for length/literals // and 154 for distances, the latter actually the result of an // exhaustive search). The actual maximum is not known, but the // value below is more than safe. #define MANY 1440 int inflate_trees_bits ( uInt *, // 19 code lengths uInt *, // bits tree desired/actual depth inflate_huft * *, // bits tree result inflate_huft *, // space for trees z_streamp); // for messages int inflate_trees_dynamic ( uInt, // number of literal/length codes uInt, // number of distance codes uInt *, // that many (total) code lengths uInt *, // literal desired/actual bit depth uInt *, // distance desired/actual bit depth inflate_huft * *, // literal/length tree result inflate_huft * *, // distance tree result inflate_huft *, // space for trees z_streamp); // for messages int inflate_trees_fixed ( uInt *, // literal desired/actual bit depth uInt *, // distance desired/actual bit depth const inflate_huft * *, // literal/length tree result const inflate_huft * *, // distance tree result z_streamp); // for memory allocation struct inflate_blocks_state; typedef struct inflate_blocks_state inflate_blocks_statef; inflate_blocks_statef * inflate_blocks_new ( z_streamp z, check_func c, // check function uInt w); // window size int inflate_blocks ( inflate_blocks_statef *, z_streamp , int); // initial return code void inflate_blocks_reset ( inflate_blocks_statef *, z_streamp , uLong *); // check value on output int inflate_blocks_free ( inflate_blocks_statef *, z_streamp); void inflate_set_dictionary ( inflate_blocks_statef *s, const Byte *d, // dictionary uInt n); // dictionary length int inflate_blocks_sync_point ( inflate_blocks_statef *s); struct inflate_codes_state; typedef struct inflate_codes_state inflate_codes_statef; inflate_codes_statef *inflate_codes_new ( uInt, uInt, const inflate_huft *, const inflate_huft *, z_streamp ); int inflate_codes ( inflate_blocks_statef *, z_streamp , int); void inflate_codes_free ( inflate_codes_statef *, z_streamp ); typedef enum { IBM_TYPE, // get type bits (3, including end bit) IBM_LENS, // get lengths for stored IBM_STORED, // processing stored block IBM_TABLE, // get table lengths IBM_BTREE, // get bit lengths tree for a dynamic block IBM_DTREE, // get length, distance trees for a dynamic block IBM_CODES, // processing fixed or dynamic block IBM_DRY, // output remaining window bytes IBM_DONE, // finished last block, done IBM_BAD} // got a data error--stuck here inflate_block_mode; // inflate blocks semi-private state struct inflate_blocks_state { // mode inflate_block_mode mode; // current inflate_block mode // mode dependent information union { uInt left; // if STORED, bytes left to copy struct { uInt table; // table lengths (14 bits) uInt index; // index into blens (or border) uInt *blens; // bit lengths of codes uInt bb; // bit length tree depth inflate_huft *tb; // bit length decoding tree } trees; // if DTREE, decoding info for trees struct { inflate_codes_statef *codes; } decode; // if CODES, current state } sub; // submode uInt last; // true if this block is the last block // mode independent information uInt bitk; // bits in bit buffer uLong bitb; // bit buffer inflate_huft *hufts; // single malloc for tree space Byte *window; // sliding window Byte *end; // one byte after sliding window Byte *read; // window read pointer Byte *write; // window write pointer check_func checkfn; // check function uLong check; // check on output }; // defines for inflate input/output // update pointers and return #define UPDBITS {s->bitb=b;s->bitk=k;} #define UPDIN {z->avail_in=n;z->total_in+=(uLong)(p-z->next_in);z->next_in=p;} #define UPDOUT {s->write=q;} #define UPDATE {UPDBITS UPDIN UPDOUT} #define LEAVE {UPDATE return inflate_flush(s,z,r);} // get bytes and bits #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;} #define NEEDBYTE {if(n)r=Z_OK;else LEAVE} #define NEXTBYTE (n--,*p++) #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}} #define DUMPBITS(j) {b>>=(j);k-=(j);} // output bytes #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q) #define LOADOUT {q=s->write;m=(uInt)WAVAIL;m;} #define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}} #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT} #define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;} #define OUTBYTE(a) {*q++=(Byte)(a);m--;} // load local pointers #define LOAD {LOADIN LOADOUT} // masks for lower bits (size given to avoid silly warnings with Visual C++) // And'ing with mask[n] masks the lower n bits const uInt inflate_mask[17] = { 0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff }; // copy as much as possible from the sliding window to the output area int inflate_flush (inflate_blocks_statef *, z_streamp, int); int inflate_fast (uInt, uInt, const inflate_huft *, const inflate_huft *, inflate_blocks_statef *, z_streamp ); const uInt fixed_bl = 9; const uInt fixed_bd = 5; const inflate_huft fixed_tl[] = { {{{96,7}},256}, {{{0,8}},80}, {{{0,8}},16}, {{{84,8}},115}, {{{82,7}},31}, {{{0,8}},112}, {{{0,8}},48}, {{{0,9}},192}, {{{80,7}},10}, {{{0,8}},96}, {{{0,8}},32}, {{{0,9}},160}, {{{0,8}},0}, {{{0,8}},128}, {{{0,8}},64}, {{{0,9}},224}, {{{80,7}},6}, {{{0,8}},88}, {{{0,8}},24}, {{{0,9}},144}, {{{83,7}},59}, {{{0,8}},120}, {{{0,8}},56}, {{{0,9}},208}, {{{81,7}},17}, {{{0,8}},104}, {{{0,8}},40}, {{{0,9}},176}, {{{0,8}},8}, {{{0,8}},136}, {{{0,8}},72}, {{{0,9}},240}, {{{80,7}},4}, {{{0,8}},84}, {{{0,8}},20}, {{{85,8}},227}, {{{83,7}},43}, {{{0,8}},116}, {{{0,8}},52}, {{{0,9}},200}, {{{81,7}},13}, {{{0,8}},100}, {{{0,8}},36}, {{{0,9}},168}, {{{0,8}},4}, {{{0,8}},132}, {{{0,8}},68}, {{{0,9}},232}, {{{80,7}},8}, {{{0,8}},92}, {{{0,8}},28}, {{{0,9}},152}, {{{84,7}},83}, {{{0,8}},124}, {{{0,8}},60}, {{{0,9}},216}, {{{82,7}},23}, {{{0,8}},108}, {{{0,8}},44}, {{{0,9}},184}, {{{0,8}},12}, {{{0,8}},140}, {{{0,8}},76}, {{{0,9}},248}, {{{80,7}},3}, {{{0,8}},82}, {{{0,8}},18}, {{{85,8}},163}, {{{83,7}},35}, {{{0,8}},114}, {{{0,8}},50}, {{{0,9}},196}, {{{81,7}},11}, {{{0,8}},98}, {{{0,8}},34}, {{{0,9}},164}, {{{0,8}},2}, {{{0,8}},130}, {{{0,8}},66}, {{{0,9}},228}, {{{80,7}},7}, {{{0,8}},90}, {{{0,8}},26}, {{{0,9}},148}, {{{84,7}},67}, {{{0,8}},122}, {{{0,8}},58}, {{{0,9}},212}, {{{82,7}},19}, {{{0,8}},106}, {{{0,8}},42}, {{{0,9}},180}, {{{0,8}},10}, {{{0,8}},138}, {{{0,8}},74}, {{{0,9}},244}, {{{80,7}},5}, {{{0,8}},86}, {{{0,8}},22}, {{{192,8}},0}, {{{83,7}},51}, {{{0,8}},118}, {{{0,8}},54}, {{{0,9}},204}, {{{81,7}},15}, {{{0,8}},102}, {{{0,8}},38}, {{{0,9}},172}, {{{0,8}},6}, {{{0,8}},134}, {{{0,8}},70}, {{{0,9}},236}, {{{80,7}},9}, {{{0,8}},94}, {{{0,8}},30}, {{{0,9}},156}, {{{84,7}},99}, {{{0,8}},126}, {{{0,8}},62}, {{{0,9}},220}, {{{82,7}},27}, {{{0,8}},110}, {{{0,8}},46}, {{{0,9}},188}, {{{0,8}},14}, {{{0,8}},142}, {{{0,8}},78}, {{{0,9}},252}, {{{96,7}},256}, {{{0,8}},81}, {{{0,8}},17}, {{{85,8}},131}, {{{82,7}},31}, {{{0,8}},113}, {{{0,8}},49}, {{{0,9}},194}, {{{80,7}},10}, {{{0,8}},97}, {{{0,8}},33}, {{{0,9}},162}, {{{0,8}},1}, {{{0,8}},129}, {{{0,8}},65}, {{{0,9}},226}, {{{80,7}},6}, {{{0,8}},89}, {{{0,8}},25}, {{{0,9}},146}, {{{83,7}},59}, {{{0,8}},121}, {{{0,8}},57}, {{{0,9}},210}, {{{81,7}},17}, {{{0,8}},105}, {{{0,8}},41}, {{{0,9}},178}, {{{0,8}},9}, {{{0,8}},137}, {{{0,8}},73}, {{{0,9}},242}, {{{80,7}},4}, {{{0,8}},85}, {{{0,8}},21}, {{{80,8}},258}, {{{83,7}},43}, {{{0,8}},117}, {{{0,8}},53}, {{{0,9}},202}, {{{81,7}},13}, {{{0,8}},101}, {{{0,8}},37}, {{{0,9}},170}, {{{0,8}},5}, {{{0,8}},133}, {{{0,8}},69}, {{{0,9}},234}, {{{80,7}},8}, {{{0,8}},93}, {{{0,8}},29}, {{{0,9}},154}, {{{84,7}},83}, {{{0,8}},125}, {{{0,8}},61}, {{{0,9}},218}, {{{82,7}},23}, {{{0,8}},109}, {{{0,8}},45}, {{{0,9}},186}, {{{0,8}},13}, {{{0,8}},141}, {{{0,8}},77}, {{{0,9}},250}, {{{80,7}},3}, {{{0,8}},83}, {{{0,8}},19}, {{{85,8}},195}, {{{83,7}},35}, {{{0,8}},115}, {{{0,8}},51}, {{{0,9}},198}, {{{81,7}},11}, {{{0,8}},99}, {{{0,8}},35}, {{{0,9}},166}, {{{0,8}},3}, {{{0,8}},131}, {{{0,8}},67}, {{{0,9}},230}, {{{80,7}},7}, {{{0,8}},91}, {{{0,8}},27}, {{{0,9}},150}, {{{84,7}},67}, {{{0,8}},123}, {{{0,8}},59}, {{{0,9}},214}, {{{82,7}},19}, {{{0,8}},107}, {{{0,8}},43}, {{{0,9}},182}, {{{0,8}},11}, {{{0,8}},139}, {{{0,8}},75}, {{{0,9}},246}, {{{80,7}},5}, {{{0,8}},87}, {{{0,8}},23}, {{{192,8}},0}, {{{83,7}},51}, {{{0,8}},119}, {{{0,8}},55}, {{{0,9}},206}, {{{81,7}},15}, {{{0,8}},103}, {{{0,8}},39}, {{{0,9}},174}, {{{0,8}},7}, {{{0,8}},135}, {{{0,8}},71}, {{{0,9}},238}, {{{80,7}},9}, {{{0,8}},95}, {{{0,8}},31}, {{{0,9}},158}, {{{84,7}},99}, {{{0,8}},127}, {{{0,8}},63}, {{{0,9}},222}, {{{82,7}},27}, {{{0,8}},111}, {{{0,8}},47}, {{{0,9}},190}, {{{0,8}},15}, {{{0,8}},143}, {{{0,8}},79}, {{{0,9}},254}, {{{96,7}},256}, {{{0,8}},80}, {{{0,8}},16}, {{{84,8}},115}, {{{82,7}},31}, {{{0,8}},112}, {{{0,8}},48}, {{{0,9}},193}, {{{80,7}},10}, {{{0,8}},96}, {{{0,8}},32}, {{{0,9}},161}, {{{0,8}},0}, {{{0,8}},128}, {{{0,8}},64}, {{{0,9}},225}, {{{80,7}},6}, {{{0,8}},88}, {{{0,8}},24}, {{{0,9}},145}, {{{83,7}},59}, {{{0,8}},120}, {{{0,8}},56}, {{{0,9}},209}, {{{81,7}},17}, {{{0,8}},104}, {{{0,8}},40}, {{{0,9}},177}, {{{0,8}},8}, {{{0,8}},136}, {{{0,8}},72}, {{{0,9}},241}, {{{80,7}},4}, {{{0,8}},84}, {{{0,8}},20}, {{{85,8}},227}, {{{83,7}},43}, {{{0,8}},116}, {{{0,8}},52}, {{{0,9}},201}, {{{81,7}},13}, {{{0,8}},100}, {{{0,8}},36}, {{{0,9}},169}, {{{0,8}},4}, {{{0,8}},132}, {{{0,8}},68}, {{{0,9}},233}, {{{80,7}},8}, {{{0,8}},92}, {{{0,8}},28}, {{{0,9}},153}, {{{84,7}},83}, {{{0,8}},124}, {{{0,8}},60}, {{{0,9}},217}, {{{82,7}},23}, {{{0,8}},108}, {{{0,8}},44}, {{{0,9}},185}, {{{0,8}},12}, {{{0,8}},140}, {{{0,8}},76}, {{{0,9}},249}, {{{80,7}},3}, {{{0,8}},82}, {{{0,8}},18}, {{{85,8}},163}, {{{83,7}},35}, {{{0,8}},114}, {{{0,8}},50}, {{{0,9}},197}, {{{81,7}},11}, {{{0,8}},98}, {{{0,8}},34}, {{{0,9}},165}, {{{0,8}},2}, {{{0,8}},130}, {{{0,8}},66}, {{{0,9}},229}, {{{80,7}},7}, {{{0,8}},90}, {{{0,8}},26}, {{{0,9}},149}, {{{84,7}},67}, {{{0,8}},122}, {{{0,8}},58}, {{{0,9}},213}, {{{82,7}},19}, {{{0,8}},106}, {{{0,8}},42}, {{{0,9}},181}, {{{0,8}},10}, {{{0,8}},138}, {{{0,8}},74}, {{{0,9}},245}, {{{80,7}},5}, {{{0,8}},86}, {{{0,8}},22}, {{{192,8}},0}, {{{83,7}},51}, {{{0,8}},118}, {{{0,8}},54}, {{{0,9}},205}, {{{81,7}},15}, {{{0,8}},102}, {{{0,8}},38}, {{{0,9}},173}, {{{0,8}},6}, {{{0,8}},134}, {{{0,8}},70}, {{{0,9}},237}, {{{80,7}},9}, {{{0,8}},94}, {{{0,8}},30}, {{{0,9}},157}, {{{84,7}},99}, {{{0,8}},126}, {{{0,8}},62}, {{{0,9}},221}, {{{82,7}},27}, {{{0,8}},110}, {{{0,8}},46}, {{{0,9}},189}, {{{0,8}},14}, {{{0,8}},142}, {{{0,8}},78}, {{{0,9}},253}, {{{96,7}},256}, {{{0,8}},81}, {{{0,8}},17}, {{{85,8}},131}, {{{82,7}},31}, {{{0,8}},113}, {{{0,8}},49}, {{{0,9}},195}, {{{80,7}},10}, {{{0,8}},97}, {{{0,8}},33}, {{{0,9}},163}, {{{0,8}},1}, {{{0,8}},129}, {{{0,8}},65}, {{{0,9}},227}, {{{80,7}},6}, {{{0,8}},89}, {{{0,8}},25}, {{{0,9}},147}, {{{83,7}},59}, {{{0,8}},121}, {{{0,8}},57}, {{{0,9}},211}, {{{81,7}},17}, {{{0,8}},105}, {{{0,8}},41}, {{{0,9}},179}, {{{0,8}},9}, {{{0,8}},137}, {{{0,8}},73}, {{{0,9}},243}, {{{80,7}},4}, {{{0,8}},85}, {{{0,8}},21}, {{{80,8}},258}, {{{83,7}},43}, {{{0,8}},117}, {{{0,8}},53}, {{{0,9}},203}, {{{81,7}},13}, {{{0,8}},101}, {{{0,8}},37}, {{{0,9}},171}, {{{0,8}},5}, {{{0,8}},133}, {{{0,8}},69}, {{{0,9}},235}, {{{80,7}},8}, {{{0,8}},93}, {{{0,8}},29}, {{{0,9}},155}, {{{84,7}},83}, {{{0,8}},125}, {{{0,8}},61}, {{{0,9}},219}, {{{82,7}},23}, {{{0,8}},109}, {{{0,8}},45}, {{{0,9}},187}, {{{0,8}},13}, {{{0,8}},141}, {{{0,8}},77}, {{{0,9}},251}, {{{80,7}},3}, {{{0,8}},83}, {{{0,8}},19}, {{{85,8}},195}, {{{83,7}},35}, {{{0,8}},115}, {{{0,8}},51}, {{{0,9}},199}, {{{81,7}},11}, {{{0,8}},99}, {{{0,8}},35}, {{{0,9}},167}, {{{0,8}},3}, {{{0,8}},131}, {{{0,8}},67}, {{{0,9}},231}, {{{80,7}},7}, {{{0,8}},91}, {{{0,8}},27}, {{{0,9}},151}, {{{84,7}},67}, {{{0,8}},123}, {{{0,8}},59}, {{{0,9}},215}, {{{82,7}},19}, {{{0,8}},107}, {{{0,8}},43}, {{{0,9}},183}, {{{0,8}},11}, {{{0,8}},139}, {{{0,8}},75}, {{{0,9}},247}, {{{80,7}},5}, {{{0,8}},87}, {{{0,8}},23}, {{{192,8}},0}, {{{83,7}},51}, {{{0,8}},119}, {{{0,8}},55}, {{{0,9}},207}, {{{81,7}},15}, {{{0,8}},103}, {{{0,8}},39}, {{{0,9}},175}, {{{0,8}},7}, {{{0,8}},135}, {{{0,8}},71}, {{{0,9}},239}, {{{80,7}},9}, {{{0,8}},95}, {{{0,8}},31}, {{{0,9}},159}, {{{84,7}},99}, {{{0,8}},127}, {{{0,8}},63}, {{{0,9}},223}, {{{82,7}},27}, {{{0,8}},111}, {{{0,8}},47}, {{{0,9}},191}, {{{0,8}},15}, {{{0,8}},143}, {{{0,8}},79}, {{{0,9}},255} }; const inflate_huft fixed_td[] = { {{{80,5}},1}, {{{87,5}},257}, {{{83,5}},17}, {{{91,5}},4097}, {{{81,5}},5}, {{{89,5}},1025}, {{{85,5}},65}, {{{93,5}},16385}, {{{80,5}},3}, {{{88,5}},513}, {{{84,5}},33}, {{{92,5}},8193}, {{{82,5}},9}, {{{90,5}},2049}, {{{86,5}},129}, {{{192,5}},24577}, {{{80,5}},2}, {{{87,5}},385}, {{{83,5}},25}, {{{91,5}},6145}, {{{81,5}},7}, {{{89,5}},1537}, {{{85,5}},97}, {{{93,5}},24577}, {{{80,5}},4}, {{{88,5}},769}, {{{84,5}},49}, {{{92,5}},12289}, {{{82,5}},13}, {{{90,5}},3073}, {{{86,5}},193}, {{{192,5}},24577} }; // copy as much as possible from the sliding window to the output area int inflate_flush(inflate_blocks_statef *s,z_streamp z,int r) { uInt n; Byte *p; Byte *q; // local copies of source and destination pointers p = z->next_out; q = s->read; // compute number of bytes to copy as far as end of window n = (uInt)((q <= s->write ? s->write : s->end) - q); if (n > z->avail_out) n = z->avail_out; if (n && r == Z_BUF_ERROR) r = Z_OK; // update counters z->avail_out -= n; z->total_out += n; // update check information if (s->checkfn != Z_NULL) z->adler = s->check = (*s->checkfn)(s->check, q, n); // copy as far as end of window if (n!=0) // check for n!