`
haoningabc
  • 浏览: 1478180 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

kaidi-wasm学习笔记(一)的两个重要文件

阅读更多
最近在看kaldi-wasm
两个重要文件备份一下,总结以后再写:

src/workers/asrWorker.js
import JSZip from 'jszip';

import kaldiJS from '../computations/kaldiJS';
import kaldiWasm from '../computations/kaldiJS.wasm';
import KaldiConfigParser from '../utils/kaldiConfigParser';

const kaldiModule = kaldiJS({
  locateFile(path) {
    if (path.endsWith('.wasm')){
        console.log("hao-asrWorer.js---kaldiJS:"+path);
        return kaldiWasm;
    }
   // if (path.endsWith('.wasm')) return kaldiJS;
    return path;
  },
});

const MODEL_STORE = {
  NAME: 'models',
  KEY_PATH: 'language',
};

let asr = null;
let parser = null;

function mkdirExistOK(fileSystem, path) {
  console.log("hao:asrWorker.js---mkdirExistOK,path:" +path+",fileSystem:")
  console.log(fileSystem);
  try {
    //fileSystem.mkdir(path);
    fileSystem.mkdir(path);
  } catch (e) {
    console.log("hao--mkdirExistOK--error..$$$$$$$$$$$$$$$$$$$$");
    if (e.code !== 'EEXIST') throw e;
  }
}

function initEMFS(fileSystem, modelName) {
  console.log("hao-asrWorker---initEMFS--fileSystem:");
  console.log(fileSystem);
  mkdirExistOK(fileSystem, MODEL_STORE.NAME);
  console.log("hao-asrWorker---initEMFS--MODEL_STORE.NAME:"+MODEL_STORE.NAME);
  fileSystem.mount(fileSystem.filesystems.IDBFS, {},
    MODEL_STORE.NAME);
  fileSystem.chdir(MODEL_STORE.NAME);
  fileSystem.mkdir(modelName);
  fileSystem.chdir(modelName);
  console.log("hao-asrWorker---initEMFS--over.");
}

async function unzip(zipfile) {
//  console.log("hao-asrWorker---unzip--:");
//  console.log(zipfile);
  const zip = new JSZip();

  const unzipped = await zip.loadAsync(zipfile);
  return unzipped;
}

function dirname(path) {
  const dirs = path.match(/.*\//);
  if (dirs === null) return '';
  // without trailing '/'
  return dirs[0].slice(0, dirs[0].length - 1);
}

function mkdirp(fileSystem, path) {
  console.log("hao-asrWorker-----mkdirp--path:"+path);
  console.log(fileSystem);
  const dirBoundary = '/';
  const startIndex = path[0] === dirBoundary ? 1 : 0;
  for (let i = startIndex; i < path.length; i += 1) {
    if (path[i] === dirBoundary) mkdirExistOK(fileSystem, path.slice(0, i));
  }
  mkdirExistOK(fileSystem, path);
}

async function writeToFileSystem(fileSystem, path, fileObj) {
  console.log("asrWorker.js---writeToFileSystem---fileSystem:");
  console.log(fileSystem);
  const content = await fileObj.async('arraybuffer');
  console.log("content:"+content);
  try {
    //fileSystem.writeFile(path, new Uint8Array(content));
    fileSystem.writeFile(path, new Uint8Array(content),function(err){
        console.log("writefile-----error:"+err);
    });
    console.log("asrWorker.js---writeToFileSystem---writeFile----over.path:"+fileSystem.cwd()+"/"+path);
    console.log("asrWorker.js---writeToFileSystem---isDir----models:"+fileSystem.isDir("/models"));
    console.log("asrWorker.js---writeToFileSystem---isDir:::"+fileSystem.isDir(fileSystem.cwd()));
    console.log("asrWorker.js---writeToFileSystem---final.mdl---isFile:"+fileSystem.isFile("final.mdl"));
    console.log("asrWorker.js---writeToFileSystem---end----------");
    return;
  } catch (e) {
    console.log("hao---error:-->>>>>>>>>>>>>>>>>>>>>>>writeToFileSystem......>");
    if (e.code === 'ENOENT') {
      const dirName = dirname(path);
      mkdirp(fileSystem, dirName);
      // eslint-disable-next-line consistent-return
      return writeToFileSystem(fileSystem, path, fileObj);
    }
    throw e;
  }
}

var thisModule;
async function loadToFS(modelName, zip) {
//  console.log("hao-asrWorker---loadToFS--begin----kaldiModule:");
//  console.log(kaldiModule);
  console.log("hao-asrWorker---loadToFS---unzip begin")
  const unzipped = await unzip(zip);
  console.log("hao-asrWorker---loadToFS--unzip over....");

  await  kaldiModule.then(
    function(result){
       console.log("hao---hao-asrWorker---loadToFS----kaldiModule.then:")
       console.log(result.FS);
       thisModule=result;
       initEMFS(thisModule.FS, modelName);
   });
  //initEMFS(kaldiModule.FS, modelName);

