`
嗯哦额
  • 浏览: 12348 次
社区版块
存档分类
最新评论

SpringCloud:Spring Cloud Gateway高级应用

 
阅读更多
  • 熔断
  • 限流
  • 重试

1. 限速路由器

限速在高并发场景中比较常用的手段之一,可以有效的保障服务的整体稳定性,Spring Cloud Gateway 提供了基于 Redis 的限流方案。所以我们首先需要添加对应的依赖包spring-boot-starter-data-redis-reactive(了解源码可+求求: 1791743380)

Java代码  收藏代码
  1. <dependency>  
  2.   <groupId>org.springframework.boot</groupId>  
  3.   <artifactId>spring-boot-starter-data-redis-reactive</artifactId>  
  4. </dependency>  

 配置文件中需要添加 Redis 地址和限流的相关配置

Java代码  收藏代码
  1. server:  
  2.   port: 8080  
  3. spring:  
  4.   application:  
  5.     name: spring-cloud-gateway  
  6.   redis:  
  7.     host: localhost  
  8.     password: password  
  9.     port: 6379  
  10.   cloud:  
  11.     gateway:  
  12.       discovery:  
  13.         locator:  
  14.           enabled: true  
  15.       routes:  
  16.         - id: requestratelimiter_route  
  17.           uri: http://example.org  
  18.           filters:  
  19.             - name: RequestRateLimiter  
  20.               args:  
  21.                 redis-rate-limiter.replenishRate: 10  
  22.                 redis-rate-limiter.burstCapacity: 20  
  23.                 key-resolver: "#{@userKeyResolver}"  
  24.           predicates:  
  25.             - Method=GET  

 

  • filter 名称必须是 RequestRateLimiter
  • redis-rate-limiter.replenishRate:允许用户每秒处理多少个请求
  • redis-rate-limiter.burstCapacity:令牌桶的容量,允许在一秒钟内完成的最大请求数
  • key-resolver:使用 SpEL 按名称引用 bean

项目中设置限流的策略,创建 Config 类。

Java代码  收藏代码
  1. package com.springcloud.gateway.config;  
  2.   
  3. import org.springframework.cloud.gateway.filter.ratelimit.KeyResolver;  
  4. import org.springframework.context.annotation.Bean;  
  5. import org.springframework.context.annotation.Configuration;  
  6. import reactor.core.publisher.Mono;  
  7.   
  8. /** 
  9.  * Created with IntelliJ IDEA. 
  10.  * 
  11.  * @Date: 2019/7/11 
  12.  * @Time: 23:45 
  13.  * @email: inwsy@hotmail.com 
  14.  * Description: 
  15.  */  
  16. @Configuration  
  17. public class Config {  
  18.     @Bean  
  19.     KeyResolver userKeyResolver() {  
  20.         return exchange -> Mono.just(exchange.getRequest().getQueryParams().getFirst("user"));  
  21.     }  
  22. }  

 Config类需要加@Configuration注解。

根据请求参数中的 user 字段来限流,也可以设置根据请求 IP 地址来限流,设置如下:

Java代码  收藏代码
  1. @Bean  
  2. public KeyResolver ipKeyResolver() {  
  3.     return exchange -> Mono.just(exchange.getRequest().getRemoteAddress().getHostName());  
  4. }  

 这样网关就可以根据不同策略来对请求进行限流了。

2. 熔断路由器

Spring Cloud Gateway 也可以利用 Hystrix 的熔断特性,在流量过大时进行服务降级,同样我们还是首先给项目添加上依赖。

Java代码  收藏代码
  1. <dependency>  
  2.   <groupId>org.springframework.cloud</groupId>  
  3.   <artifactId>spring-cloud-starter-netflix-hystrix</artifactId>  
  4. </dependency>  

 配置示例

Java代码  收藏代码
  1. spring:  
  2.   cloud:  
  3.     gateway:  
  4.       routes:  
  5.       - id: hystrix_route  
  6.         uri: http://example.org  
  7.         filters:  
  8.         - Hystrix=myCommandName  

 配置后,gateway 将使用 myCommandName 作为名称生成 HystrixCommand 对象来进行熔断管理。如果想添加熔断后的回调内容,需要在添加一些配置。

Java代码  收藏代码
  1. spring:  
  2.   cloud:  
  3.     gateway:  
  4.       routes:  
  5.       - id: hystrix_route  
  6.         uri: lb://spring-cloud-producer  
  7.         predicates:  
  8.         - Path=/consumingserviceendpoint  
  9.         filters:  
  10.         - name: Hystrix  
  11.           args:  
  12.             name: fallbackcmd  
  13.             fallbackUri: forward:/incaseoffailureusethis  

 fallbackUri: forward:/incaseoffailureusethis配置了 fallback 时要会调的路径,当调用 Hystrix 的 fallback 被调用时,请求将转发到/incaseoffailureuset这个 URI。