=0 to avoid waking up CodeGuard { memcpy(p, q, n); p += n; q += n; } // see if more to copy at beginning of window if (q == s->end) { // wrap pointers q = s->window; if (s->write == s->end) s->write = s->window; // compute bytes to copy n = (uInt)(s->write - q); if (n > z->avail_out) n = z->avail_out; if (n && r == Z_BUF_ERROR) r = Z_OK; // update counters z->avail_out -= n; z->total_out += n; // update check information if (s->checkfn != Z_NULL) z->adler = s->check = (*s->checkfn)(s->check, q, n); // copy if (n!=0) {memcpy(p,q,n); p+=n; q+=n;} } // update pointers z->next_out = p; s->read = q; // done return r; } // simplify the use of the inflate_huft type with some defines #define exop word.what.Exop #define bits word.what.Bits typedef enum { // waiting for "i:"=input, "o:"=output, "x:"=nothing START, // x: set up for LEN LEN, // i: get length/literal/eob next LENEXT, // i: getting length extra (have base) DIST, // i: get distance next DISTEXT, // i: getting distance extra COPY, // o: copying bytes in window, waiting for space LIT, // o: got literal, waiting for output space WASH, // o: got eob, possibly still output waiting END, // x: got eob and all data flushed BADCODE} // x: got error inflate_codes_mode; // inflate codes private state struct inflate_codes_state { // mode inflate_codes_mode mode; // current inflate_codes mode // mode dependent information uInt len; union { struct { const inflate_huft *tree; // pointer into tree uInt need; // bits needed } code; // if LEN or DIST, where in tree uInt lit; // if LIT, literal struct { uInt get; // bits to get for extra uInt dist; // distance back to copy from } copy; // if EXT or COPY, where and how much } sub; // submode // mode independent information Byte lbits; // ltree bits decoded per branch Byte dbits; // dtree bits decoder per branch const inflate_huft *ltree; // literal/length/eob tree const inflate_huft *dtree; // distance tree }; inflate_codes_statef *inflate_codes_new( uInt bl, uInt bd, const inflate_huft *tl, const inflate_huft *td, // need separate declaration for Borland C++ z_streamp z) { inflate_codes_statef *c; if ((c = (inflate_codes_statef *) ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL) { c->mode = START; c->lbits = (Byte)bl; c->dbits = (Byte)bd; c->ltree = tl; c->dtree = td; LuTracev((stderr, "inflate: codes new\n")); } return c; } int inflate_codes(inflate_blocks_statef *s, z_streamp z, int r) { uInt j; // temporary storage const inflate_huft *t; // temporary pointer uInt e; // extra bits or operation uLong b; // bit buffer uInt k; // bits in bit buffer Byte *p; // input data pointer uInt n; // bytes available there Byte *q; // output window write pointer uInt m; // bytes to end of window or read pointer Byte *f; // pointer to copy strings from inflate_codes_statef *c = s->sub.decode.codes; // codes state // copy input/output information to locals (UPDATE macro restores) LOAD // process input and output based on current state for(;;) switch (c->mode) { // waiting for "i:"=input, "o:"=output, "x:"=nothing case START: // x: set up for LEN #ifndef SLOW if (m >= 258 && n >= 10) { UPDATE r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z); LOAD if (r != Z_OK) { c->mode = r == Z_STREAM_END ? WASH : BADCODE; break; } } #endif // !SLOW c->sub.code.need = c->lbits; c->sub.code.tree = c->ltree; c->mode = LEN; case LEN: // i: get length/literal/eob next j = c->sub.code.need; NEEDBITS(j) t = c->sub.code.tree + ((uInt)b & inflate_mask[j]); DUMPBITS(t->bits) e = (uInt)(t->exop); if (e == 0) // literal { c->sub.lit = t->base; LuTracevv((stderr, t->base >= 0x20 && t->base < 0x7f ? "inflate: literal '%c'\n" : "inflate: literal 0x%02x\n", t->base)); c->mode = LIT; break; } if (e & 16) // length { c->sub.copy.get = e & 15; c->len = t->base; c->mode = LENEXT; break; } if ((e & 64) == 0) // next table { c->sub.code.need = e; c->sub.code.tree = t + t->base; break; } if (e & 32) // end of block { LuTracevv((stderr, "inflate: end of block\n")); c->mode = WASH; break; } c->mode = BADCODE; // invalid code z->msg = (char*)"invalid literal/length code"; r = Z_DATA_ERROR; LEAVE case LENEXT: // i: getting length extra (have base) j = c->sub.copy.get; NEEDBITS(j) c->len += (uInt)b & inflate_mask[j]; DUMPBITS(j) c->sub.code.need = c->dbits; c->sub.code.tree = c->dtree; LuTracevv((stderr, "inflate: length %u\n", c->len)); c->mode = DIST; case DIST: // i: get distance next j = c->sub.code.need; NEEDBITS(j) t = c->sub.code.tree + ((uInt)b & inflate_mask[j]); DUMPBITS(t->bits) e = (uInt)(t->exop); if (e & 16) // distance { c->sub.copy.get = e & 15; c->sub.copy.dist = t->base; c->mode = DISTEXT; break; } if ((e & 64) == 0) // next table { c->sub.code.need = e; c->sub.code.tree = t + t->base; break; } c->mode = BADCODE; // invalid code z->msg = (char*)"invalid distance code"; r = Z_DATA_ERROR; LEAVE case DISTEXT: // i: getting distance extra j = c->sub.copy.get; NEEDBITS(j) c->sub.copy.dist += (uInt)b & inflate_mask[j]; DUMPBITS(j) LuTracevv((stderr, "inflate: distance %u\n", c->sub.copy.dist)); c->mode = COPY; case COPY: // o: copying bytes in window, waiting for space f = q - c->sub.copy.dist; while (f < s->window) // modulo window size-"while" instead f += s->end - s->window; // of "if" handles invalid distances while (c->len) { NEEDOUT OUTBYTE(*f++) if (f == s->end) f = s->window; c->len--; } c->mode = START; break; case LIT: // o: got literal, waiting for output space NEEDOUT OUTBYTE(c->sub.lit) c->mode = START; break; case WASH: // o: got eob, possibly more output if (k > 7) // return unused byte, if any { //Assert(k < 16, "inflate_codes grabbed too many bytes") k -= 8; n++; p--; // can always return one } FLUSH if (s->read != s->write) LEAVE c->mode = END; case END: r = Z_STREAM_END; LEAVE case BADCODE: // x: got error r = Z_DATA_ERROR; LEAVE default: r = Z_STREAM_ERROR; LEAVE } } void inflate_codes_free(inflate_codes_statef *c,z_streamp z) { ZFREE(z, c); LuTracev((stderr, "inflate: codes free\n")); } // infblock.c -- interpret and process block types to last block // Copyright (C) 1995-1998 Mark Adler // For conditions of distribution and use, see copyright notice in zlib.h //struct inflate_codes_state {int dummy;}; // for buggy compilers // Table for deflate from PKZIP's appnote.txt. const uInt border[] = { // Order of the bit length code lengths 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; // // Notes beyond the 1.93a appnote.txt: // // 1. Distance pointers never point before the beginning of the output stream. // 2. Distance pointers can point back across blocks, up to 32k away. // 3. There is an implied maximum of 7 bits for the bit length table and // 15 bits for the actual data. // 4. If only one code exists, then it is encoded using one bit. (Zero // would be more efficient, but perhaps a little confusing.) If two // codes exist, they are coded using one bit each (0 and 1). // 5. There is no way of sending zero distance codes--a dummy must be // sent if there are none. (History: a pre 2.0 version of PKZIP would // store blocks with no distance codes, but this was discovered to be // too harsh a criterion.) Valid only for 1.93a. 2.04c does allow // zero distance codes, which is sent as one code of zero bits in // length. // 6. There are up to 286 literal/length codes. Code 256 represents the // end-of-block. Note however that the static length tree defines // 288 codes just to fill out the Huffman codes. Codes 286 and 287 // cannot be used though, since there is no length base or extra bits // defined for them. Similarily, there are up to 30 distance codes. // However, static trees define 32 codes (all 5 bits) to fill out the // Huffman codes, but the last two had better not show up in the data. // 7. Unzip can check dynamic Huffman blocks for complete code sets. // The exception is that a single code would not be complete (see #4). // 8. The five bits following the block type is really the number of // literal codes sent minus 257. // 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits // (1+6+6). Therefore, to output three times the length, you output // three codes (1+1+1), whereas to output four times the same length, // you only need two codes (1+3). Hmm. //10. In the tree reconstruction algorithm, Code = Code + Increment // only if BitLength(i) is not zero. (Pretty obvious.) //11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19) //12. Note: length code 284 can represent 227-258, but length code 285 // really is 258. The last length deserves its own, short code // since it gets used a lot in very redundant files. The length // 258 is special since 258 - 3 (the min match length) is 255. //13. The literal/length and distance code bit lengths are read as a // single stream of lengths. It is possible (and advantageous) for // a repeat code (16, 17, or 18) to go across the boundary between // the two sets of lengths. void inflate_blocks_reset(inflate_blocks_statef *s, z_streamp z, uLong *c) { if (c != Z_NULL) *c = s->check; if (s->mode == IBM_BTREE || s->mode == IBM_DTREE) ZFREE(z, s->sub.trees.blens); if (s->mode == IBM_CODES) inflate_codes_free(s->sub.decode.codes, z); s->mode = IBM_TYPE; s->bitk = 0; s->bitb = 0; s->read = s->write = s->window; if (s->checkfn != Z_NULL) z->adler = s->check = (*s->checkfn)(0L, (const Byte *)Z_NULL, 0); LuTracev((stderr, "inflate: blocks reset\n")); } inflate_blocks_statef *inflate_blocks_new(z_streamp z, check_func c, uInt w) { inflate_blocks_statef *s; if ((s = (inflate_blocks_statef *)ZALLOC (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL) return s; if ((s->hufts = (inflate_huft *)ZALLOC(z, sizeof(inflate_huft), MANY)) == Z_NULL) { ZFREE(z, s); return Z_NULL; } if ((s->window = (Byte *)ZALLOC(z, 1, w)) == Z_NULL) { ZFREE(z, s->hufts); ZFREE(z, s); return Z_NULL; } s->end = s->window + w; s->checkfn = c; s->mode = IBM_TYPE; LuTracev((stderr, "inflate: blocks allocated\n")); inflate_blocks_reset(s, z, Z_NULL); return s; } int inflate_blocks(inflate_blocks_statef *s, z_streamp z, int r) { uInt t; // temporary storage uLong b; // bit buffer uInt k; // bits in bit buffer Byte *p; // input data pointer uInt n; // bytes available there Byte *q; // output window write pointer uInt m; // bytes to end of window or read pointer // copy input/output information to locals (UPDATE macro restores) LOAD // process input based on current state for(;;) switch (s->mode) { case IBM_TYPE: NEEDBITS(3) t = (uInt)b & 7; s->last = t & 1; switch (t >> 1) { case 0: // stored LuTracev((stderr, "inflate: stored block%s\n", s->last ? " (last)" : "")); DUMPBITS(3) t = k & 7; // go to byte boundary DUMPBITS(t) s->mode = IBM_LENS; // get length of stored block break; case 1: // fixed LuTracev((stderr, "inflate: fixed codes block%s\n", s->last ? " (last)" : "")); { uInt bl, bd; const inflate_huft *tl, *td; inflate_trees_fixed(&bl, &bd, &tl, &td, z); s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z); if (s->sub.decode.codes == Z_NULL) { r = Z_MEM_ERROR; LEAVE } } DUMPBITS(3) s->mode = IBM_CODES; break; case 2: // dynamic LuTracev((stderr, "inflate: dynamic codes block%s\n", s->last ? " (last)" : "")); DUMPBITS(3) s->mode = IBM_TABLE; break; case 3: // illegal DUMPBITS(3) s->mode = IBM_BAD; z->msg = (char*)"invalid block type"; r = Z_DATA_ERROR; LEAVE } break; case IBM_LENS: NEEDBITS(32) if ((((~b) >> 16) & 0xffff) != (b & 0xffff)) { s->mode = IBM_BAD; z->msg = (char*)"invalid stored block lengths"; r = Z_DATA_ERROR; LEAVE } s->sub.left = (uInt)b & 0xffff; b = k = 0; // dump bits LuTracev((stderr, "inflate: stored length %u\n", s->sub.left)); s->mode = s->sub.left ? IBM_STORED : (s->last ? IBM_DRY : IBM_TYPE); break; case IBM_STORED: if (n == 0) LEAVE NEEDOUT t = s->sub.left; if (t > n) t = n; if (t > m) t = m; memcpy(q, p, t); p += t; n -= t; q += t; m -= t; if ((s->sub.left -= t) != 0) break; LuTracev((stderr, "inflate: stored end, %lu total out\n", z->total_out + (q >= s->read ? q - s->read : (s->end - s->read) + (q - s->window)))); s->mode = s->last ? IBM_DRY : IBM_TYPE; break; case IBM_TABLE: NEEDBITS(14) s->sub.trees.table = t = (uInt)b & 0x3fff; // remove this section to workaround bug in pkzip if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29) { s->mode = IBM_BAD; z->msg = (char*)"too many length or distance symbols"; r = Z_DATA_ERROR; LEAVE } // end remove t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f); if ((s->sub.trees.blens = (uInt*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL) { r = Z_MEM_ERROR; LEAVE } DUMPBITS(14) s->sub.trees.index = 0; LuTracev((stderr, "inflate: table sizes ok\n")); s->mode = IBM_BTREE; case IBM_BTREE: while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10)) { NEEDBITS(3) s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7; DUMPBITS(3) } while (s->sub.trees.index < 19) s->sub.trees.blens[border[s->sub.trees.index++]] = 0; s->sub.trees.bb = 7; t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb, &s->sub.trees.tb, s->hufts, z); if (t != Z_OK) { r = t; if (r == Z_DATA_ERROR) { ZFREE(z, s->sub.trees.blens); s->mode = IBM_BAD; } LEAVE } s->sub.trees.index = 0; LuTracev((stderr, "inflate: bits tree ok\n")); s->mode = IBM_DTREE; case IBM_DTREE: while (t = s->sub.trees.table, s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f)) { inflate_huft *h; uInt i, j, c; t = s->sub.trees.bb; NEEDBITS(t) h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]); t = h->bits; c = h->base; if (c < 16) { DUMPBITS(t) s->sub.trees.blens[s->sub.trees.index++] = c; } else // c == 16..18 { i = c == 18 ? 7 : c - 14; j = c == 18 ? 