  //const unzipped = await unzip(zip);
  //const unzipped = unzip(zip);
  // hack to wait for model saving on Emscripten fileSystem
  // unzipped.forEach does not allow to wait for end of async calls
  const files = Object.keys(unzipped.files);
  await Promise.all(
      files.map(async (file) => {
        console.log("asrWorker----loadToFS---Promise.all...files.map--->"+file);
        const content = unzipped.file(file);
        if (content !== null) {
          //await writeToFileSystem(kaldiModule.FS, content.name, content);
          //await writeToFileSystem(thisModule.FS, content.name, content);
          console.log(" hao -----asrWorker----content.name--->"+content.name);
          const cwd = thisModule.FS.cwd();
          console.log(" hao------asrWorker-----cwd------>"+cwd);
          await writeToFileSystem(thisModule.FS, content.name, content);
        }
      })
  );

  //  }
 // );
   // .then(
   // function(endResult){
   //     asr = startASR(endResult);
   //    // asr = startASR();
   // }
   // );
//  asr = startASR(thisModule);
  console.log("asrWorker----loadToFS---end-----------------------<");
  return true;
}

/*
 * Assumes that we are in the directory with the requested model
 */
//function startASR() {
//  console.log("hao-asrWorker---startASR");
//  parser = new KaldiConfigParser(kaldiModule.FS, kaldiModule.FS.cwd());
//  const args = parser.createArgs();
//  const cppArgs = args.reduce((wasmArgs, arg) => {
//    wasmArgs.push_back(arg);
//    return wasmArgs;
//  }, new kaldiModule.StringList());
//  return new kaldiModule.OnlineASR(cppArgs);
//}
//function startASR(asrModule) {
function startASR() {
  console.log("hao-asrWorker---startASR---------->thisModule.FS:");
  console.log(thisModule.FS);
  //parser = new KaldiConfigParser(kaldiModule.FS, kaldiModule.FS.cwd());
  parser = new KaldiConfigParser(thisModule.FS, thisModule.FS.cwd());
  console.log("hao-asrWorker---startASR--------------------------> cwd");
  const args = parser.createArgs();
  const cppArgs = args.reduce((wasmArgs, arg) => {
    wasmArgs.push_back(arg);
    return wasmArgs;
  },
    //new kaldiModule.StringList());
    new thisModule.StringList());

  //return new kaldiModule.OnlineASR(cppArgs);
  return new thisModule.OnlineASR(cppArgs);
}

const helper = {
  async init(msg) {
    console.log("hao-asrWoker---init:"+msg+",msg:");
    console.log(msg);
    await loadToFS(msg.data.modelName, msg.data.zip);
    asr = startASR();
    //asr = startASR(thisModule);
  },
  async process(msg) {
    if (asr === null) throw new Error('ASR not ready');
    const asrOutput = asr.processBuffer(msg.data.pcm);
    if (asrOutput === '') return null;
    return {
      isFinal: asrOutput.endsWith('\n'),
      text: asrOutput.trim(),
    };
  },
  async samplerate() {
    if (parser === null) throw new Error('ASR not ready');
    return parser.getSampleRate();
  },
  async reset() {
    if (asr === null) throw new Error('ASR not ready');
    const asrOutput = asr.reset();
    const result = {
      isFinal: asrOutput.endsWith('\n'),
      text: asrOutput.trim(),
    };
    return result;
  },
  async terminate() {
    if (asr !== null) asr.delete();
    asr = null;
  },
};

onmessage = (msg) => {
  const { command } = msg.data;
  const response = { command, ok: true };

  if (command in helper) {
    helper[command](msg)
      .then((value) => { response.value = value; })
      .catch((e) => {
        response.ok = false;
        response.value = e;
      })
      .finally(() => { postMessage(response); });
  } else {
    response.ok = false;
    response.value = new Error(`Unknown command '${command}'`);
    postMessage(response);
  }
};