3. 重试路由器

RetryGatewayFilter 是 Spring Cloud Gateway 对请求重试提供的一个 GatewayFilter Factory。

配置示例

Java代码  收藏代码
  1. spring:  
  2.   cloud:  
  3.     gateway:  
  4.       routes:  
  5.       - id: retry_test  
  6.         uri: lb://spring-cloud-producer  
  7.         predicates:  
  8.         - Path=/retry  
  9.         filters:  
  10.         - name: Retry  
  11.           args:  
  12.             retries: 3  
  13.             statuses: BAD_GATEWAY  

 Retry GatewayFilter 通过这四个参数来控制重试机制: retries, statuses, methods, 和 series。

  • retries:重试次数,默认值是 3 次
  • statuses:HTTP 的状态返回码,取值请参考:org.springframework.http.HttpStatus
  • methods:指定哪些方法的请求需要进行重试逻辑,默认值是 GET 方法,取值参考:org.springframework.http.HttpMethod
  • series:一些列的状态码配置,取值参考:org.springframework.http.HttpStatus.Series。符合的某段状态码才会进行重试逻辑,默认值是 SERVER_ERROR,值是 5,也就是 5XX(5 开头的状态码),共有5 个值。
分享到:
评论

相关推荐

    IncompatibleClassChangeError(解决方案).md

    IncompatibleClassChangeError(解决方案).md

    中国智慧工地行业市场研究(2023)Word(63页).docx

    智慧工地,作为现代建筑施工管理的创新模式,以“智慧工地云平台”为核心,整合施工现场的“人机料法环”关键要素,实现了业务系统的协同共享,为施工企业提供了标准化、精益化的工程管理方案,同时也为政府监管提供了数据分析及决策支持。这一解决方案依托云网一体化产品及物联网资源,通过集成公司业务优势,面向政府监管部门和建筑施工企业,自主研发并整合加载了多种工地行业应用。这些应用不仅全面连接了施工现场的人员、机械、车辆和物料,实现了数据的智能采集、定位、监测、控制、分析及管理,还打造了物联网终端、网络层、平台层、应用层等全方位的安全能力,确保了整个系统的可靠、可用、可控和保密。 在整体解决方案中,智慧工地提供了政府监管级、建筑企业级和施工现场级三类解决方案。政府监管级解决方案以一体化监管平台为核心,通过GIS地图展示辖区内工程项目、人员、设备信息,实现了施工现场安全状况和参建各方行为的实时监控和事前预防。建筑企业级解决方案则通过综合管理平台,提供项目管理、进度管控、劳务实名制等一站式服务,帮助企业实现工程管理的标准化和精益化。施工现场级解决方案则以可视化平台为基础,集成多个业务应用子系统,借助物联网应用终端,实现了施工信息化、管理智能化、监测自动化和决策可视化。这些解决方案的应用,不仅提高了施工效率和工程质量,还降低了安全风险,为建筑行业的可持续发展提供了有力支持。 值得一提的是,智慧工地的应用系统还围绕着工地“人、机、材、环”四个重要因素,提供了各类信息化应用系统。这些系统通过配置同步用户的组织结构、智能权限,结合各类子系统应用,实现了信息的有效触达、问题的及时跟进和工地的有序管理。此外,智慧工地还结合了虚拟现实(VR)和建筑信息模型(BIM)等先进技术,为施工人员提供了更为直观、生动的培训和管理工具。这些创新技术的应用,不仅提升了施工人员的技能水平和安全意识,还为建筑行业的数字化转型和智能化升级注入了新的活力。总的来说,智慧工地解决方案以其创新性、实用性和高效性,正在逐步改变建筑施工行业的传统管理模式,引领着建筑行业向更加智能化、高效化和可持续化的方向发展。

    java大题啊实打实的

    123

    asdjhfjsnlkdmv

    asdjhfjsnlkdmv

    二手车价格预测,代码核心任务是通过机器学习模型(如线性回归、随机森林和KNN回归)预测车辆的价格(current price),并使用评估指标(如 R² 和 MSE)来衡量不同模型的预测效果

    该代码实现了基于机器学习的车辆价格预测模型,利用不同回归算法(如线性回归、随机森林回归和 KNN 回归)对车辆的当前价格(current price)进行预测。代码首先进行数据加载与预处理,包括删除无关特征、归一化处理等;然后使用不同的机器学习模型进行训练,并评估它们的表现(通过 R²、MAE、MSE 等指标);最后通过可视化工具对模型预测效果进行分析。目的是为车辆价格预测任务找到最合适的回归模型。 适用人群: 数据科学家和机器学习工程师:对于需要进行回归建模和模型选择的从业者,尤其是对车辆数据或类似领域有兴趣的。 企业数据分析师:在汽车行业或二手车市场中,需要对车辆价格进行预测和分析的专业人员。 机器学习学习者:希望学习如何使用 Python 实现机器学习模型、数据预处理和评估的初学者或中级学习者。 使用场景及目标: 汽车定价与估值:用于为汽车或二手车定价,尤其是当需要预测车辆的当前市场价格时。 汽车行业市场分析:通过数据分析和回归预测,帮助汽车销售商、经销商或市场分析师预测未来的市场价格趋势。 二手车市场:为二手车买卖双方提供价格参考,帮助制定合理的交易价格。