11 : 3; NEEDBITS(t + i) DUMPBITS(t) j += (uInt)b & inflate_mask[i]; DUMPBITS(i) i = s->sub.trees.index; t = s->sub.trees.table; if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) || (c == 16 && i < 1)) { ZFREE(z, s->sub.trees.blens); s->mode = IBM_BAD; z->msg = (char*)"invalid bit length repeat"; r = Z_DATA_ERROR; LEAVE } c = c == 16 ? s->sub.trees.blens[i - 1] : 0; do { s->sub.trees.blens[i++] = c; } while (--j); s->sub.trees.index = i; } } s->sub.trees.tb = Z_NULL; { uInt bl, bd; inflate_huft *tl, *td; inflate_codes_statef *c; bl = 9; // must be <= 9 for lookahead assumptions bd = 6; // must be <= 9 for lookahead assumptions t = s->sub.trees.table; t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f), s->sub.trees.blens, &bl, &bd, &tl, &td, s->hufts, z); if (t != Z_OK) { if (t == (uInt)Z_DATA_ERROR) { ZFREE(z, s->sub.trees.blens); s->mode = IBM_BAD; } r = t; LEAVE } LuTracev((stderr, "inflate: trees ok\n")); if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL) { r = Z_MEM_ERROR; LEAVE } s->sub.decode.codes = c; } ZFREE(z, s->sub.trees.blens); s->mode = IBM_CODES; case IBM_CODES: UPDATE if ((r = inflate_codes(s, z, r)) != Z_STREAM_END) return inflate_flush(s, z, r); r = Z_OK; inflate_codes_free(s->sub.decode.codes, z); LOAD LuTracev((stderr, "inflate: codes end, %lu total out\n", z->total_out + (q >= s->read ? q - s->read : (s->end - s->read) + (q - s->window)))); if (!s->last) { s->mode = IBM_TYPE; break; } s->mode = IBM_DRY; case IBM_DRY: FLUSH if (s->read != s->write) LEAVE s->mode = IBM_DONE; case IBM_DONE: r = Z_STREAM_END; LEAVE case IBM_BAD: r = Z_DATA_ERROR; LEAVE default: r = Z_STREAM_ERROR; LEAVE } } int inflate_blocks_free(inflate_blocks_statef *s, z_streamp z) { inflate_blocks_reset(s, z, Z_NULL); ZFREE(z, s->window); ZFREE(z, s->hufts); ZFREE(z, s); LuTracev((stderr, "inflate: blocks freed\n")); return Z_OK; } // inftrees.c -- generate Huffman trees for efficient decoding // Copyright (C) 1995-1998 Mark Adler // For conditions of distribution and use, see copyright notice in zlib.h // extern const char inflate_copyright[] = " inflate 1.1.3 Copyright 1995-1998 Mark Adler "; // If you use the zlib library in a product, an acknowledgment is welcome // in the documentation of your product. If for some reason you cannot // include such an acknowledgment, I would appreciate that you keep this // copyright string in the executable of your product. int huft_build ( uInt *, // code lengths in bits uInt, // number of codes uInt, // number of "simple" codes const uInt *, // list of base values for non-simple codes const uInt *, // list of extra bits for non-simple codes inflate_huft **,// result: starting table uInt *, // maximum lookup bits (returns actual) inflate_huft *, // space for trees uInt *, // hufts used in space uInt * ); // space for values // Tables for deflate from PKZIP's appnote.txt. const uInt cplens[31] = { // Copy lengths for literal codes 257..285 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; // see note #13 above about 258 const uInt cplext[31] = { // Extra bits for literal codes 257..285 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; // 112==invalid const uInt cpdist[30] = { // Copy offsets for distance codes 0..29 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577}; const uInt cpdext[30] = { // Extra bits for distance codes 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13}; // // Huffman code decoding is performed using a multi-level table lookup. // The fastest way to decode is to simply build a lookup table whose // size is determined by the longest code. However, the time it takes // to build this table can also be a factor if the data being decoded // is not very long. The most common codes are necessarily the // shortest codes, so those codes dominate the decoding time, and hence // the speed. The idea is you can have a shorter table that decodes the // shorter, more probable codes, and then point to subsidiary tables for // the longer codes. The time it costs to decode the longer codes is // then traded against the time it takes to make longer tables. // // This results of this trade are in the variables lbits and dbits // below. lbits is the number of bits the first level table for literal/ // length codes can decode in one step, and dbits is the same thing for // the distance codes. Subsequent tables are also less than or equal to // those sizes. These values may be adjusted either when all of the // codes are shorter than that, in which case the longest code length in // bits is used, or when the shortest code is *longer* than the requested // table size, in which case the length of the shortest code in bits is // used. // // There are two different values for the two tables, since they code a // different number of possibilities each. The literal/length table // codes 286 possible values, or in a flat code, a little over eight // bits. The distance table codes 30 possible values, or a little less // than five bits, flat. The optimum values for speed end up being // about one bit more than those, so lbits is 8+1 and dbits is 5+1. // The optimum values may differ though from machine to machine, and // possibly even between compilers. Your mileage may vary. // // If BMAX needs to be larger than 16, then h and x[] should be uLong. #define BMAX 15 // maximum bit length of any code int huft_build( uInt *b, // code lengths in bits (all assumed <= BMAX) uInt n, // number of codes (assumed <= 288) uInt s, // number of simple-valued codes (0..s-1) const uInt *d, // list of base values for non-simple codes const uInt *e, // list of extra bits for non-simple codes inflate_huft * *t, // result: starting table uInt *m, // maximum lookup bits, returns actual inflate_huft *hp, // space for trees uInt *hn, // hufts used in space uInt *v) // working area: values in order of bit length // Given a list of code lengths and a maximum table size, make a set of // tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR // if the given code set is incomplete (the tables are still built in this // case), or Z_DATA_ERROR if the input is invalid. { uInt a; // counter for codes of length k uInt c[BMAX+1]; // bit length count table uInt f; // i repeats in table every f entries int g; // maximum code length int h; // table level register uInt i; // counter, current code register uInt j; // counter register int k; // number of bits in current code int l; // bits per table (returned in m) uInt mask; // (1 << w) - 1, to avoid cc -O bug on HP register uInt *p; // pointer into c[], b[], or v[] inflate_huft *q; // points to current table struct inflate_huft_s r; // table entry for structure assignment inflate_huft *u[BMAX]; // table stack register int w; // bits before this table == (l * h) uInt x[BMAX+1]; // bit offsets, then code stack uInt *xp; // pointer into x int y; // number of dummy codes added uInt z; // number of entries in current table // Generate counts for each bit length p = c; #define C0 *p++ = 0; #define C2 C0 C0 C0 C0 #define C4 C2 C2 C2 C2 C4; p; // clear c[]--assume BMAX+1 is 16 p = b; i = n; do { c[*p++]++; // assume all entries <= BMAX } while (--i); if (c[0] == n) // null input--all zero length codes { *t = (inflate_huft *)Z_NULL; *m = 0; return Z_OK; } // Find minimum and maximum length, bound *m by those l = *m; for (j = 1; j <= BMAX; j++) if (c[j]) break; k = j; // minimum code length if ((uInt)l < j) l = j; for (i = BMAX; i; i--) if (c[i]) break; g = i; // maximum code length if ((uInt)l > i) l = i; *m = l; // Adjust last length count to fill out codes, if needed for (y = 1 << j; j < i; j++, y <<= 1) if ((y -= c[j]) < 0) return Z_DATA_ERROR; if ((y -= c[i]) < 0) return Z_DATA_ERROR; c[i] += y; // Generate starting offsets into the value table for each length x[1] = j = 0; p = c + 1; xp = x + 2; while (--i) { // note that i == g from above *xp++ = (j += *p++); } // Make a table of values in order of bit lengths p = b; i = 0; do { if ((j = *p++) != 0) v[x[j]++] = i; } while (++i < n); n = x[g]; // set n to length of v // Generate the Huffman codes and for each, make the table entries x[0] = i = 0; // first Huffman code is zero p = v; // grab values in bit order h = -1; // no tables yet--level -1 w = -l; // bits decoded == (l * h) u[0] = (inflate_huft *)Z_NULL; // just to keep compilers happy q = (inflate_huft *)Z_NULL; // ditto z = 0; // ditto // go through the bit lengths (k already is bits in shortest code) for (; k <= g; k++) { a = c[k]; while (a--) { // here i is the Huffman code of length k bits for value *p // make tables up to required level while (k > w + l) { h++; w += l; // previous table always l bits // compute minimum size table less than or equal to l bits z = g - w; z = z > (uInt)l ? l : z; // table size upper limit if ((f = 1 << (j = k - w)) > a + 1) // try a k-w bit table { // too few codes for k-w bit table f -= a + 1; // deduct codes from patterns left xp = c + k; if (j < z) while (++j < z) // try smaller tables up to z bits { if ((f <<= 1) <= *++xp) break; // enough codes to use up j bits f -= *xp; // else deduct codes from patterns } } z = 1 << j; // table entries for j-bit table // allocate new table if (*hn + z > MANY) // (note: doesn't matter for fixed) return Z_DATA_ERROR; // overflow of MANY u[h] = q = hp + *hn; *hn += z; // connect to last table, if there is one if (h) { x[h] = i; // save pattern for backing up r.bits = (Byte)l; // bits to dump before this table r.exop = (Byte)j; // bits in this table j = i >> (w - l); r.base = (uInt)(q - u[h-1] - j); // offset to this table u[h-1][j] = r; // connect to last table } else *t = q; // first table is returned result } // set up table entry in r r.bits = (Byte)(k - w); if (p >= v + n) r.exop = 128 + 64; // out of values--invalid code else if (*p < s) { r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); // 256 is end-of-block r.base = *p++; // simple code is just the value } else { r.exop = (Byte)(e[*p - s] + 16 + 64);// non-simple--look up in lists r.base = d[*p++ - s]; } // fill code-like entries with r f = 1 << (k - w); for (j = i >> w; j < z; j += f) q[j] = r; // backwards increment the k-bit code i for (j = 1 << (k - 1); i & j; j >>= 1) i ^= j; i ^= j; // backup over finished tables mask = (1 << w) - 1; // needed on HP, cc -O bug while ((i & mask) != x[h]) { h--; // don't need to update q w -= l; mask = (1 << w) - 1; } } } // Return Z_BUF_ERROR if we were given an incomplete table return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK; } int inflate_trees_bits( uInt *c, // 19 code lengths uInt *bb, // bits tree desired/actual depth inflate_huft * *tb, // bits tree result inflate_huft *hp, // space for trees z_streamp z) // for messages { int r; uInt hn = 0; // hufts used in space uInt *v; // work area for huft_build if ((v = (uInt*)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL) return Z_MEM_ERROR; r = huft_build(c, 19, 19, (uInt*)Z_NULL, (uInt*)Z_NULL, tb, bb, hp, &hn, v); if (r == Z_DATA_ERROR) z->msg = (char*)"oversubscribed dynamic bit lengths tree"; else if (r == Z_BUF_ERROR || *bb == 0) { z->msg = (char*)"incomplete dynamic bit lengths tree"; r = Z_DATA_ERROR; } ZFREE(z, v); return r; } int inflate_trees_dynamic( uInt nl, // number of literal/length codes uInt nd, // number of distance codes uInt *c, // that many (total) code lengths uInt *bl, // literal desired/actual bit depth uInt *bd, // distance desired/actual bit depth inflate_huft * *tl, // literal/length tree result inflate_huft * *td, // distance tree result inflate_huft *hp, // space for trees z_streamp z) // for messages { int r; uInt hn = 0; // hufts used in space uInt *v; // work area for huft_build // allocate work area if ((v = (uInt*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL) return Z_MEM_ERROR; // build literal/length tree r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v); if (r != Z_OK || *bl == 0) { if (r == Z_DATA_ERROR) z->msg = (char*)"oversubscribed literal/length tree"; else if (r != Z_MEM_ERROR) { z->msg = (char*)"incomplete literal/length tree"; r = Z_DATA_ERROR; } ZFREE(z, v); return r; } // build distance tree r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v); if (r != Z_OK || (*bd == 0 && nl > 257)) { if (r == Z_DATA_ERROR) z->msg = (char*)"oversubscribed distance tree"; else if (r == Z_BUF_ERROR) { z->msg = (char*)"incomplete distance tree"; r = Z_DATA_ERROR; } else if (r != Z_MEM_ERROR) { z->msg = (char*)"empty distance tree with lengths"; r = Z_DATA_ERROR; } ZFREE(z, v); return r; } // done ZFREE(z, v); return Z_OK; } int inflate_trees_fixed( uInt *bl, // literal desired/actual bit depth uInt *bd, // distance desired/actual bit depth const inflate_huft * * tl, // literal/length tree result const inflate_huft * *td, // distance tree result z_streamp ) // for memory allocation { *bl = fixed_bl; *bd = fixed_bd; *tl = fixed_tl; *td = fixed_td; return Z_OK; } // inffast.c -- process literals and length/distance pairs fast // Copyright (C) 1995-1998 Mark Adler // For conditions of distribution and use, see copyright notice in zlib.h // //struct inflate_codes_state {int dummy;}; // for buggy compilers // macros for bit input with no checking and for returning unused bytes #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}} #define UNGRAB {c=z->avail_in-n;c=(k>>3)<c?k>>3:c;n+=c;p-=c;k-=c<<3;} // Called with number of bytes left to write in window at least 258 // (the maximum string length) and number of input bytes available // at least ten. The ten bytes are six bytes for the longest length/ // distance pair plus four bytes for overloading the bit buffer. int inflate_fast( uInt bl, uInt bd, const inflate_huft *tl, const inflate_huft *td, // need separate declaration for Borland C++ inflate_blocks_statef *s, z_streamp z) { const inflate_huft *t; // temporary pointer uInt e; // extra bits or operation uLong b; // bit buffer uInt k; // bits in bit buffer Byte *p; // input data pointer uInt n; // bytes available there Byte *q; // output window write pointer uInt m; // bytes to end of window or read pointer uInt ml; // mask for literal/length tree uInt md; // mask for distance tree uInt c; // bytes to copy uInt d; // distance back to copy from Byte *r; // copy