./kaldi/src/online2bin/online2-tcp-nnet3-decode-faster-reorganized.cc

// online2bin/online2-tcp-nnet3-decode-faster.cc

// Copyright 2014  Johns Hopkins University (author: Daniel Povey)
//           2016  Api.ai (Author: Ilya Platonov)
//           2018  Polish-Japanese Academy of Information Technology (Author: Danijel Korzinek)

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#include <netinet/in.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <poll.h>
#include <signal.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <string>

#include "feat/wave-reader.h"
#include "online2/online-nnet3-decoding.h"
#include "online2/online-nnet2-feature-pipeline.h"
#include "online2/onlinebin-util.h"
#include "online2/online-timing.h"
#include "online2/online-endpoint.h"
#include "fstext/fstext-lib.h"
#include "lat/lattice-functions.h"
#include "util/kaldi-thread.h"
#include "nnet3/nnet-utils.h"

namespace kaldi {

class TcpServer {
 public:
  explicit TcpServer(int read_timeout);
  ~TcpServer();

  bool Listen(int32 port);  // start listening on a given port
  int32 Accept();  // accept a client and return its descriptor

  // get more data and return false if end-of-stream
  bool ReadChunk(size_t len);

  Vector<BaseFloat> GetChunk();  // get the data read by above method

  // write to accepted client
  bool Write(const std::string &msg);
  bool WriteLn(const std::string &msg, const std::string &eol = "\n");

  void Disconnect();

 private:
  struct ::sockaddr_in h_addr_;
  int32 server_desc_, client_desc_;
  int16 *samp_buf_;
  size_t buf_len_, has_read_;
  pollfd client_set_[1];
  int read_timeout_;
};

std::string LatticeToString(
    const Lattice &lat,
    const fst::SymbolTable &word_syms
) {
  LatticeWeight weight;
  std::vector<int32> alignment;
  std::vector<int32> words;
  GetLinearSymbolSequence(lat, &alignment, &words, &weight);

  std::ostringstream msg;
  for (size_t i = 0; i < words.size(); i++) {
    std::string s = word_syms.Find(words[i]);
    if (s.empty()) {
      KALDI_WARN << "Word-id " << words[i] << " not in symbol table.";
      msg << "<#" << std::to_string(i) << "> ";
    } else {
        msg << s << " ";
    }
  }
  return msg.str();
}

std::string GetTimeString(int32 t_beg, int32 t_end, BaseFloat time_unit) {
  constexpr size_t kBufferLen { 100 };
  char buffer[kBufferLen];
  double t_beg2 = t_beg * time_unit;
  double t_end2 = t_end * time_unit;
  snprintf(buffer, kBufferLen, "%.2f %.2f", t_beg2, t_end2);
  return std::string(buffer);
}

int32 GetLatticeTimeSpan(const Lattice& lat) {
  std::vector<int32> times;
  LatticeStateTimes(lat, &times);
  return times.back();
}

std::string LatticeToString(
  const CompactLattice &clat,
  const fst::SymbolTable &word_syms
) {
  if (clat.NumStates() == 0) {
    KALDI_WARN << "Empty lattice.";
    return "";
  }
  CompactLattice best_path_clat;
  CompactLatticeShortestPath(clat, &best_path_clat);

  Lattice best_path_lat;
  ConvertLattice(best_path_clat, &best_path_lat);
  return LatticeToString(best_path_lat, word_syms);
}

struct OnlineASROptionParser: public ParseOptions {
  OnlineASROptionParser();
  explicit OnlineASROptionParser(int argc, const char* const* argv);
  int Read(int, const char* const*);

  // Members
  static constexpr const char *usage =
    "Reads in audio from a network socket and performs online\n"
    "decoding with neural nets (nnet3 setup), with iVector-based\n"
    "speaker adaptation and endpointing.\n"
    "Note: some configuration values and inputs are set via config\n"
    "files whose filenames are passed as options\n"
    "\n"
    "Usage: online2-tcp-nnet3-decode-faster [options] <nnet3-in> "
    "<fst-in> <word-symbol-table>\n";
  // ASR stuff
  BaseFloat output_period = 1;
  bool produce_time = false;
  BaseFloat samp_freq = 16000.0;
  OnlineEndpointConfig endpoint_opts;
  OnlineNnet2FeaturePipelineConfig feature_opts;
  nnet3::NnetSimpleLoopedComputationOptions decodable_opts;
  LatticeFasterDecoderConfig decoder_opts;
  std::string nnet3_rxfilename;
  std::string fst_rxfilename;
  std::string word_syms_filename;
  // TCP stuff
  BaseFloat chunk_length_secs = 0.18;
  int port_num = 5050;
  int read_timeout = 3;
};