source pointer // load input, output, bit values LOAD // initialize masks ml = inflate_mask[bl]; md = inflate_mask[bd]; // do until not enough input or output space for fast loop do { // assume called with m >= 258 && n >= 10 // get literal/length code GRABBITS(20) // max bits for literal/length code if ((e = (t = tl + ((uInt)b & ml))->exop) == 0) { DUMPBITS(t->bits) LuTracevv((stderr, t->base >= 0x20 && t->base < 0x7f ? "inflate: * literal '%c'\n" : "inflate: * literal 0x%02x\n", t->base)); *q++ = (Byte)t->base; m--; continue; } for (;;) { DUMPBITS(t->bits) if (e & 16) { // get extra bits for length e &= 15; c = t->base + ((uInt)b & inflate_mask[e]); DUMPBITS(e) LuTracevv((stderr, "inflate: * length %u\n", c)); // decode distance base of block to copy GRABBITS(15); // max bits for distance code e = (t = td + ((uInt)b & md))->exop; for (;;) { DUMPBITS(t->bits) if (e & 16) { // get extra bits to add to distance base e &= 15; GRABBITS(e) // get extra bits (up to 13) d = t->base + ((uInt)b & inflate_mask[e]); DUMPBITS(e) LuTracevv((stderr, "inflate: * distance %u\n", d)); // do the copy m -= c; r = q - d; if (r < s->window) // wrap if needed { do { r += s->end - s->window; // force pointer in window } while (r < s->window); // covers invalid distances e = (uInt) (s->end - r); if (c > e) { c -= e; // wrapped copy do { *q++ = *r++; } while (--e); r = s->window; do { *q++ = *r++; } while (--c); } else // normal copy { *q++ = *r++; c--; *q++ = *r++; c--; do { *q++ = *r++; } while (--c); } } else /* normal copy */ { *q++ = *r++; c--; *q++ = *r++; c--; do { *q++ = *r++; } while (--c); } break; } else if ((e & 64) == 0) { t += t->base; e = (t += ((uInt)b & inflate_mask[e]))->exop; } else { z->msg = (char*)"invalid distance code"; UNGRAB UPDATE return Z_DATA_ERROR; } }; break; } if ((e & 64) == 0) { t += t->base; if ((e = (t += ((uInt)b & inflate_mask[e]))->exop) == 0) { DUMPBITS(t->bits) LuTracevv((stderr, t->base >= 0x20 && t->base < 0x7f ? "inflate: * literal '%c'\n" : "inflate: * literal 0x%02x\n", t->base)); *q++ = (Byte)t->base; m--; break; } } else if (e & 32) { LuTracevv((stderr, "inflate: * end of block\n")); UNGRAB UPDATE return Z_STREAM_END; } else { z->msg = (char*)"invalid literal/length code"; UNGRAB UPDATE return Z_DATA_ERROR; } }; } while (m >= 258 && n >= 10); // not enough input or output--restore pointers and return UNGRAB UPDATE return Z_OK; } // crc32.c -- compute the CRC-32 of a data stream // Copyright (C) 1995-1998 Mark Adler // For conditions of distribution and use, see copyright notice in zlib.h // @(#) $Id$ // Table of CRC-32's of all single-byte values (made by make_crc_table) const uLong crc_table[256] = { 0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L, 0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L, 0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L, 0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL, 0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L, 0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L, 0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L, 0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL, 0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L, 0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL, 0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L, 0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L, 0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L, 0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL, 0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL, 0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L, 0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL, 0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L, 0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L, 0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L, 0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL, 0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L, 0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L, 0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL, 0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L, 0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L, 0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L, 0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L, 0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L, 0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL, 0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL, 0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L, 0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L, 0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL, 0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL, 0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L, 0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL, 0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L, 0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL, 0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L, 0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL, 0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L, 0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L, 0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL, 0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L, 0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L, 0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L, 0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L, 0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L, 0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L, 0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL, 0x2d02ef8dL }; const uLong * get_crc_table() { return (const uLong *)crc_table; } #define CRC_DO1(buf) crc = crc_table[((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8); #define CRC_DO2(buf) CRC_DO1(buf); CRC_DO1(buf); #define CRC_DO4(buf) CRC_DO2(buf); CRC_DO2(buf); #define CRC_DO8(buf) CRC_DO4(buf); CRC_DO4(buf); uLong ucrc32(uLong crc, const Byte *buf, uInt len) { if (buf == Z_NULL) return 0L; crc = crc ^ 0xffffffffL; while (len >= 8) {CRC_DO8(buf); len -= 8;} if (len) do {CRC_DO1(buf);} while (--len); return crc ^ 0xffffffffL; } // ============================================================= // some decryption routines #define CRC32(c, b) (crc_table[((int)(c)^(b))&0xff]^((c)>>8)) void Uupdate_keys(unsigned long *keys, char c) { keys[0] = CRC32(keys[0],c); keys[1] += keys[0] & 0xFF; keys[1] = keys[1]*134775813L +1; keys[2] = CRC32(keys[2], keys[1] >> 24); } char Udecrypt_byte(unsigned long *keys) { unsigned temp = ((unsigned)keys[2] & 0xffff) | 2; return (char)(((temp * (temp ^ 1)) >> 8) & 0xff); } char zdecode(unsigned long *keys, char c) { c^=Udecrypt_byte(keys); Uupdate_keys(keys,c); return c; } // adler32.c -- compute the Adler-32 checksum of a data stream // Copyright (C) 1995-1998 Mark Adler // For conditions of distribution and use, see copyright notice in zlib.h // @(#) $Id$ #define BASE 65521L // largest prime smaller than 65536 #define NMAX 5552 // NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 #define AD_DO1(buf,i) {s1 += buf[i]; s2 += s1;} #define AD_DO2(buf,i) AD_DO1(buf,i); AD_DO1(buf,i+1); #define AD_DO4(buf,i) AD_DO2(buf,i); AD_DO2(buf,i+2); #define AD_DO8(buf,i) AD_DO4(buf,i); AD_DO4(buf,i+4); #define AD_DO16(buf) AD_DO8(buf,0); AD_DO8(buf,8); // ========================================================================= uLong adler32(uLong adler, const Byte *buf, uInt len) { unsigned long s1 = adler & 0xffff; unsigned long s2 = (adler >> 16) & 0xffff; int k; if (buf == Z_NULL) return 1L; while (len > 0) { k = len < NMAX ? len : NMAX; len -= k; while (k >= 16) { AD_DO16(buf); buf += 16; k -= 16; } if (k != 0) do { s1 += *buf++; s2 += s1; } while (--k); s1 %= BASE; s2 %= BASE; } return (s2 << 16) | s1; } // zutil.c -- target dependent utility functions for the compression library // Copyright (C) 1995-1998 Jean-loup Gailly. // For conditions of distribution and use, see copyright notice in zlib.h // @(#) $Id$ const char * zlibVersion() { return ZLIB_VERSION; } // exported to allow conversion of error code to string for compress() and // uncompress() const char * zError(int err) { return ERR_MSG(err); } voidpf zcalloc (voidpf opaque, unsigned items, unsigned size) { if (opaque) items += size - size; // make compiler happy return (voidpf)calloc(items, size); } void zcfree (voidpf opaque, voidpf ptr) { zfree(ptr); if (opaque) return; // make compiler happy } // inflate.c -- zlib interface to inflate modules // Copyright (C) 1995-1998 Mark Adler // For conditions of distribution and use, see copyright notice in zlib.h //struct inflate_blocks_state {int dummy;}; // for buggy compilers typedef enum { IM_METHOD, // waiting for method byte IM_FLAG, // waiting for flag byte IM_DICT4, // four dictionary check bytes to go IM_DICT3, // three dictionary check bytes to go IM_DICT2, // two dictionary check bytes to go IM_DICT1, // one dictionary check byte to go IM_DICT0, // waiting for inflateSetDictionary IM_BLOCKS, // decompressing blocks IM_CHECK4, // four check bytes to go IM_CHECK3, // three check bytes to go IM_CHECK2, // two check bytes to go IM_CHECK1, // one check byte to go IM_DONE, // finished check, done IM_BAD} // got an error--stay here inflate_mode; // inflate private state struct internal_state { // mode inflate_mode mode; // current inflate mode // mode dependent information union { uInt method; // if IM_FLAGS, method byte struct { uLong was; // computed check value uLong need; // stream check value } check; // if CHECK, check values to compare uInt marker; // if IM_BAD, inflateSync's marker bytes count } sub; // submode // mode independent information int nowrap; // flag for no wrapper uInt wbits; // log2(window size) (8..15, defaults to 15) inflate_blocks_statef *blocks; // current inflate_blocks state }; int inflateReset(z_streamp z) { if (z == Z_NULL || z->state == Z_NULL) return Z_STREAM_ERROR; z->total_in = z->total_out = 0; z->msg = Z_NULL; z->state->mode = z->state->nowrap ? IM_BLOCKS : IM_METHOD; inflate_blocks_reset(z->state->blocks, z, Z_NULL); LuTracev((stderr, "inflate: reset\n")); return Z_OK; } int inflateEnd(z_streamp z) { if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL) return Z_STREAM_ERROR; if (z->state->blocks != Z_NULL) inflate_blocks_free(z->state->blocks, z); ZFREE(z, z->state); z->state = Z_NULL; LuTracev((stderr, "inflate: end\n")); return Z_OK; } int inflateInit2(z_streamp z) { const char *version = ZLIB_VERSION; int stream_size = sizeof(z_stream); if (version == Z_NULL || version[0] != ZLIB_VERSION[0] || stream_size != sizeof(z_stream)) return Z_VERSION_ERROR; int w = -15; // MAX_WBITS: 32K LZ77 window. // Warning: reducing MAX_WBITS makes minigzip unable to extract .gz files created by gzip. // The memory requirements for deflate are (in bytes): // (1 << (windowBits+2)) + (1 << (memLevel+9)) // that is: 128K for windowBits=15 + 128K for memLevel = 8 (default values) // plus a few kilobytes for small objects. For example, if you want to reduce // the default memory requirements from 256K to 128K, compile with // make CFLAGS="-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7" // Of course this will generally degrade compression (there's no free lunch). // // The memory requirements for inflate are (in bytes) 1 << windowBits // that is, 32K for windowBits=15 (default value) plus a few kilobytes // for small objects. // initialize state if (z == Z_NULL) return Z_STREAM_ERROR; z->msg = Z_NULL; if (z->zalloc == Z_NULL) { z->zalloc = zcalloc; z->opaque = (voidpf)0; } if (z->zfree == Z_NULL) z->zfree = zcfree; if ((z->state = (struct internal_state *) ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL) return Z_MEM_ERROR; z->state->blocks = Z_NULL; // handle undocumented nowrap option (no zlib header or check) z->state->nowrap = 0; if (w < 0) { w = - w; z->state->nowrap = 1; } // set window size if (w < 8 || w > 15) { inflateEnd(z); return Z_STREAM_ERROR; } z->state->wbits = (uInt)w; // create inflate_blocks state if ((z->state->blocks = inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w)) == Z_NULL) { inflateEnd(z); return Z_MEM_ERROR; } LuTracev((stderr, "inflate: allocated\n")); // reset state inflateReset(z); return Z_OK; } #define IM_NEEDBYTE {if(z->avail_in==0)return r;r=f;} #define IM_NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++) int inflate(z_streamp z, int f) { int r; uInt b; if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL) return Z_STREAM_ERROR; f = f == Z_FINISH ? Z_BUF_ERROR : Z_OK; r = Z_BUF_ERROR; for (;;) switch (z->state->mode) { case IM_METHOD: IM_NEEDBYTE if (((z->state->sub.method = IM_NEXTBYTE) & 0xf) != Z_DEFLATED) { z->state->mode = IM_BAD; z->msg = (char*)"unknown compression method"; z->state->sub.marker = 5; // can't try inflateSync break; } if ((z->state->sub.method >> 4) + 8 > z->state->wbits) { z->state->mode = IM_BAD; z->msg = (char*)"invalid window size"; z->state->sub.marker = 5; // can't try inflateSync break; } z->state->mode = IM_FLAG; case IM_FLAG: IM_NEEDBYTE b = IM_NEXTBYTE; if (((z->state->sub.method << 8) + b) % 31) { z->state->mode = IM_BAD; z->msg = (char*)"incorrect header check"; z->state->sub.marker = 5; // can't try inflateSync break; } LuTracev((stderr, "inflate: zlib header ok\n")); if (!(b & PRESET_DICT)) { z->state->mode = IM_BLOCKS; break; } z->state->mode = IM_DICT4; case IM_DICT4: IM_NEEDBYTE z->state->sub.check.need = (uLong)IM_NEXTBYTE << 24; z->state->mode = IM_DICT3; case IM_DICT3: IM_NEEDBYTE z->state->sub.check.need += (uLong)IM_NEXTBYTE << 16; z->state->mode = IM_DICT2; case IM_DICT2: IM_NEEDBYTE z->state->sub.check.need += (uLong)IM_NEXTBYTE << 8; z->state->mode = IM_DICT1; case IM_DICT1: IM_NEEDBYTE; r; z->state->sub.check.need += (uLong)IM_NEXTBYTE; z->adler = z->state->sub.check.need; z->state->mode = IM_DICT0; return Z_NEED_DICT; case IM_DICT0: z->state->mode = IM_BAD; z->msg = (char*)"need dictionary"; z->state->sub.marker = 0; // can try inflateSync return Z_STREAM_ERROR; case IM_BLOCKS: r = inflate_blocks(z->state->blocks, z, r); if (r == Z_DATA_ERROR) { z->state->mode = IM_BAD; z->state->sub.marker = 0; // can try inflateSync break; } if (r == Z_OK) r = f; if (r != Z_STREAM_END) return r; r = f; inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was); if (z->state->nowrap) { z->state->mode = IM_DONE; break; } z->state->mode = IM_CHECK4; case IM_CHECK4: IM_NEEDBYTE z->state->sub.check.need = (uLong)IM_NEXTBYTE << 24; z->state->mode = IM_CHECK3; case IM_CHECK3: IM_NEEDBYTE z->state->sub.check.need += (uLong)IM_NEXTBYTE << 16; z->state->mode = IM_CHECK2; case IM_CHECK2: IM_NEEDBYTE z->state->sub.check.need += (uLong)IM_NEXTBYTE << 8; z->state->mode = IM_CHECK1; case IM_CHECK1: IM_NEEDBYTE z->state->sub.check.need += (uLong)IM_NEXTBYTE; if (z->state->sub.check.was != z->state->sub.check.need) { z->state->mode = IM_BAD; z->msg = (char*)"incorrect data check"; z->state->sub.marker = 5; // can't try inflateSync break; } LuTracev((stderr, "inflate: zlib check ok\n")); z->state->mode = IM_DONE; case IM_DONE: return Z_STREAM_END; case IM_BAD: return Z_DATA_ERROR; default: return Z_STREAM_ERROR; } } // unzip.c -- IO on .zip files using zlib // Version 0.15 beta, Mar 19th, 1998, // Read unzip.h for more info #define UNZ_BUFSIZE (16384) #define UNZ_MAXFILENAMEINZIP (256) #define SIZECENTRALDIRITEM (0x2e) #define SIZEZIPLOCALHEADER (0x1e) const char unz_copyright[] = " unzip 0.15 Copyright 1998 Gilles Vollant "; // unz_file_info_interntal contain internal info about a file in zipfile typedef struct unz_file_info_internal_s { uLong offset_curfile;// relative offset of local header 4 bytes } unz_file_info_internal; typedef struct { bool is_handle; // either a handle or memory bool canseek; // for handles: HANDLE h; bool herr; unsigned long initial_offset; bool mustclosehandle; // for memory: void *buf; unsigned int len,pos; // if it's a memory block } LUFILE; LUFILE *lufopen(void *z,unsigned int len,DWORD flags,ZRESULT *err) { if (flags!=ZIP_HANDLE && flags!=ZIP_FILENAME && flags!=ZIP_MEMORY) {*err=ZR_ARGS; return NULL;} // HANDLE h=0; bool canseek=false; *err=ZR_OK; bool mustclosehandle=false; if (flags==ZIP_HANDLE||flags==ZIP_FILENAME) { if (flags==ZIP_HANDLE) { HANDLE hf = z; h=hf; mustclosehandle=false; #ifdef DuplicateHandle BOOL res = DuplicateHandle(GetCurrentProcess(),hf,GetCurrentProcess(),&h,0,FALSE,DUPLICATE_SAME_ACCESS); if (!res) mustclosehandle=true; #endif } else { h=CreateFile((const TCHAR*)z,GENERIC_READ,FILE_SHARE_READ,NULL,OPEN_EXISTING,FILE_ATTRIBUTE_NORMAL,NULL); if (h==INVALID_HANDLE_VALUE) {*err=ZR_NOFILE; return NULL;} mustclosehandle=true; } // test if we can seek on it. We can't use GetFileType(h)==FILE_TYPE_DISK since it's not on CE. DWORD res = SetFilePointer(h,0,0,FILE_CURRENT); canseek = (res!=0xFFFFFFFF); } LUFILE *lf = new LUFILE; if (flags==ZIP_HANDLE||flags==ZIP_FILENAME) { lf->is_handle=true; lf->mustclosehandle=mustclosehandle; lf->canseek=canseek; lf->h=h; lf->herr=false; lf->initial_offset=0; if (canseek) lf->initial_offset = SetFilePointer(h,0,NULL,FILE_CURRENT); } else { lf->is_handle=false; lf->canseek=true; lf->mustclosehandle=false; lf->buf=z; lf->len=len; lf->pos=0; lf->initial_offset=0; } *err=ZR_OK; return lf; } int lufclose(LUFILE *stream) { if (stream==NULL) return EOF; if (stream->mustclosehandle) CloseHandle(stream->h); delete stream; return 0; } int luferror(LUFILE *stream) { if (stream->is_handle && stream->herr) return 1; else return 0; } long int luftell(LUFILE *stream) { if (stream->is_handle && stream->canseek) return SetFilePointer(stream->h,0,NULL,FILE_CURRENT)-stream->initial_offset; else if (stream->is_handle) return 0; else return stream->pos; } int lufseek(LUFILE *stream, long offset, int whence) { if (stream->is_handle && stream->canseek) { if (whence==SEEK_SET) SetFilePointer(stream->h,stream->initial_offset+offset,0,FILE_BEGIN); else if (whence==SEEK_CUR) SetFilePointer(stream->h,offset,NULL,FILE_CURRENT); else if (whence==SEEK_END) SetFilePointer(stream->h,offset,NULL,FILE_END); else return 19; // EINVAL return 0; } else if (stream->is_handle) return 29; // ESPIPE else { if (whence==SEEK_SET) stream->pos=offset; else if (whence==SEEK_CUR) stream->pos+=offset; else if (whence==SEEK_END) stream->pos=stream->len+offset; return 0; } } size_t lufread(void *ptr,size_t size,size_t n,LUFILE *stream) { unsigned int toread = (unsigned int)(size*n); if (stream->is_handle) { DWORD red; BOOL res = ReadFile(stream->h,ptr,toread,&red,NULL); if (!res) stream->herr=true; return red/size; } if (stream->pos+toread > stream->len) toread = stream->len-stream->pos; memcpy(ptr, (char*)stream->buf + stream->pos, toread); DWORD red = toread; stream->pos += red; return red/size; } // file_in_zip_read_info_s contain internal information about a file in zipfile, // when reading and decompress it typedef struct { char *read_buffer; // internal buffer for compressed data z_stream stream; // zLib stream structure for inflate uLong pos_in_zipfile; // position in byte on the zipfile, for fseek uLong stream_initialised; // flag set if stream structure is initialised uLong offset_local_extrafield;// offset of the local extra field uInt size_local_extrafield;// size of the local extra field uLong pos_local_extrafield; // position in the local extra field in read uLong crc32; // crc32 of all data uncompressed uLong crc32_wait; // crc32 we must obtain after decompress all uLong rest_read_compressed; // number of byte to be decompressed uLong rest_read_uncompressed;//number of byte to be obtained after decomp LUFILE* file; // io structore of the zipfile uLong compression_method; // compression method (0==store) uLong byte_before_the_zipfile;// byte before the zipfile, (>0 for sfx) bool encrypted; // is it encrypted? unsigned long keys[3]; // decryption keys, initialized by unzOpenCurrentFile int encheadleft; // the first call(s) to unzReadCurrentFile will read this many encryption-header bytes first char crcenctest; // if encrypted, we'll check the encryption buffer against this } file_in_zip_read_info_s; // unz_s contain internal information about the zipfile typedef struct { LUFILE* file; // io structore of the zipfile unz_global_info gi; // public global information uLong byte_before_the_zipfile;// byte before the zipfile, (>0 for sfx) uLong num_file; // number of the current file in the zipfile uLong pos_in_central_dir; // pos of the current file in the central dir uLong current_file_ok; // flag about the usability of the current file uLong central_pos; // position of the beginning of the central dir uLong size_central_dir; // size of the central directory uLong offset_central_dir; // offset of start of central directory with respect to the starting disk number unz_file_info cur_file_info; // public info about the current file in zip unz_file_info_internal cur_file_info_internal; // private info about it file_in_zip_read_info_s* pfile_in_zip_read; // structure about the current file if we are decompressing it } unz_s, *unzFile; int unzStringFileNameCompare (const char* fileName1,const char* fileName2,int iCaseSensitivity); // Compare two filename (fileName1,fileName2). z_off_t unztell (unzFile file); // Give the current position in uncompressed data int unzeof (unzFile file); // return 1 if the end of file was reached, 0 elsewhere int unzGetLocalExtrafield (unzFile file, voidp buf, unsigned len); // Read extra field from the current file (opened by unzOpenCurrentFile) // This is the local-header version of the extra field (sometimes, there is // more info in the local-header version than in the central-header) // // if buf==NULL, it return the size of the local extra field // // if buf!=NULL, len is the size of the buffer, the extra header is copied in // buf. // the return value is the number of bytes copied in buf, or (if <0) // the error code // =========================================================================== // Read a byte from a gz_stream; update next_in and avail_in. Return EOF // for end of file. // IN assertion: the stream s has been sucessfully opened for reading. int unzlocal_getByte(LUFILE *fin,int *pi) { unsigned char c; int err = (int)lufread(&c, 1, 1, fin); if (err==1) { *pi = (int)c; return UNZ_OK; } else { if (luferror(fin)) return UNZ_ERRNO; else return UNZ_EOF; } } // =========================================================================== // Reads a long in LSB order from the given gz_stream. Sets int unzlocal_getShort (LUFILE *fin,uLong *pX) { uLong x ; int i; int err; err = unzlocal_getByte(fin,&i); x = (uLong)i; if (err==UNZ_OK) err = unzlocal_getByte(fin,&i); x += ((uLong)i)<<8; if (err==UNZ_OK) *pX = x; else *pX = 0; return err; } int unzlocal_getLong (LUFILE *fin,uLong *pX) { uLong x ; int i; int err; err = unzlocal_getByte(fin,&i); x = (uLong)i; if (err==UNZ_OK) err = unzlocal_getByte(fin,&i); x += ((uLong)i)<<8; if (err==UNZ_OK) err = unzlocal_getByte(fin,&i); x += ((uLong)i)<<16; if (err==UNZ_OK) err = unzlocal_getByte(fin,&i); x += ((uLong)i)<<24; if (err==UNZ_OK) *pX = x; else *pX = 0; return err; } // My own strcmpi / strcasecmp int strcmpcasenosensitive_internal (const char* fileName1,const char *fileName2) { for (;;) { char c1=*(fileName1++); char c2=*(fileName2++); if ((c1>='a') && (c1<='z')) c1 -= (char)0x20; if ((c2>='a') && (c2<='z')) c2 -= (char)0x20; if (c1=='\0') return ((c2=='\0') ? 0 : -1); if (c2=='\0') return 1; if (c1<c2) return -1; if (c1>c2) return 1; } } // // Compare two filename (fileName1,fileName2). // If iCaseSenisivity = 1, comparision is case sensitivity (like strcmp) // If iCaseSenisivity = 2, comparision is not case sensitivity (like strcmpi or strcasecmp) // int unzStringFileNameCompare (const char*fileName1,const char*fileName2,int iCaseSensitivity) { if (iCaseSensitivity==1) return strcmp(fileName1,fileName2); else return strcmpcasenosensitive_internal(fileName1,fileName2); } #define BUFREADCOMMENT (0x400) // Locate the Central directory of a zipfile (at the end, just before // the global comment). Lu bugfix 2005.07.26 - returns 0xFFFFFFFF if not found, // rather than 0, since 0 is a valid central-dir-location for an empty zipfile. uLong unzlocal_SearchCentralDir(LUFILE *fin) { if (lufseek(fin,0,SEEK_END) != 0) return 0xFFFFFFFF; uLong uSizeFile = luftell(fin); uLong uMaxBack=0xffff; // maximum size of global comment if (uMaxBack>uSizeFile) uMaxBack = uSizeFile; unsigned char *buf = (unsigned char*)zmalloc(BUFREADCOMMENT+4); if (buf==NULL) return 0xFFFFFFFF; uLong uPosFound=0xFFFFFFFF; uLong uBackRead = 4; while (uBackRead<uMaxBack) { uLong uReadSize,uReadPos ; int i; if (uBackRead+BUFREADCOMMENT>uMaxBack) uBackRead = uMaxBack; else uBackRead+=BUFREADCOMMENT; uReadPos = uSizeFile-uBackRead ; uReadSize = ((BUFREADCOMMENT+4) < (uSizeFile-uReadPos)) ? (BUFREADCOMMENT+4) : (uSizeFile-uReadPos); if (lufseek(fin,uReadPos,SEEK_SET)!=0) break; if (lufread(buf,(uInt)uReadSize,1,fin)!=1) break; for (i=(int)uReadSize-3; (i--)>=0;) { if (((*(buf+i))==0x50) && ((*(buf+i+1))==0x4b) && ((*(buf+i+2))==0x05) && ((*(buf+i+3))==0x06)) { uPosFound = uReadPos+i; break; } } if (uPosFound!=0) break; } if (buf) zfree(buf); return uPosFound; } int unzGoToFirstFile (unzFile file); int unzCloseCurrentFile (unzFile file); // Open a Zip file. // If the zipfile cannot be opened (file don't exist or in not valid), return NULL. // Otherwise, the return value is a unzFile Handle, usable with other unzip functions unzFile unzOpenInternal(LUFILE *fin) { if (fin==NULL) return NULL; if (unz_copyright[0]!=' ') {lufclose(fin); return NULL;} int err=UNZ_OK; unz_s us; uLong central_pos,uL; central_pos = unzlocal_SearchCentralDir(fin); if (central_pos==0xFFFFFFFF) err=UNZ_ERRNO; if (lufseek(fin,central_pos,SEEK_SET)!=0) err=UNZ_ERRNO; // the signature, already checked if (unzlocal_getLong(fin,&uL)!=UNZ_OK) err=UNZ_ERRNO; // number of this disk uLong number_disk; // number of the current dist, used for spanning ZIP, unsupported, always 0 if (unzlocal_getShort(fin,&number_disk)!=UNZ_OK) err=UNZ_ERRNO; // number of the disk with the start of the central directory uLong number_disk_with_CD; // number the the disk with central dir, used for spaning ZIP, unsupported, always 0 if (unzlocal_getShort(fin,&number_disk_with_CD)!=UNZ_OK) err=UNZ_ERRNO; // total number of entries in the central dir on this disk if (unzlocal_getShort(fin,&us.gi.number_entry)!=UNZ_OK) err=UNZ_ERRNO; // total number of entries in the central dir uLong number_entry_CD; // total number of entries in the central dir (same than number_entry on nospan) if (unzlocal_getShort(fin,&number_entry_CD)!=UNZ_OK) err=UNZ_ERRNO; if ((number_entry_CD!=us.gi.number_entry) || (number_disk_with_CD!=0) || (number_disk!=0)) err=UNZ_BADZIPFILE; // size of the central directory if (unzlocal_getLong(fin,&us.size_central_dir)!=UNZ_OK) err=UNZ_ERRNO; // offset of start of central directory with respect to the starting disk number if (unzlocal_getLong(fin,&us.offset_central_dir)!=UNZ_OK) err=UNZ_ERRNO; // zipfile comment length if (unzlocal_getShort(fin,&us.gi.size_comment)!=UNZ_OK) err=UNZ_ERRNO; if ((central_pos+fin->initial_offset<us.offset_central_dir+us.size_central_dir) && (err==UNZ_OK)) err=UNZ_BADZIPFILE; if (err!