class OnlineASR {
 public:
  static constexpr const char eou {'\n'};
  static constexpr const char tmp_eou {'\r'};

  explicit OnlineASR(int argc, const char *const argv[]);
  explicit OnlineASR(const std::vector<std::string> &args);
  explicit OnlineASR(const OnlineASROptionParser& po);
  std::string ProcessBuffer(int16 *, size_t);
  std::string ProcessSTLVector(const std::vector<int16>&);
  std::string ProcessVector(const Vector<BaseFloat>&);
  std::string Reset();
  ~OnlineASR();

 private:
  BaseFloat samp_freq;
  int32 frame_offset {0};
  int32 check_period;
  int32 samp_count {0};
  bool produce_time {false};
  // Model related members
  nnet3::DecodableNnetSimpleLoopedInfo *decodable_info = nullptr;
  OnlineNnet2FeaturePipelineInfo *feature_info = nullptr;
  LatticeFasterDecoderConfig decoder_opts;
  nnet3::NnetSimpleLoopedComputationOptions decodable_opts;
  fst::Fst<fst::StdArc> *decode_fst = nullptr;
  TransitionModel trans_model;
  nnet3::AmNnetSimple am_nnet;
  fst::SymbolTable *word_syms = nullptr;
  OnlineEndpointConfig endpoint_opts;
  // Stream parameters
  OnlineNnet2FeaturePipeline *feature_pipeline = nullptr;
  SingleUtteranceNnet3Decoder *decoder = nullptr;
  // Utterance parameters
  OnlineSilenceWeighting *silence_weighting = nullptr;
  std::vector<std::pair<int32, BaseFloat> > delta_weights;

  // private methods
  void InitClass(const OnlineASROptionParser& parser);
  void InitWords(const std::string& filename);
  void UpdateDecoder(const Vector<BaseFloat>&);
  std::string CheckDecoderOutput();
  std::string PrependTimestamps(const std::string&);
  void ResetStreamDecoder();
  void ResetUtteranceDecoder();
};
}  // end kaldi namespace

#ifndef __EMSCRIPTEN__

int main(int argc, const char* const* argv) {
  using kaldi::int32;
  using kaldi::int64;
  using kaldi::OnlineASR;
  using kaldi::OnlineASROptionParser;
  using kaldi::Vector;
  using kaldi::BaseFloat;
  using kaldi::TcpServer;

  OnlineASROptionParser po;

  try {
    po.Read(argc, argv);
    OnlineASR onlineASR(po);

    // ignore SIGPIPE to avoid crashing when socket forcefully disconnected
    signal(SIGPIPE, SIG_IGN);

    size_t chunk_len = static_cast<size_t>(po.chunk_length_secs * po.samp_freq);
    TcpServer server(po.read_timeout);
    server.Listen(po.port_num);

    while (true) {
      server.Accept();
      bool eos {false};

      while (!eos) {
        while (true) {
          eos = !server.ReadChunk(chunk_len);
          if (eos) {
            std::string msg { onlineASR.Reset() };
            KALDI_VLOG(1) << "EndOfAudio, sending message: " << msg;
            server.Write(msg);
            server.Disconnect();
            break;
          }
          Vector<BaseFloat> wave_part = server.GetChunk();
          std::string msg { onlineASR.ProcessVector(wave_part) };
          if (msg != "") {
            server.Write(msg);
            if (msg[msg.length() - 1] == onlineASR.tmp_eou) {
              KALDI_VLOG(1) << "Temporary transcript: " << msg;
            } else {
              KALDI_VLOG(1) << "Endpoint, sending message: " << msg;
              break;
            }
          }
        }
      }
    }
  } catch (const std::invalid_argument& e) {
    po.PrintUsage();
    return 1;
  } catch (const std::exception &e) {
    std::cerr << e.what();
    return -1;
  }
}
#else

#include <emscripten/bind.h>
#include <emscripten/val.h>
#include <iterator>

using std::vector;
using kaldi::int16;
using emscripten::val;
using emscripten::class_;
using emscripten::optional_override;
using emscripten::register_vector;

/* Convert JS Int16Array to C++ std::vector<kaldi::int16> without copy of data
*/
vector<int16> typed_array_to_vector(const val &int16_array) {
  unsigned int length = int16_array["length"].as<unsigned int>();
  vector<int16> vec(length);

  val memory = val::module_property("HEAP16")["buffer"];
  val memoryView = val::global("Int16Array").new_(memory,
      reinterpret_cast<std::uintptr_t>(vec.data()), length);

  memoryView.call<void>("set", int16_array);

  return vec;
}

EMSCRIPTEN_BINDINGS(asr) {
  class_<kaldi::OnlineASR>("OnlineASR")
    .constructor<const std::vector<std::string>& >()
    // Inject lambda before class method call to adapt I/O types
    .function("processBuffer", optional_override(
      [](kaldi::OnlineASR& self, const val& int16_array) {
        vector<int16> vect_array = typed_array_to_vector(int16_array);
        return self.ProcessSTLVector(vect_array);
      })
    )
    .function("reset", &kaldi::OnlineASR::Reset)
  ;
  // Define JS class StringList to be understood as vector<string> in C++
  register_vector<std::string>("StringList");
}

#endif

namespace kaldi {
TcpServer::TcpServer(int read_timeout) {
  server_desc_ = -1;
  client_desc_ = -1;
  samp_buf_ = NULL;
  buf_len_ = 0;
  read_timeout_ = 1000 * read_timeout;
}

bool TcpServer::Listen(int32 port) {
  h_addr_.sin_addr.s_addr = INADDR_ANY;
  h_addr_.sin_port = htons(port);
  h_addr_.sin_family = AF_INET;

  server_desc_ = socket(AF_INET, SOCK_STREAM, 0);

  if (server_desc_ == -1) {
    KALDI_ERR << "Cannot create TCP socket!";
    return false;
  }

  int32 flag = 1;
  int32 len = sizeof(int32);
  if (setsockopt(server_desc_, SOL_SOCKET, SO_REUSEADDR, &flag, len) == -1) {
    KALDI_ERR << "Cannot set socket options!";
    return false;
  }

  if (bind(server_desc_, (struct sockaddr *) &h_addr_, sizeof(h_addr_)) == -1) {
    KALDI_ERR << "Cannot bind to port: " << port << " (is it taken?)";
    return false;
  }

  if (listen(server_desc_, 1) == -1) {
    KALDI_ERR << "Cannot listen on port!";
    return false;
  }

  KALDI_LOG << "TcpServer: Listening on port: " << port;

  return true;
}

TcpServer::~TcpServer() {
  Disconnect();
  if (server_desc_ != -1)
    close(server_desc_);
  delete[] samp_buf_;
}

int32 TcpServer::Accept() {
  KALDI_LOG << "Waiting for client...";

  socklen_t len;

  len = sizeof(struct sockaddr);
  client_desc_ = accept(server_desc_, (struct sockaddr *) &h_addr_, &len);

  struct sockaddr_storage addr;
  char ipstr[20];

  len = sizeof addr;
  getpeername(client_desc_, (struct sockaddr *) &addr, &len);

  struct sockaddr_in *s = (struct sockaddr_in *) &addr;
  inet_ntop(AF_INET, &s->sin_addr, ipstr, sizeof ipstr);

  client_set_[0].fd = client_desc_;
  client_set_[0].events = POLLIN;

  KALDI_LOG << "Accepted connection from: " << ipstr;

  return client_desc_;
}

bool TcpServer::ReadChunk(size_t len) {
  if (buf_len_ != len) {
    buf_len_ = len;
    delete[] samp_buf_;
    samp_buf_ = new int16[len];
  }

  ssize_t ret;
  int poll_ret;
  size_t to_read = len;
  has_read_ = 0;
  while (to_read > 0) {
    poll_ret = poll(client_set_, 1, read_timeout_);
    if (poll_ret == 0) {
      KALDI_WARN << "Socket timeout! Disconnecting...";
      break;
    }
    if (poll_ret < 0) {
      KALDI_WARN << "Socket error! Disconnecting...";
      break;
    }
    ret = read(client_desc_, static_cast<void *>(samp_buf_ + has_read_),
               to_read * sizeof(int16));
    if (ret <= 0) {
      KALDI_WARN << "Stream over...";
      break;
    }
    to_read -= ret / sizeof(int16);
    has_read_ += ret / sizeof(int16);
  }