=UNZ_OK) {lufclose(fin);return NULL;} us.file=fin; us.byte_before_the_zipfile = central_pos+fin->initial_offset - (us.offset_central_dir+us.size_central_dir); us.central_pos = central_pos; us.pfile_in_zip_read = NULL; fin->initial_offset = 0; // since the zipfile itself is expected to handle this unz_s *s = (unz_s*)zmalloc(sizeof(unz_s)); *s=us; unzGoToFirstFile((unzFile)s); return (unzFile)s; } // Close a ZipFile opened with unzipOpen. // If there is files inside the .Zip opened with unzipOpenCurrentFile (see later), // these files MUST be closed with unzipCloseCurrentFile before call unzipClose. // return UNZ_OK if there is no problem. int unzClose (unzFile file) { unz_s* s; if (file==NULL) return UNZ_PARAMERROR; s=(unz_s*)file; if (s->pfile_in_zip_read!=NULL) unzCloseCurrentFile(file); lufclose(s->file); if (s) zfree(s); // unused s=0; return UNZ_OK; } // Write info about the ZipFile in the *pglobal_info structure. // No preparation of the structure is needed // return UNZ_OK if there is no problem. int unzGetGlobalInfo (unzFile file,unz_global_info *pglobal_info) { unz_s* s; if (file==NULL) return UNZ_PARAMERROR; s=(unz_s*)file; *pglobal_info=s->gi; return UNZ_OK; } // Translate date/time from Dos format to tm_unz (readable more easilty) void unzlocal_DosDateToTmuDate (uLong ulDosDate, tm_unz* ptm) { uLong uDate; uDate = (uLong)(ulDosDate>>16); ptm->tm_mday = (uInt)(uDate&0x1f) ; ptm->tm_mon = (uInt)((((uDate)&0x1E0)/0x20)-1) ; ptm->tm_year = (uInt)(((uDate&0x0FE00)/0x0200)+1980) ; ptm->tm_hour = (uInt) ((ulDosDate &0xF800)/0x800); ptm->tm_min = (uInt) ((ulDosDate&0x7E0)/0x20) ; ptm->tm_sec = (uInt) (2*(ulDosDate&0x1f)) ; } // Get Info about the current file in the zipfile, with internal only info int unzlocal_GetCurrentFileInfoInternal (unzFile file, unz_file_info *pfile_info, unz_file_info_internal *pfile_info_internal, char *szFileName, uLong fileNameBufferSize, void *extraField, uLong extraFieldBufferSize, char *szComment, uLong commentBufferSize); int unzlocal_GetCurrentFileInfoInternal (unzFile file, unz_file_info *pfile_info, unz_file_info_internal *pfile_info_internal, char *szFileName, uLong fileNameBufferSize, void *extraField, uLong extraFieldBufferSize, char *szComment, uLong commentBufferSize) { unz_s* s; unz_file_info file_info; unz_file_info_internal file_info_internal; int err=UNZ_OK; uLong uMagic; long lSeek=0; if (file==NULL) return UNZ_PARAMERROR; s=(unz_s*)file; if (lufseek(s->file,s->pos_in_central_dir+s->byte_before_the_zipfile,SEEK_SET)!=0) err=UNZ_ERRNO; // we check the magic if (err==UNZ_OK) if (unzlocal_getLong(s->file,&uMagic) != UNZ_OK) err=UNZ_ERRNO; else if (uMagic!=0x02014b50) err=UNZ_BADZIPFILE; if (unzlocal_getShort(s->file,&file_info.version) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getShort(s->file,&file_info.version_needed) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getShort(s->file,&file_info.flag) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getShort(s->file,&file_info.compression_method) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getLong(s->file,&file_info.dosDate) != UNZ_OK) err=UNZ_ERRNO; unzlocal_DosDateToTmuDate(file_info.dosDate,&file_info.tmu_date); if (unzlocal_getLong(s->file,&file_info.crc) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getLong(s->file,&file_info.compressed_size) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getLong(s->file,&file_info.uncompressed_size) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getShort(s->file,&file_info.size_filename) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getShort(s->file,&file_info.size_file_extra) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getShort(s->file,&file_info.size_file_comment) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getShort(s->file,&file_info.disk_num_start) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getShort(s->file,&file_info.internal_fa) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getLong(s->file,&file_info.external_fa) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getLong(s->file,&file_info_internal.offset_curfile) != UNZ_OK) err=UNZ_ERRNO; lSeek+=file_info.size_filename; if ((err==UNZ_OK) && (szFileName!=NULL)) { uLong uSizeRead ; if (file_info.size_filename<fileNameBufferSize) { *(szFileName+file_info.size_filename)='\0'; uSizeRead = file_info.size_filename; } else uSizeRead = fileNameBufferSize; if ((file_info.size_filename>0) && (fileNameBufferSize>0)) if (lufread(szFileName,(uInt)uSizeRead,1,s->file)!=1) err=UNZ_ERRNO; lSeek -= uSizeRead; } if ((err==UNZ_OK) && (extraField!=NULL)) { uLong uSizeRead ; if (file_info.size_file_extra<extraFieldBufferSize) uSizeRead = file_info.size_file_extra; else uSizeRead = extraFieldBufferSize; if (lSeek!=0) if (lufseek(s->file,lSeek,SEEK_CUR)==0) lSeek=0; else err=UNZ_ERRNO; if ((file_info.size_file_extra>0) && (extraFieldBufferSize>0)) if (lufread(extraField,(uInt)uSizeRead,1,s->file)!=1) err=UNZ_ERRNO; lSeek += file_info.size_file_extra - uSizeRead; } else lSeek+=file_info.size_file_extra; if ((err==UNZ_OK) && (szComment!=NULL)) { uLong uSizeRead ; if (file_info.size_file_comment<commentBufferSize) { *(szComment+file_info.size_file_comment)='\0'; uSizeRead = file_info.size_file_comment; } else uSizeRead = commentBufferSize; if (lSeek!=0) if (lufseek(s->file,lSeek,SEEK_CUR)==0) {} // unused lSeek=0; else err=UNZ_ERRNO; if ((file_info.size_file_comment>0) && (commentBufferSize>0)) if (lufread(szComment,(uInt)uSizeRead,1,s->file)!=1) err=UNZ_ERRNO; //unused lSeek+=file_info.size_file_comment - uSizeRead; } else {} //unused lSeek+=file_info.size_file_comment; if ((err==UNZ_OK) && (pfile_info!=NULL)) *pfile_info=file_info; if ((err==UNZ_OK) && (pfile_info_internal!=NULL)) *pfile_info_internal=file_info_internal; return err; } // Write info about the ZipFile in the *pglobal_info structure. // No preparation of the structure is needed // return UNZ_OK if there is no problem. int unzGetCurrentFileInfo (unzFile file, unz_file_info *pfile_info, char *szFileName, uLong fileNameBufferSize, void *extraField, uLong extraFieldBufferSize, char *szComment, uLong commentBufferSize) { return unzlocal_GetCurrentFileInfoInternal(file,pfile_info,NULL,szFileName,fileNameBufferSize, extraField,extraFieldBufferSize, szComment,commentBufferSize); } // Set the current file of the zipfile to the first file. // return UNZ_OK if there is no problem int unzGoToFirstFile (unzFile file) { int err; unz_s* s; if (file==NULL) return UNZ_PARAMERROR; s=(unz_s*)file; s->pos_in_central_dir=s->offset_central_dir; s->num_file=0; err=unzlocal_GetCurrentFileInfoInternal(file,&s->cur_file_info, &s->cur_file_info_internal, NULL,0,NULL,0,NULL,0); s->current_file_ok = (err == UNZ_OK); return err; } // Set the current file of the zipfile to the next file. // return UNZ_OK if there is no problem // return UNZ_END_OF_LIST_OF_FILE if the actual file was the latest. int unzGoToNextFile (unzFile file) { unz_s* s; int err; if (file==NULL) return UNZ_PARAMERROR; s=(unz_s*)file; if (!s->current_file_ok) return UNZ_END_OF_LIST_OF_FILE; if (s->num_file+1==s->gi.number_entry) return UNZ_END_OF_LIST_OF_FILE; s->pos_in_central_dir += SIZECENTRALDIRITEM + s->cur_file_info.size_filename + s->cur_file_info.size_file_extra + s->cur_file_info.size_file_comment ; s->num_file++; err = unzlocal_GetCurrentFileInfoInternal(file,&s->cur_file_info, &s->cur_file_info_internal, NULL,0,NULL,0,NULL,0); s->current_file_ok = (err == UNZ_OK); return err; } // Try locate the file szFileName in the zipfile. // For the iCaseSensitivity signification, see unzStringFileNameCompare // return value : // UNZ_OK if the file is found. It becomes the current file. // UNZ_END_OF_LIST_OF_FILE if the file is not found int unzLocateFile (unzFile file, const char *szFileName, int iCaseSensitivity) { unz_s* s; int err; uLong num_fileSaved; uLong pos_in_central_dirSaved; if (file==NULL) return UNZ_PARAMERROR; if (strlen(szFileName)>=UNZ_MAXFILENAMEINZIP) return UNZ_PARAMERROR; s=(unz_s*)file; if (!s->current_file_ok) return UNZ_END_OF_LIST_OF_FILE; num_fileSaved = s->num_file; pos_in_central_dirSaved = s->pos_in_central_dir; err = unzGoToFirstFile(file); while (err == UNZ_OK) { char szCurrentFileName[UNZ_MAXFILENAMEINZIP+1]; unzGetCurrentFileInfo(file,NULL, szCurrentFileName,sizeof(szCurrentFileName)-1, NULL,0,NULL,0); if (unzStringFileNameCompare(szCurrentFileName,szFileName,iCaseSensitivity)==0) return UNZ_OK; err = unzGoToNextFile(file); } s->num_file = num_fileSaved ; s->pos_in_central_dir = pos_in_central_dirSaved ; return err; } // Read the local header of the current zipfile // Check the coherency of the local header and info in the end of central // directory about this file // store in *piSizeVar the size of extra info in local header // (filename and size of extra field data) int unzlocal_CheckCurrentFileCoherencyHeader (unz_s *s,uInt *piSizeVar, uLong *poffset_local_extrafield, uInt *psize_local_extrafield) { uLong uMagic,uData,uFlags; uLong size_filename; uLong size_extra_field; int err=UNZ_OK; *piSizeVar = 0; *poffset_local_extrafield = 0; *psize_local_extrafield = 0; if (lufseek(s->file,s->cur_file_info_internal.offset_curfile + s->byte_before_the_zipfile,SEEK_SET)!=0) return UNZ_ERRNO; if (err==UNZ_OK) if (unzlocal_getLong(s->file,&uMagic) != UNZ_OK) err=UNZ_ERRNO; else if (uMagic!=0x04034b50) err=UNZ_BADZIPFILE; if (unzlocal_getShort(s->file,&uData) != UNZ_OK) err=UNZ_ERRNO; // else if ((err==UNZ_OK) && (uData!=s->cur_file_info.wVersion)) // err=UNZ_BADZIPFILE; if (unzlocal_getShort(s->file,&uFlags) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getShort(s->file,&uData) != UNZ_OK) err=UNZ_ERRNO; else if ((err==UNZ_OK) && (uData!=s->cur_file_info.compression_method)) err=UNZ_BADZIPFILE; if ((err==UNZ_OK) && (s->cur_file_info.compression_method!=0) && (s->cur_file_info.compression_method!=Z_DEFLATED)) err=UNZ_BADZIPFILE; if (unzlocal_getLong(s->file,&uData) != UNZ_OK) // date/time err=UNZ_ERRNO; if (unzlocal_getLong(s->file,&uData) != UNZ_OK) // crc err=UNZ_ERRNO; else if ((err==UNZ_OK) && (uData!=s->cur_file_info.crc) && ((uFlags & 8)==0)) err=UNZ_BADZIPFILE; if (unzlocal_getLong(s->file,&uData) != UNZ_OK) // size compr err=UNZ_ERRNO; else if ((err==UNZ_OK) && (uData!=s->cur_file_info.compressed_size) && ((uFlags & 8)==0)) err=UNZ_BADZIPFILE; if (unzlocal_getLong(s->file,&uData) != UNZ_OK) // size uncompr err=UNZ_ERRNO; else if ((err==UNZ_OK) && (uData!=s->cur_file_info.uncompressed_size) && ((uFlags & 8)==0)) err=UNZ_BADZIPFILE; if (unzlocal_getShort(s->file,&size_filename) != UNZ_OK) err=UNZ_ERRNO; else if ((err==UNZ_OK) && (size_filename!=s->cur_file_info.size_filename)) err=UNZ_BADZIPFILE; *piSizeVar += (uInt)size_filename; if (unzlocal_getShort(s->file,&size_extra_field) != UNZ_OK) err=UNZ_ERRNO; *poffset_local_extrafield= s->cur_file_info_internal.offset_curfile + SIZEZIPLOCALHEADER + size_filename; *psize_local_extrafield = (uInt)size_extra_field; *piSizeVar += (uInt)size_extra_field; return err; } // Open for reading data the current file in the zipfile. // If there is no error and the file is opened, the return value is UNZ_OK. int unzOpenCurrentFile (unzFile file, const char *password) { int err; int Store; uInt iSizeVar; unz_s* s; file_in_zip_read_info_s* pfile_in_zip_read_info; uLong offset_local_extrafield; // offset of the local extra field uInt size_local_extrafield; // size of the local extra field if (file==NULL) return UNZ_PARAMERROR; s=(unz_s*)file; if (!s->current_file_ok) return UNZ_PARAMERROR; if (s->pfile_in_zip_read != NULL) unzCloseCurrentFile(file); if (unzlocal_CheckCurrentFileCoherencyHeader(s,&iSizeVar, &offset_local_extrafield,&size_local_extrafield)!=UNZ_OK) return UNZ_BADZIPFILE; pfile_in_zip_read_info = (file_in_zip_read_info_s*)zmalloc(sizeof(file_in_zip_read_info_s)); if (pfile_in_zip_read_info==NULL) return UNZ_INTERNALERROR; pfile_in_zip_read_info->read_buffer=(char*)zmalloc(UNZ_BUFSIZE); pfile_in_zip_read_info->offset_local_extrafield = offset_local_extrafield; pfile_in_zip_read_info->size_local_extrafield = size_local_extrafield; pfile_in_zip_read_info->pos_local_extrafield=0; if (pfile_in_zip_read_info->read_buffer==NULL) { if (pfile_in_zip_read_info!=0) zfree(pfile_in_zip_read_info); //unused pfile_in_zip_read_info=0; return UNZ_INTERNALERROR; } pfile_in_zip_read_info->stream_initialised=0; if ((s->cur_file_info.compression_method!=0) && (s->cur_file_info.compression_method!=Z_DEFLATED)) { // unused err=UNZ_BADZIPFILE; } Store = s->cur_file_info.compression_method==0; pfile_in_zip_read_info->crc32_wait=s->cur_file_info.crc; pfile_in_zip_read_info->crc32=0; pfile_in_zip_read_info->compression_method = s->cur_file_info.compression_method; pfile_in_zip_read_info->file=s->file; pfile_in_zip_read_info->byte_before_the_zipfile=s->byte_before_the_zipfile; pfile_in_zip_read_info->stream.total_out = 0; if (!Store) { pfile_in_zip_read_info->stream.zalloc = (alloc_func)0; pfile_in_zip_read_info->stream.zfree = (free_func)0; pfile_in_zip_read_info->stream.opaque = (voidpf)0; err=inflateInit2(&pfile_in_zip_read_info->stream); if (err == Z_OK) pfile_in_zip_read_info->stream_initialised=1; // windowBits is passed < 0 to tell that there is no zlib header. // Note that in this case inflate *requires* an extra "dummy" byte // after the compressed stream in order to complete decompression and // return Z_STREAM_END. // In unzip, i don't wait absolutely Z_STREAM_END because I known the // size of both compressed and uncompressed data } pfile_in_zip_read_info->rest_read_compressed = s->cur_file_info.compressed_size ; pfile_in_zip_read_info->rest_read_uncompressed = s->cur_file_info.uncompressed_size ; pfile_in_zip_read_info->encrypted = (s->cur_file_info.flag&1)!=0; bool extlochead = (s->cur_file_info.flag&8)!=0; if (extlochead) pfile_in_zip_read_info->crcenctest = (char)((s->cur_file_info.dosDate>>8)&0xff); else pfile_in_zip_read_info->crcenctest = (char)(s->cur_file_info.crc >> 24); pfile_in_zip_read_info->encheadleft = (pfile_in_zip_read_info->encrypted?12:0); pfile_in_zip_read_info->keys[0] = 305419896L; pfile_in_zip_read_info->keys[1] = 591751049L; pfile_in_zip_read_info->keys[2] = 878082192L; for (const char *cp=password; cp!