  return has_read_ > 0;
}

Vector<BaseFloat> TcpServer::GetChunk() {
  Vector<BaseFloat> buf;

  buf.Resize(static_cast<MatrixIndexT>(has_read_));

  for (int i = 0; i < has_read_; i++)
    buf(i) = static_cast<BaseFloat>(samp_buf_[i]);

  return buf;
}

bool TcpServer::Write(const std::string &msg) {
  const char *p = msg.c_str();
  size_t to_write = msg.size();
  size_t wrote = 0;
  while (to_write > 0) {
    ssize_t ret = write(client_desc_, static_cast<const void *>(p + wrote),
                        to_write);
    if (ret <= 0)
      return false;

    to_write -= ret;
    wrote += ret;
  }

  return true;
}

bool TcpServer::WriteLn(const std::string &msg, const std::string &eol) {
  if (Write(msg))
    return Write(eol);
  else
    return false;
}

void TcpServer::Disconnect() {
  if (client_desc_ != -1) {
    close(client_desc_);
    client_desc_ = -1;
  }
}

OnlineASROptionParser::OnlineASROptionParser(): ParseOptions{usage} {
  g_num_threads = 0;

  Register("samp-freq", &samp_freq,
           "Sampling frequency of the input signal (coded as 16-bit slinear).");
  Register("chunk-length", &chunk_length_secs,
           "Length of chunk size in seconds, that we process.");
  Register("output-period", &output_period,
           "How often in seconds, do we check for changes in output.");
  Register("num-threads-startup", &g_num_threads,
           "Number of threads used when initializing iVector extractor.");
  Register("read-timeout", &read_timeout,
           "Number of seconds of timout for TCP audio data to appear on the "
           "stream. Use -1 for blocking.");
  Register("port-num", &port_num,
           "Portnumber the server will listen on.");
  Register("produce-time", &produce_time,
           "Prepend begin/end times between endpoints (e.g. '5.46 6.81"
           " <text_output>', in seconds)");

  endpoint_opts.Register(this);
  feature_opts.Register(this);
  decodable_opts.Register(this);
  decoder_opts.Register(this);
}

OnlineASROptionParser::OnlineASROptionParser(int argc,
                                             const char* const * argv):
  OnlineASROptionParser() {
    Read(argc, argv);
  }

int OnlineASROptionParser::Read(int argc, const char* const* argv) {
  int read_value = ParseOptions::Read(argc, argv);
  if (NumArgs() != 3)
    throw std::invalid_argument("Wrong number of arguments\n");

  nnet3_rxfilename = GetArg(1);
  fst_rxfilename = GetArg(2);
  word_syms_filename = GetArg(3);

  return read_value;
}

OnlineASR::OnlineASR(int argc, const char *const argv[]):
  OnlineASR(OnlineASROptionParser(argc, argv)) {
  }

OnlineASR::OnlineASR(const std::vector<std::string> &args) {
  // Convert args to const char* const *
  std::vector<const char*> char_array;
  char_array.reserve(args.size());
  for (int i = 0; i < args.size(); ++i)
    char_array.push_back(const_cast<char*>(args[i].c_str()));

  int argc { static_cast<int>(char_array.size()) };
  OnlineASROptionParser parser {argc, &char_array[0]};
  InitClass(parser);
}

OnlineASR::OnlineASR(const OnlineASROptionParser& parser) {
  InitClass(parser);
}

void OnlineASR::InitClass(const OnlineASROptionParser& parser) {
  decodable_opts = parser.decodable_opts;
  decoder_opts = parser.decoder_opts;
  endpoint_opts = parser.endpoint_opts;
  samp_freq = parser.samp_freq;
  check_period = static_cast<int32>(samp_freq * parser.output_period);
  produce_time = parser.produce_time;

  feature_info = new OnlineNnet2FeaturePipelineInfo(parser.feature_opts);
  InitWords(parser.word_syms_filename);

  KALDI_VLOG(1) << "Loading AM...";
  {
    bool binary;
    Input ki(parser.nnet3_rxfilename, &binary);
    trans_model.Read(ki.Stream(), binary);
    am_nnet.Read(ki.Stream(), binary);
    SetBatchnormTestMode(true, &(am_nnet.GetNnet()));
    SetDropoutTestMode(true, &(am_nnet.GetNnet()));
    nnet3::CollapseModel(nnet3::CollapseModelConfig(), &(am_nnet.GetNnet()));
  }