=0 && *cp!=0; cp++) Uupdate_keys(pfile_in_zip_read_info->keys,*cp); pfile_in_zip_read_info->pos_in_zipfile = s->cur_file_info_internal.offset_curfile + SIZEZIPLOCALHEADER + iSizeVar; pfile_in_zip_read_info->stream.avail_in = (uInt)0; s->pfile_in_zip_read = pfile_in_zip_read_info; return UNZ_OK; } // Read bytes from the current file. // buf contain buffer where data must be copied // len the size of buf. // return the number of byte copied if somes bytes are copied (and also sets *reached_eof) // return 0 if the end of file was reached. (and also sets *reached_eof). // return <0 with error code if there is an error. (in which case *reached_eof is meaningless) // (UNZ_ERRNO for IO error, or zLib error for uncompress error) int unzReadCurrentFile (unzFile file, voidp buf, unsigned len, bool *reached_eof) { int err=UNZ_OK; uInt iRead = 0; if (reached_eof!=0) *reached_eof=false; unz_s *s = (unz_s*)file; if (s==NULL) return UNZ_PARAMERROR; file_in_zip_read_info_s* pfile_in_zip_read_info = s->pfile_in_zip_read; if (pfile_in_zip_read_info==NULL) return UNZ_PARAMERROR; if ((pfile_in_zip_read_info->read_buffer == NULL)) return UNZ_END_OF_LIST_OF_FILE; if (len==0) return 0; pfile_in_zip_read_info->stream.next_out = (Byte*)buf; pfile_in_zip_read_info->stream.avail_out = (uInt)len; if (len>pfile_in_zip_read_info->rest_read_uncompressed) { pfile_in_zip_read_info->stream.avail_out = (uInt)pfile_in_zip_read_info->rest_read_uncompressed; } while (pfile_in_zip_read_info->stream.avail_out>0) { if ((pfile_in_zip_read_info->stream.avail_in==0) && (pfile_in_zip_read_info->rest_read_compressed>0)) { uInt uReadThis = UNZ_BUFSIZE; if (pfile_in_zip_read_info->rest_read_compressed<uReadThis) uReadThis = (uInt)pfile_in_zip_read_info->rest_read_compressed; if (uReadThis == 0) {if (reached_eof!=0) *reached_eof=true; return UNZ_EOF;} if (lufseek(pfile_in_zip_read_info->file, pfile_in_zip_read_info->pos_in_zipfile + pfile_in_zip_read_info->byte_before_the_zipfile,SEEK_SET)!=0) return UNZ_ERRNO; if (lufread(pfile_in_zip_read_info->read_buffer,uReadThis,1,pfile_in_zip_read_info->file)!=1) return UNZ_ERRNO; pfile_in_zip_read_info->pos_in_zipfile += uReadThis; pfile_in_zip_read_info->rest_read_compressed-=uReadThis; pfile_in_zip_read_info->stream.next_in = (Byte*)pfile_in_zip_read_info->read_buffer; pfile_in_zip_read_info->stream.avail_in = (uInt)uReadThis; // if (pfile_in_zip_read_info->encrypted) { char *_buf = (char*)pfile_in_zip_read_info->stream.next_in; for (unsigned int i=0; i<uReadThis; i++) _buf[i]=zdecode(pfile_in_zip_read_info->keys, _buf[i]); } } unsigned int uDoEncHead = pfile_in_zip_read_info->encheadleft; if (uDoEncHead>pfile_in_zip_read_info->stream.avail_in) uDoEncHead=pfile_in_zip_read_info->stream.avail_in; if (uDoEncHead>0) { char bufcrc=pfile_in_zip_read_info->stream.next_in[uDoEncHead-1]; pfile_in_zip_read_info->rest_read_uncompressed-=uDoEncHead; pfile_in_zip_read_info->stream.avail_in -= uDoEncHead; pfile_in_zip_read_info->stream.next_in += uDoEncHead; pfile_in_zip_read_info->encheadleft -= uDoEncHead; if (pfile_in_zip_read_info->encheadleft==0) { if (bufcrc!=pfile_in_zip_read_info->crcenctest) return UNZ_PASSWORD; } } if (pfile_in_zip_read_info->compression_method==0) { uInt uDoCopy,i ; if (pfile_in_zip_read_info->stream.avail_out < pfile_in_zip_read_info->stream.avail_in) { uDoCopy = pfile_in_zip_read_info->stream.avail_out ; } else { uDoCopy = pfile_in_zip_read_info->stream.avail_in ; } for (i=0;i<uDoCopy;i++) *(pfile_in_zip_read_info->stream.next_out+i) = *(pfile_in_zip_read_info->stream.next_in+i); pfile_in_zip_read_info->crc32 = ucrc32(pfile_in_zip_read_info->crc32,pfile_in_zip_read_info->stream.next_out,uDoCopy); pfile_in_zip_read_info->rest_read_uncompressed-=uDoCopy; pfile_in_zip_read_info->stream.avail_in -= uDoCopy; pfile_in_zip_read_info->stream.avail_out -= uDoCopy; pfile_in_zip_read_info->stream.next_out += uDoCopy; pfile_in_zip_read_info->stream.next_in += uDoCopy; pfile_in_zip_read_info->stream.total_out += uDoCopy; iRead += uDoCopy; if (pfile_in_zip_read_info->rest_read_uncompressed==0) {if (reached_eof!=0) *reached_eof=true;} } else { uLong uTotalOutBefore,uTotalOutAfter; const Byte *bufBefore; uLong uOutThis; int flush=Z_SYNC_FLUSH; uTotalOutBefore = pfile_in_zip_read_info->stream.total_out; bufBefore = pfile_in_zip_read_info->stream.next_out; // err=inflate(&pfile_in_zip_read_info->stream,flush); // uTotalOutAfter = pfile_in_zip_read_info->stream.total_out; uOutThis = uTotalOutAfter-uTotalOutBefore; pfile_in_zip_read_info->crc32 = ucrc32(pfile_in_zip_read_info->crc32,bufBefore,(uInt)(uOutThis)); pfile_in_zip_read_info->rest_read_uncompressed -= uOutThis; iRead += (uInt)(uTotalOutAfter - uTotalOutBefore); if (err==Z_STREAM_END || pfile_in_zip_read_info->rest_read_uncompressed==0) { if (reached_eof!=0) *reached_eof=true; return iRead; } if (err!=Z_OK) break; } } if (err==Z_OK) return iRead; return err; } // Give the current position in uncompressed data z_off_t unztell (unzFile file) { unz_s* s; file_in_zip_read_info_s* pfile_in_zip_read_info; if (file==NULL) return UNZ_PARAMERROR; s=(unz_s*)file; pfile_in_zip_read_info=s->pfile_in_zip_read; if (pfile_in_zip_read_info==NULL) return UNZ_PARAMERROR; return (z_off_t)pfile_in_zip_read_info->stream.total_out; } // return 1 if the end of file was reached, 0 elsewhere int unzeof (unzFile file) { unz_s* s; file_in_zip_read_info_s* pfile_in_zip_read_info; if (file==NULL) return UNZ_PARAMERROR; s=(unz_s*)file; pfile_in_zip_read_info=s->pfile_in_zip_read; if (pfile_in_zip_read_info==NULL) return UNZ_PARAMERROR; if (pfile_in_zip_read_info->rest_read_uncompressed == 0) return 1; else return 0; } // Read extra field from the current file (opened by unzOpenCurrentFile) // This is the local-header version of the extra field (sometimes, there is // more info in the local-header version than in the central-header) // if buf==NULL, it return the size of the local extra field that can be read // if buf!=NULL, len is the size of the buffer, the extra header is copied in buf. // the return value is the number of bytes copied in buf, or (if <0) the error code int unzGetLocalExtrafield (unzFile file,voidp buf,unsigned len) { unz_s* s; file_in_zip_read_info_s* pfile_in_zip_read_info; uInt read_now; uLong size_to_read; if (file==NULL) return UNZ_PARAMERROR; s=(unz_s*)file; pfile_in_zip_read_info=s->pfile_in_zip_read; if (pfile_in_zip_read_info==NULL) return UNZ_PARAMERROR; size_to_read = (pfile_in_zip_read_info->size_local_extrafield - pfile_in_zip_read_info->pos_local_extrafield); if (buf==NULL) return (int)size_to_read; if (len>size_to_read) read_now = (uInt)size_to_read; else read_now = (uInt)len ; if (read_now==0) return 0; if (lufseek(pfile_in_zip_read_info->file, pfile_in_zip_read_info->offset_local_extrafield + pfile_in_zip_read_info->pos_local_extrafield,SEEK_SET)!=0) return UNZ_ERRNO; if (lufread(buf,(uInt)size_to_read,1,pfile_in_zip_read_info->file)!=1) return UNZ_ERRNO; return (int)read_now; } // Close the file in zip opened with unzipOpenCurrentFile // Return UNZ_CRCERROR if all the file was read but the CRC is not good int unzCloseCurrentFile (unzFile file) { int err=UNZ_OK; unz_s* s; file_in_zip_read_info_s* pfile_in_zip_read_info; if (file==NULL) return UNZ_PARAMERROR; s=(unz_s*)file; pfile_in_zip_read_info=s->pfile_in_zip_read; if (pfile_in_zip_read_info==NULL) return UNZ_PARAMERROR; if (pfile_in_zip_read_info->rest_read_uncompressed == 0) { if (pfile_in_zip_read_info->crc32 != pfile_in_zip_read_info->crc32_wait) err=UNZ_CRCERROR; } if (pfile_in_zip_read_info->read_buffer!=0) { void *buf = pfile_in_zip_read_info->read_buffer; zfree(buf); pfile_in_zip_read_info->read_buffer=0; } pfile_in_zip_read_info->read_buffer = NULL; if (pfile_in_zip_read_info->stream_initialised) inflateEnd(&pfile_in_zip_read_info->stream); pfile_in_zip_read_info->stream_initialised = 0; if (pfile_in_zip_read_info!=0) zfree(pfile_in_zip_read_info); // unused pfile_in_zip_read_info=0; s->pfile_in_zip_read=NULL; return err; } // Get the global comment string of the ZipFile, in the szComment buffer. // uSizeBuf is the size of the szComment buffer. // return the number of byte copied or an error code <0 int unzGetGlobalComment (unzFile file, char *szComment, uLong uSizeBuf) { //int err=UNZ_OK; unz_s* s; uLong uReadThis ; if (file==NULL) return UNZ_PARAMERROR; s=(unz_s*)file; uReadThis = uSizeBuf; if (uReadThis>s->gi.size_comment) uReadThis = s->gi.size_comment; if (lufseek(s->file,s->central_pos+22,SEEK_SET)!=0) return UNZ_ERRNO; if (uReadThis>0) { *szComment='\0'; if (lufread(szComment,(uInt)uReadThis,1,s->file)!=1) return UNZ_ERRNO; } if ((szComment != NULL) && (uSizeBuf > s->gi.size_comment)) *(szComment+s->gi.size_comment)='\0'; return (int)uReadThis; } int unzOpenCurrentFile (unzFile file, const char *password); int unzReadCurrentFile (unzFile file, void *buf, unsigned len); int unzCloseCurrentFile (unzFile file); typedef unsigned __int32 lutime_t; // define it ourselves since we don't include time.h FILETIME timet2filetime(const lutime_t t) { LONGLONG i = Int32x32To64(t,10000000) + 116444736000000000; FILETIME ft; ft.dwLowDateTime = (DWORD) i; ft.dwHighDateTime = (DWORD)(i >>32); return ft; } FILETIME dosdatetime2filetime(WORD dosdate,WORD dostime) { // date: bits 0-4 are day of month 1-31. Bits 5-8 are month 1..12. Bits 9-15 are year-1980 // time: bits 0-4 are seconds/2, bits 5-10 are minute 0..59. Bits 11-15 are hour 0..23 SYSTEMTIME st; st.wYear = (WORD)(((dosdate>>9)&0x7f) + 1980); st.wMonth = (WORD)((dosdate>>5)&0xf); st.wDay = (WORD)(dosdate&0x1f); st.wHour = (WORD)((dostime>>11)&0x1f); st.wMinute = (WORD)((dostime>>5)&0x3f); st.wSecond = (WORD)((dostime&0x1f)*2); st.wMilliseconds = 0; FILETIME ft; SystemTimeToFileTime(&st,&ft); return ft; } class TUnzip { public: TUnzip(const char *pwd) : uf(0), currentfile(-1), czei(-1), password(0), unzbuf(0) { if (pwd!=0) { password=new char[strlen(pwd)+1]; strcpy_s(password, strlen(pwd) + 1, pwd); } } ~TUnzip() { if (password!=0) delete[] password; password=0; if (unzbuf!=0) delete[] unzbuf; unzbuf=0; } unzFile uf; int currentfile; ZIPENTRY cze; int czei; char *password; char *unzbuf; // lazily created and destroyed, used by Unzip TCHAR rootdir[MAX_PATH]; // includes a trailing slash ZRESULT Open(void *z,unsigned int len,DWORD flags); ZRESULT Get(int index,ZIPENTRY *ze); ZRESULT Find(const TCHAR *name,bool ic,int *index,ZIPENTRY *ze); ZRESULT Unzip(int index,void *dst,unsigned int len,DWORD flags); ZRESULT SetUnzipBaseDir(const TCHAR *dir); ZRESULT Close(); }; ZRESULT TUnzip::Open(void *z,unsigned int len,DWORD flags) { if (uf!=0 || currentfile!=-1) return ZR_NOTINITED; // #ifdef GetCurrentDirectory GetCurrentDirectory(MAX_PATH,rootdir); #else _tcscpy(rootdir,_T("\\")); #endif TCHAR lastchar = rootdir[_tcslen(rootdir)-1]; if (lastchar!='\\' && lastchar!='/') _tcscat_s(rootdir,_T("\\")); // if (flags==ZIP_HANDLE) { // test if we can seek on it. We can't use GetFileType(h)==FILE_TYPE_DISK since it's not on CE. DWORD res = SetFilePointer(z,0,0,FILE_CURRENT); bool canseek = (res!=0xFFFFFFFF); if (!canseek) return ZR_SEEK; } ZRESULT e; LUFILE *f = lufopen(z,len,flags,&e); if (f==NULL) return e; uf = unzOpenInternal(f); if (uf==0) return ZR_NOFILE; return ZR_OK; } ZRESULT TUnzip::SetUnzipBaseDir(const TCHAR *dir) { _tcscpy_s(rootdir,dir); TCHAR lastchar = rootdir[_tcslen(rootdir)-1]; if (lastchar!='\\' && lastchar!='/') _tcscat_s(rootdir,_T("\\")); return ZR_OK; } ZRESULT TUnzip::Get(int index, ZIPENTRY *ze) { if (index<-1 || index>=(int)uf->gi.number_entry) return ZR_ARGS; if (currentfile!=-1) unzCloseCurrentFile(uf); currentfile=-1; if (index==czei && index!=-1) {memcpy(ze,&cze,sizeof(ZIPENTRY)); return ZR_OK;} if (index==-1) { ze->index = uf->gi.number_entry; ze->name[0]=0; ze->attr=0; ze->atime.dwLowDateTime=0; ze->atime.dwHighDateTime=0; ze->ctime.dwLowDateTime=0; ze->ctime.dwHighDateTime=0; ze->mtime.dwLowDateTime=0; ze->mtime.dwHighDateTime=0; ze->comp_size=0; ze->unc_size=0; return ZR_OK; } if (index<(int)uf->num_file) unzGoToFirstFile(uf); while ((int)uf->num_file<index) unzGoToNextFile(uf); unz_file_info ufi; char fn[MAX_PATH]; unzGetCurrentFileInfo(uf,&ufi,fn,MAX_PATH,NULL,0,NULL,0); // now get the extra header. We do this ourselves, instead of // calling unzOpenCurrentFile &c., to avoid allocating more than necessary. unsigned int extralen,iSizeVar; unsigned long offset; int res = unzlocal_CheckCurrentFileCoherencyHeader(uf,&iSizeVar,&offset,&extralen); if (res!=UNZ_OK) return ZR_CORRUPT; if (lufseek(uf->file,offset,SEEK_SET)!=0) return ZR_READ; unsigned char *extra = new unsigned char[extralen]; if (lufread(extra,1,(uInt)extralen,uf->file)!=extralen) {delete[] extra; return ZR_READ;} // ze->index=uf->num_file; TCHAR tfn[MAX_PATH]; #ifdef UNICODE MultiByteToWideChar(CP_UTF8,0,fn,-1,tfn,MAX_PATH); #else strcpy(tfn,fn); #endif // As a safety feature: if the zip filename had sneaky stuff // like "c:\windows\file.txt" or "\windows\file.txt" or "fred\..\..\..\windows\file.txt" // then we get rid of them all. That way, when the programmer does UnzipItem(hz,i,ze.name), // it won't be a problem. (If the programmer really did want to get the full evil information, // then they can edit out this security feature from here). // In particular, we chop off any prefixes that are "c:\" or "\" or "/" or "[stuff]\.." or "[stuff]/.." const TCHAR *sfn=tfn; for (;;) { if (sfn[0]!=0 && sfn[1]==':') {sfn+=2; continue;} if (sfn[0]=='\\') {sfn++; continue;} if (sfn[0]=='/') {sfn++; continue;} const TCHAR *c; c=_tcsstr(sfn,_T("\\..\\")); if (c!=0) {sfn=c+4; continue;} c=_tcsstr(sfn,_T("\\../")); if (c!=0) {sfn=c+4; continue;} c=_tcsstr(sfn,_T("/../")); if (c!=0) {sfn=c+4; continue;} c=_tcsstr(sfn,_T("/..\\")); if (c!=0) {sfn=c+4; continue;} break; } _tcscpy_s(ze->name, sfn); // zip has an 'attribute' 32bit value. Its lower half is windows stuff // its upper half is standard unix stat.st_mode. We'll start trying // to read it in unix mode unsigned long a = ufi.external_fa; bool isdir = (a&0x40000000)!=0; bool readonly= (a&0x00800000)==0; //bool readable= (a&0x01000000)!=0; // unused //bool executable=(a&0x00400000)!=0; // unused bool hidden=false, system=false, archive=true; // but in normal hostmodes these are overridden by the lower half... int host = ufi.version>>8; if (host==0 || host==7 || host==11 || host==14) { readonly= (a&0x00000001)!=0; hidden= (a&0x00000002)!=0; system= (a&0x00000004)!=0; isdir= (a&0x00000010)!=0; archive= (a&0x00000020)!=0; } ze->attr=0; if (isdir) ze->attr |= FILE_ATTRIBUTE_DIRECTORY; if (archive) ze->attr|=FILE_ATTRIBUTE_ARCHIVE; if (hidden) ze->attr|=FILE_ATTRIBUTE_HIDDEN; if (readonly) ze->attr|=FILE_ATTRIBUTE_READONLY; if (system) ze->attr|=FILE_ATTRIBUTE_SYSTEM; ze->comp_size = ufi.compressed_size; ze->unc_size = ufi.uncompressed_size; // WORD dostime = (WORD)(ufi.dosDate&0xFFFF); WORD dosdate = (WORD)((ufi.dosDate>>16)&0xFFFF); FILETIME ftd = dosdatetime2filetime(dosdate,dostime); FILETIME ft; LocalFileTimeToFileTime(&ftd,&ft); ze->atime=ft; ze->ctime=ft; ze->mtime=ft; // the zip will always have at least that dostime. But if it also has // an extra header, then we'll instead get the info from that. unsigned int epos=0; while (epos+4<extralen) { char etype[3]; etype[0]=extra[epos+0]; etype[1]=extra[epos+1]; etype[2]=0; int size = extra[epos+2]; if (strcmp(etype,"UT")!=0) {epos += 4+size; continue;} int flags = extra[epos+4]; bool hasmtime = (flags&1)!=0; bool hasatime = (flags&2)!=0; bool hasctime = (flags&4)!=0; epos+=5; if (hasmtime) { lutime_t mtime = ((extra[epos+0])<<0) | ((extra[epos+1])<<8) |((extra[epos+2])<<16) | ((extra[epos+3])<<24); epos+=4; ze->mtime = timet2filetime(mtime); } if (hasatime) { lutime_t atime = ((extra[epos+0])<<0) | ((extra[epos+1])<<8) |((extra[epos+2])<<16) | ((extra[epos+3])<<24); epos+=4; ze->atime = timet2filetime(atime); } if (hasctime) { lutime_t ctime = ((extra[epos+0])<<0) | ((extra[epos+1])<<8) |((extra[epos+2])<<16) | ((extra[epos+3])<<24); epos+=4; ze->ctime = timet2filetime(ctime); } break; } // if (extra!=0) delete[] extra; memcpy(&cze,ze,sizeof(ZIPENTRY)); czei=index; return ZR_OK; } ZRESULT TUnzip::Find(const TCHAR *tname,bool ic,int *index,ZIPENTRY *ze) { char name[MAX_PATH]; #ifdef UNICODE WideCharToMultiByte(CP_UTF8,0,tname,-1,name,MAX_PATH,0,0); #else strcpy(name,tname); #endif int res = unzLocateFile(uf,name,ic?CASE_INSENSITIVE:CASE_SENSITIVE); if (res!=UNZ_OK) { if (index!=0) *index=-1; if (ze!=NULL) {ZeroMemory(ze,sizeof(ZIPENTRY)); ze->index=-1;} return ZR_NOTFOUND; } if (currentfile!=-1) unzCloseCurrentFile(uf); currentfile=-1; int i = (int)uf->num_file; if (index!=NULL) *index=i; if (ze!=NULL) { ZRESULT zres = Get(i,ze); if (zres!=ZR_OK) return zres; } return ZR_OK; } void EnsureDirectory(const TCHAR *rootdir, const TCHAR *dir) { if (rootdir != 0 && GetFileAttributes(rootdir) == 0xFFFFFFFF) CreateDirectory(rootdir,0); if (*dir==0) return; const TCHAR *lastslash=dir, *c=lastslash; while (*c!=0) {if (*c=='/' || *c=='\\') lastslash=c; c++;} const TCHAR *name=lastslash; if (lastslash!=dir) { TCHAR tmp[MAX_PATH]; memcpy(tmp,dir,sizeof(TCHAR)*(lastslash-dir)); tmp[lastslash-dir]=0; EnsureDirectory(rootdir,tmp); name++; } TCHAR cd[MAX_PATH]; *cd=0; if (rootdir!=0) _tcscpy_s(cd,rootdir); _tcscat_s(cd,dir); if (GetFileAttributes(cd) == 0xFFFFFFFF) CreateDirectory(cd,NULL); } ZRESULT TUnzip::Unzip(int index,void *dst,unsigned int len,DWORD flags) { if (flags!=ZIP_MEMORY && flags!=ZIP_FILENAME && flags!=ZIP_HANDLE) return ZR_ARGS; if (flags==ZIP_MEMORY) { if (index!=currentfile) { if (currentfile!=-1) unzCloseCurrentFile(uf); currentfile=-1; if (index>=(int)uf->gi.number_entry) return ZR_ARGS; if (index<(int)uf->num_file) unzGoToFirstFile(uf); while ((int)uf->num_file<index) unzGoToNextFile(uf); unzOpenCurrentFile(uf,password); currentfile=index; } bool reached_eof; int res = unzReadCurrentFile(uf,dst,len,&reached_eof); if (res<=0) {unzCloseCurrentFile(uf); currentfile=-1;} if (reached_eof) return ZR_OK; if (res>0) return ZR_MORE; if (res==UNZ_PASSWORD) return ZR_PASSWORD; return ZR_FLATE; } // otherwise we're writing to a handle or a file if (currentfile!=-1) unzCloseCurrentFile(uf); currentfile=-1; if (index>=(int)uf->gi.number_entry) return ZR_ARGS; if (index<(int)uf->num_file) unzGoToFirstFile(uf); while ((int)uf->num_file<index) unzGoToNextFile(uf); ZIPENTRY ze; Get(index,&ze); // zipentry=directory is handled specially if ((ze.attr&FILE_ATTRIBUTE_DIRECTORY)!=0) { if (flags==ZIP_HANDLE) return ZR_OK; // don't do anything const TCHAR *dir = (const TCHAR*)dst; bool isabsolute = (dir[0]=='/' || dir[0]=='\\' || (dir[0]!=0 && dir[1]==':')); if (isabsolute) EnsureDirectory(0,dir); else EnsureDirectory(rootdir,dir); return ZR_OK; } // otherwise, we write the zipentry to a file/handle HANDLE h; if (flags==ZIP_HANDLE) h=dst; else { const TCHAR *ufn = (const TCHAR*)dst; // We'll qualify all relative names to our root dir, and leave absolute names as they are // ufn="zipfile.txt" dir="" name="zipfile.txt" fn="c:\\currentdir\\zipfile.txt" // ufn="dir1/dir2/subfile.txt" dir="dir1/dir2/" name="subfile.txt" fn="c:\\currentdir\\dir1/dir2/subfiles.txt" // ufn="\z\file.txt" dir="\z\" name="file.txt" fn="\z\file.txt" // This might be a security risk, in the case where we just use the zipentry's name as "ufn", where // a malicious zip could unzip itself into c:\windows. Our solution is that GetZipItem (which // is how the user retrieve's the file's name within the zip) never returns absolute paths. const TCHAR *name=ufn; const TCHAR *c=name; while (*c!=0) {if (*c=='/' || *c=='\\') name=c+1; c++;} TCHAR dir[MAX_PATH]; _tcscpy_s(dir,ufn); if (name==ufn) *dir=0; else dir[name-ufn]=0; TCHAR fn[MAX_PATH]; bool isabsolute = (dir[0]=='/' || dir[0]=='\\' || (dir[0]!=0 && dir[1]==':')); if (isabsolute) {wsprintf(fn,_T("%s%s"),dir,name); EnsureDirectory(0,dir);} else {wsprintf(fn,_T("%s%s%s"),rootdir,dir,name); EnsureDirectory(rootdir,dir);} // h = CreateFile(fn,GENERIC_WRITE,0,NULL,CREATE_ALWAYS,ze.attr,NULL); } if (h==INVALID_HANDLE_VALUE) return ZR_NOFILE; unzOpenCurrentFile(uf,password); if (unzbuf==0) unzbuf=new char[16384]; DWORD haderr=0; // for (; haderr==0;) { bool reached_eof; int res = unzReadCurrentFile(uf,unzbuf,16384,&reached_eof); if (res==UNZ_PASSWORD) {haderr=ZR_PASSWORD; break;} if (res<0) {haderr=ZR_FLATE; break;} if (res>0) {DWORD writ; BOOL bres=WriteFile(h,unzbuf,res,&writ,NULL); if (!bres) {haderr=ZR_WRITE; break;}} if (reached_eof) break; if (res==0) {haderr=ZR_FLATE; break;} } if (!haderr) SetFileTime(h,&ze.ctime,&ze.atime,&ze.mtime); // may fail if it was a pipe if (flags!=ZIP_HANDLE) CloseHandle(h); unzCloseCurrentFile(uf); if (haderr!=0) return haderr; return ZR_OK; } ZRESULT TUnzip::Close() { if (currentfile!=-1) unzCloseCurrentFile(uf); currentfile=-1; if (uf!=0) unzClose(uf); uf=0; return ZR_OK; } ZRESULT lasterrorU=ZR_OK; unsigned int FormatZipMessageU(ZRESULT code, TCHAR *buf,unsigned int len) { if (code==ZR_RECENT) code=lasterrorU; const TCHAR *msg=_T("unknown zip result code"); switch (code) { case ZR_OK: msg=_T("Success"); break; case ZR_NODUPH: msg=_T("Culdn't duplicate handle"); break; case ZR_NOFILE: msg=_T("Couldn't create/open file"); break; case ZR_NOALLOC: msg=_T("Failed to allocate memory"); break; case ZR_WRITE: msg=_T("Error writing to file"); break; case ZR_NOTFOUND: msg=_T("File not found in the zipfile"); break; case ZR_MORE: msg=_T("Still more data to unzip"); break; case ZR_CORRUPT: msg=_T("Zipfile is corrupt or not a zipfile"); break; case ZR_READ: msg=_T("Error reading file"); break; case ZR_PASSWORD: msg=_T("Correct password required"); break; case ZR_ARGS: msg=_T("Caller: faulty arguments"); break; case ZR_PARTIALUNZ: msg=_T("Caller: the file had already been partially unzipped"); break; case ZR_NOTMMAP: msg=_T("Caller: can only get memory of a memory zipfile"); break; case ZR_MEMSIZE: msg=_T("Caller: not enough space allocated for memory zipfile"); break; case ZR_FAILED: msg=_T("Caller: there was a previous error"); break; case ZR_ENDED: msg=_T("Caller: additions to the zip have already been ended"); break; case ZR_ZMODE: msg=_T("Caller: mixing creation and opening of zip"); break; case ZR_NOTINITED: msg=_T("Zip-bug: internal initialisation not completed"); break; case ZR_SEEK: msg=_T("Zip-bug: trying to seek the unseekable"); break; case ZR_MISSIZE: msg=_T("Zip-bug: the anticipated size turned out wrong"); break; case ZR_NOCHANGE: msg=_T("Zip-bug: tried to change mind, but not allowed"); break; case ZR_FLATE: msg=_T("Zip-bug: an internal error during flation"); break; } unsigned int mlen=(unsigned int)_tcslen(msg); if (buf==0 || len==0) return mlen; unsigned int n=mlen; if (n+1>len) n=len-1; _tcsncpy_s(buf, sizeof(buf), msg, n); buf[n]=0; return mlen; } typedef struct { DWORD flag; TUnzip *unz; } TUnzipHandleData; HZIP OpenZipInternal(void *z,unsigned int len,DWORD flags, const char *password) { TUnzip *unz = new TUnzip(password); lasterrorU = unz->Open(z,len,flags); if (lasterrorU!=ZR_OK) {delete unz; return 0;} TUnzipHandleData *han = new TUnzipHandleData; han->flag=1; han->unz=unz; return (HZIP)han; } HZIP OpenZipHandle(HANDLE h, const char *password) {return OpenZipInternal((void*)h,0,ZIP_HANDLE,password);} HZIP OpenZip(const TCHAR *fn, const char *password) {return OpenZipInternal((void*)fn,0,ZIP_FILENAME,password);} HZIP OpenZip(void *z,unsigned int len, const char *password) {return OpenZipInternal(z,len,ZIP_MEMORY,password);} ZRESULT GetZipItem(HZIP hz, int index, ZIPENTRY *ze) { ze->index=0; *ze->name=0; ze->unc_size=0; if (hz==0) {lasterrorU=ZR_ARGS;return ZR_ARGS;} TUnzipHandleData *han = (TUnzipHandleData*)hz; if (han->flag!=1) {lasterrorU=ZR_ZMODE;return ZR_ZMODE;} TUnzip *unz = han->unz; lasterrorU = unz->Get(index,ze); return lasterrorU; } ZRESULT FindZipItem(HZIP hz, const TCHAR *name, bool ic, int *index, ZIPENTRY *ze) { if (hz==0) {lasterrorU=ZR_ARGS;return ZR_ARGS;} TUnzipHandleData *han = (TUnzipHandleData*)hz; if (han->flag!=1) {lasterrorU=ZR_ZMODE;return ZR_ZMODE;} TUnzip *unz = han->unz; lasterrorU = unz->Find(name,ic,index,ze); return lasterrorU; } ZRESULT UnzipItemInternal(HZIP hz, int index, void *dst, unsigned int len, DWORD flags) { if (hz==0) {lasterrorU=ZR_ARGS;return ZR_ARGS;} TUnzipHandleData *han = (TUnzipHandleData*)hz; if (han->flag!=1) {lasterrorU=ZR_ZMODE;return ZR_ZMODE;} TUnzip *unz = han->unz; lasterrorU = unz->Unzip(index,dst,len,flags); return lasterrorU; } ZRESULT UnzipItemHandle(HZIP hz, int index, HANDLE h) {return UnzipItemInternal(hz,index,(void*)h,0,ZIP_HANDLE);} ZRESULT UnzipItem(HZIP hz, int index, const TCHAR *fn) {return UnzipItemInternal(hz,index,(void*)fn,0,ZIP_FILENAME);} ZRESULT UnzipItem(HZIP hz, int index, void *z,unsigned int len) {return UnzipItemInternal(hz,index,z,len,ZIP_MEMORY);} ZRESULT SetUnzipBaseDir(HZIP hz, const TCHAR *dir) { if (hz==0) {lasterrorU=ZR_ARGS;return ZR_ARGS;} TUnzipHandleData *han = (TUnzipHandleData*)hz; if (han->flag!=1) {lasterrorU=ZR_ZMODE;return ZR_ZMODE;} TUnzip *unz = han->unz; lasterrorU = unz->SetUnzipBaseDir(dir); return lasterrorU; } ZRESULT CloseZipU(HZIP hz) { if (hz==0) {lasterrorU=ZR_ARGS;return ZR_ARGS;} TUnzipHandleData *han = (TUnzipHandleData*)hz; if (han->flag!=1) {lasterrorU=ZR_ZMODE;return ZR_ZMODE;} TUnzip *unz = han->unz; lasterrorU = unz->Close(); delete unz; delete han; return lasterrorU; } bool IsZipHandleU(HZIP hz) { if (hz==0) return false; TUnzipHandleData *han = (TUnzipHandleData*)hz; return (han->flag==1); }
相关推荐
这个插件主要针对UE4和UE5引擎,允许开发者在游戏中直接解压ZIP格式的文件,而无需预先手动解压。这样可以极大地提高开发效率,特别是对于那些包含大量纹理、模型、音频和其他资源的大型项目,减少了资源加载时间和...
本案例中的"UE5接入视频流插件-OpenCVTest.zip"是一个针对UE5的插件,它利用OpenCV库来实现视频流的接入。OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉库,广泛应用于图像处理和计算机视觉...
首先,为了在UE5中使用OpenCV,你需要确保已经安装了OpenCV库。你可以从OpenCV的官方网站下载最新版本的源代码或者预编译库,并按照平台和编译器的指示进行安装。对于Windows系统,通常会得到一个.lib文件(静态库)...
在UE4(Unreal Engine 4)开发过程中,有时我们需要集成第三方库来扩展游戏引擎的功能。这通常涉及到创建自定义插件,以便在UE4项目中无缝地调用这些库。下面将详细介绍如何在UE4插件中调用第三方库。 1. **创建...
以下是关于使用InVideo插件在UE5中接入视频流的关键知识点: 1. **插件安装**:首先,你需要下载InVideo插件的压缩包,并将其解压。在UE5项目中,通过“编辑”菜单 -> “插件”选项,找到合适的类别(可能在“渲染...
最新虚幻5源码 虚幻引擎源码 需要编译 release发布版
找不到静态链接库、插件的配置文件、关于插件编译产生的相关链接库说明
(UE4UE5)UE5开发回合制游戏(蓝图和C++版本).zip (UE4UE5)UE5开发回合制游戏(蓝图和C++版本).zip (UE4UE5)UE5开发回合制游戏(蓝图和C++版本).zip (UE4UE5)UE5开发回合制游戏(蓝图和C++版本).zip
在实际使用中,"使用说明.docx"文件会提供更具体的步骤和注意事项,例如编译FFmpeg时的配置选项、如何在UE5工程中链接库、如何在C++代码中调用FFmpeg API等。"EasyFFMPEG-main"可能是一个已经封装好的FFmpeg库的源...
本篇文章将详细讲解如何在UE5中实现与Web的通讯,利用WEBUI插件来搭建桥梁,使得游戏或应用能够与网页进行数据交换,提升用户体验和互动性。 首先,我们需要理解虚幻引擎UE5中的通信机制。UE5支持多种通信方式,...
1. **CEF集成**:首先,你需要将CEF库导入到UE4项目中,这通常涉及到编译CEF源码来适应UE4的特定平台和配置。"Source"目录可能包含了用于构建CEF的源代码,而"Binaries"目录可能包含了预编译的CEF库,供不同平台使用...
2. **示例项目**:包含一个使用MQTT插件的示例游戏或场景,帮助开发者快速理解如何在UE5中集成和使用MQTT。 3. **文档**:详细的插件使用指南,解释如何配置MQTT服务器连接、设置订阅和发布主题、处理消息回调等。 ...
可对接fay数字人的ue5工程_fay-ue5
在游戏开发领域,Unreal Engine(UE)是一个广泛使用的高级3D引擎,它提供了丰富的功能和强大的工具集,用于创建高质量的实时交互式体验。随着互联网技术的发展,将网页内容集成到UE游戏中已经成为一种常见的需求,...
本文将深入探讨如何使用"UE4 Plugin.zip"来支持UE4.20及以上版本,并实现快速接入Android平台,同时构建用户界面(UI)。 首先,UE4插件是扩展UE4功能的核心组件,它允许开发者添加自定义功能、工具和资源,以满足...
本文将深入探讨如何在UE5中启用和使用路径追踪渲染器,以及如何通过代码和设置优化渲染流程。 使用Lumen全局光照:UE5的Lumen全局光照系统可以与路径追踪渲染器结合使用,以实现动态场景的实时光照效果。 材质和光照...
UE5 Chaos物理破碎使用教程 ...这篇教程涵盖了 UE5 中 Chaos 破坏的使用方法,包括几何体集的创建、破坏、Clustering、Collsions 等多方面的内容,为开发者提供了一个全面的 UE5 Chaos 破坏使用指南。
本文将详细介绍如何在UE5中使用HDRI,包括HDRI的设置、光照优化以及实际应用案例。 HDRI背景在UE5中是一种强大的光照工具,它能够为场景提供逼真的光照和氛围。通过合理配置HDRI背景和光照优化,你可以在UE5项目中...
本文将深入探讨UE5中贴花的使用方法,包括如何创建、应用以及优化贴花效果。 UE5中的贴花是一个功能强大的工具,它不仅可以快速为场景增添细节,还可以用于创造各种特殊效果。通过掌握贴花的创建、应用和优化技巧,...