  KALDI_VLOG(1) << "Loading FST...";
  decode_fst = fst::ReadFstKaldiGeneric(parser.fst_rxfilename);
  // this object contains precomputed stuff that is used by all decodable
  // objects.  It takes a pointer to am_nnet because if it has iVectors it has
  // to modify the nnet to accept iVectors at intervals.
  decodable_info = new nnet3::DecodableNnetSimpleLoopedInfo(decodable_opts,
      &am_nnet);

  ResetStreamDecoder();
}

void OnlineASR::ResetStreamDecoder() {
  frame_offset = 0;

  delete feature_pipeline;
  feature_pipeline = new OnlineNnet2FeaturePipeline(*feature_info);

  delete decoder;
  decoder = new SingleUtteranceNnet3Decoder(decoder_opts, trans_model,
                                            *decodable_info, *decode_fst,
                                            feature_pipeline);
  ResetUtteranceDecoder();
}

void OnlineASR::InitWords(const std::string &filename) {
  if (!filename.empty())
    if (!(word_syms = fst::SymbolTable::ReadText(filename)))
      KALDI_ERR << "Could not read symbol table from file "
                << filename;
}

void OnlineASR::ResetUtteranceDecoder() {
  decoder->InitDecoding(frame_offset);
  delete silence_weighting;
  silence_weighting = new OnlineSilenceWeighting(
      trans_model,
      feature_info->silence_weighting_config,
      decodable_opts.frame_subsampling_factor);
  delta_weights = std::vector<std::pair<int32, BaseFloat> >();
}

std::string OnlineASR::ProcessBuffer(int16 *samp_buf, size_t buf_len) {
  Vector<BaseFloat> buf;
  buf.Resize(static_cast<MatrixIndexT>(buf_len));
  for (int i = 0; i < buf_len; ++i)
    buf(i) = static_cast<BaseFloat>(samp_buf[i]);

  return ProcessVector(buf);
}

std::string OnlineASR::ProcessVector(const Vector<BaseFloat>& buf) {
  UpdateDecoder(buf);
  return CheckDecoderOutput();
}

void OnlineASR::UpdateDecoder(const Vector<BaseFloat>& buf) {
  feature_pipeline->AcceptWaveform(samp_freq, buf);
  samp_count += buf.Dim();

  if (silence_weighting->Active() &&
      feature_pipeline->IvectorFeature() != NULL) {
    silence_weighting->ComputeCurrentTraceback(decoder->Decoder());
    silence_weighting->GetDeltaWeights(feature_pipeline->NumFramesReady(),
                                       frame_offset * decodable_opts.frame_subsampling_factor,
                                       &delta_weights);
    feature_pipeline->UpdateFrameWeights(delta_weights);
  }

  decoder->AdvanceDecoding();
}

std::string OnlineASR::CheckDecoderOutput() {
  if (decoder->EndpointDetected(endpoint_opts)) {
    samp_count %= check_period;
    decoder->FinalizeDecoding();
    frame_offset += decoder->NumFramesDecoded();
    CompactLattice lat;
    decoder->GetLattice(true, &lat);
    std::string msg = LatticeToString(lat, *word_syms);
    if (produce_time) msg = PrependTimestamps(msg);

    ResetUtteranceDecoder();
    return msg + eou;
  }

  // Force temporary result
  if (samp_count > check_period) {
    samp_count %= check_period;
    if (decoder->NumFramesDecoded() > 0) {
      Lattice lat;
      decoder->GetBestPath(false, &lat);
      TopSort(&lat);  // for LatticeStateTimes(),
      std::string msg = LatticeToString(lat, *word_syms);

      if (produce_time) {
        int32 frame_subsampling { decodable_opts.frame_subsampling_factor };
        BaseFloat frame_shift { feature_info->FrameShiftInSeconds() };
        int32 t_beg = frame_offset;
        int32 t_end = frame_offset + GetLatticeTimeSpan(lat);
        msg = GetTimeString(t_beg, t_end, frame_shift * frame_subsampling) + " "
              + msg;
      }
      return msg + tmp_eou;
    }
  }

  return "";
}

std::string OnlineASR::PrependTimestamps(const std::string& msg) {
  int32 frame_subsampling { decodable_opts.frame_subsampling_factor };
  BaseFloat frame_shift { feature_info->FrameShiftInSeconds() };
  int32 t_beg = frame_offset - decoder->NumFramesDecoded();
  int32 t_end = frame_offset;
  return GetTimeString(t_beg, t_end, frame_shift * frame_subsampling) + " "
         + msg;
}

std::string OnlineASR::ProcessSTLVector(const std::vector<int16>& samp_buf) {
  // cast input to float
  Vector<BaseFloat> buf;
  size_t buf_len = samp_buf.size();
  buf.Resize(static_cast<MatrixIndexT>(buf_len));
  for (int i = 0; i < buf_len; ++i)
    buf(i) = static_cast<BaseFloat>(samp_buf[i]);

  return ProcessVector(buf);
}

std::string OnlineASR::Reset() {
  feature_pipeline->InputFinished();
  decoder->AdvanceDecoding();
  decoder->FinalizeDecoding();

  std::string msg {""};
  frame_offset += decoder->NumFramesDecoded();
  if (decoder->NumFramesDecoded() > 0) {
    CompactLattice lat;
    decoder->GetLattice(true, &lat);
    msg = LatticeToString(lat, *word_syms);
    if (produce_time) msg = PrependTimestamps(msg);
  }

  ResetStreamDecoder();
  return msg + eou;
}

OnlineASR::~OnlineASR() {
  delete feature_info;
  delete feature_pipeline;
  delete decoder;
  delete decodable_info;
  delete word_syms;
  delete silence_weighting;
  delete decode_fst;
}
}  // namespace kaldi
分享到:
评论

相关推荐

    comet:[ICLR 2021]少量学习的概念学习者

    少量学习的概念学习者 凯迪(Kaidi Cao)*,玛丽亚(MariaBrbić)*,尤里(Jure Leskovec) 此存储库包含COMET算法的...我们在这里提供一个示例: 运行python ./train.py --dataset CUB --model Conv4NP --method

    输灰仓泵检修文件包.doc

    【输灰仓泵检修文件包】是针对XX凯迪绿色能源开发运营XXWuhan KaiDi Green Energy Development And Operation Co., LTD旗下的12MW机组锅炉检修的重要文档,旨在规范和指导输灰仓泵的维护和检修工作,确保设备的正常...

    凯迪拉克HTML5轻应用

    在文件"kaidi0415"中,可能包含了该轻应用的源代码、样式文件、图片资源、配置文件等,开发者可以通过分析这些文件来学习和理解如何构建一个完整的HTML5轻应用。为了进一步了解凯迪拉克HTML5轻应用的实现细节,需要...

    全球及中国混凝土外加剂行业市场份额调研报告.docx

    此外,报告中还提到了一些其他重要的市场参与者,如Liaoning Kelong、Takemoto、Huangteng Chemical、Kao Chemicals、Arkema、Shanxi Kaidi等,它们在不同地区和细分市场中发挥着重要作用。这些企业的存在和表现,...

    电动升降柱,全球市场总体规模.docx

    电动升降柱是一种自动化设备,主要用于实现物体或工作台的高度调节,广泛应用在医疗、商业和家庭等不同场景。根据QYResearch的研究报告,全球电动升降柱市场在2029年预估将达到12.1亿美元,年复合增长率CAGR为7.5%,...

    SQL注入攻击实操

    攻击者可以通过 A_Name、A_PWD 这两个字段名称来猜测 admin 表中的字段名称。 防止 SQL 注入攻击 防止 SQL 注入攻击的方法有很多,例如使用参数化查询、输入验证、错误处理等。网站管理员可以通过这些方法来防止 ...

    GCN_ADV_Train:图神经网络的对抗训练

    此外,利用我们基于梯度的攻击,我们提出了针对GNN的第一个基于优化的对抗训练。 引用这项工作: 徐凯迪*,陈洪格*,刘思佳,陈品宇,翁翠薇,洪明义和林雪, ,IJCAI 2019。(*平等贡献) @inproceedings{xu2019...

    node_tasted:Node.js 浅尝辄止——分享至我仍未知道名字的十楼公司

    By Kaidi, ZHU, R&D Engineer of and . 正确打开姿势 预备工作:请确保已安装 Node.js 在你的电脑。 安装 依赖。执行 $ npm install。 启动它,执行 $ npm start 。 在弹出的浏览器窗口中点击 tasted.md 即可。 若非...

Global site tag (gtag.js) - Google Analytics