    基于模型预测控制(mpc)的车辆道,车辆轨迹跟踪,道轨迹为五次多项式,matlab与carsim联防控制

    基于模型预测控制(mpc)的车辆道,车辆轨迹跟踪,道轨迹为五次多项式,matlab与carsim联防控制

    StoreError解决办法.md

    StoreError解决办法.md

    白色精致风格的个人简历模板下载.zip

    白色精致风格的个人简历模板下载.zip

    白色宽屏风格的房产介绍服务网站模板下载.zip

    白色宽屏风格的房产介绍服务网站模板下载.zip

    基于Python实现的医疗知识图谱的知识问答系统源码毕业设计(高分项目)

    基于Python实现的医疗知识图谱的知识问答系统源码毕业设计(高分项目),本资源中的源码都是经过本地编译过可运行的,评审分达到98分,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、毕业设计、期末大作业和课程设计使用需求,如果有需要的话可以放心下载使用。 基于Python实现的医疗知识图谱的知识问答系统源码毕业设计(高分项目)基于Python实现的医疗知识图谱的知识问答系统源码毕业设计(高分项目)基于Python实现的医疗知识图谱的知识问答系统源码毕业设计(高分项目)基于Python实现的医疗知识图谱的知识问答系统源码毕业设计(高分项目)基于Python实现的医疗知识图谱的知识问答系统源码毕业设计(高分项目)基于Python实现的医疗知识图谱的知识问答系统源码毕业设计(高分项目)基于Python实现的医疗知识图谱的知识问答系统源码毕业设计(高分项目)基于Python实现的医疗知识图谱的知识问答系统源码毕业设计(高分项目)基于Python实现的医疗知识图谱的知识问答系统源码毕业设计(高分项目)基于Python实现的医疗知识图谱的知识问答系统源码毕业设计(高分项目)基于

    白色宽屏风格的生物医疗实验室企业网站模板.rar

    白色宽屏风格的生物医疗实验室企业网站模板.rar

    C# 操作Access数据库

    C# 操作Access数据库

    NSFileSystemError如何解决.md

    NSFileSystemError如何解决.md

    白色简洁风格的商户销售统计图源码下载.zip

    白色简洁风格的商户销售统计图源码下载.zip

    白色简洁风格的室内设计整站网站源码下载.zip

    白色简洁风格的室内设计整站网站源码下载.zip

    侧吸式油烟机sw16可编辑全套技术资料100%好用.zip

    侧吸式油烟机sw16可编辑全套技术资料100%好用.zip

    matlab人脸识别代码

    在 MATLAB 中进行人脸识别可以通过使用内置的工具箱和函数来实现。MATLAB 提供了计算机视觉工具箱(Computer Vision Toolbox),其中包含了用于图像处理、特征提取以及机器学习的函数,可以用来构建一个人脸识别系统。下面是一个简化的教程,介绍如何使用 MATLAB 进行人脸识别。 ### 准备工作 1. **安装必要的工具箱**:确保你已经安装了“计算机视觉工具箱”和“深度学习工具箱”。如果没有,可以通过 MATLAB 的附加功能管理器安装它们。 2. **获取数据集**:准备一个包含不同个体的人脸图像的数据集。你可以自己收集图片,或者使用公开的数据集如 AT&T Faces Database 或 LFW (Labeled Faces in the Wild) 数据集。 3. **安装预训练模型(可选)**:如果你打算使用深度学习方法,MATLAB 提供了一些预训练的卷积神经网络(CNN)模型,比如 AlexNet, GoogLeNet 等,可以直接加载并用于特征提取或分类。 ### 步骤指南 #### 1. 加载人脸检测器 ```matlab face

    白色宽屏风格的建筑设计公司企业网站源码下载.zip

    白色宽屏风格的建筑设计公司企业网站源码下载.zip

    智慧工地产品方案Word(179页).doc

    智慧工地,作为现代建筑施工管理的创新模式,以“智慧工地云平台”为核心,整合施工现场的“人机料法环”关键要素,实现了业务系统的协同共享,为施工企业提供了标准化、精益化的工程管理方案,同时也为政府监管提供了数据分析及决策支持。这一解决方案依托云网一体化产品及物联网资源,通过集成公司业务优势,面向政府监管部门和建筑施工企业,自主研发并整合加载了多种工地行业应用。这些应用不仅全面连接了施工现场的人员、机械、车辆和物料,实现了数据的智能采集、定位、监测、控制、分析及管理,还打造了物联网终端、网络层、平台层、应用层等全方位的安全能力,确保了整个系统的可靠、可用、可控和保密。 在整体解决方案中,智慧工地提供了政府监管级、建筑企业级和施工现场级三类解决方案。政府监管级解决方案以一体化监管平台为核心,通过GIS地图展示辖区内工程项目、人员、设备信息,实现了施工现场安全状况和参建各方行为的实时监控和事前预防。建筑企业级解决方案则通过综合管理平台,提供项目管理、进度管控、劳务实名制等一站式服务,帮助企业实现工程管理的标准化和精益化。施工现场级解决方案则以可视化平台为基础,集成多个业务应用子系统,借助物联网应用终端,实现了施工信息化、管理智能化、监测自动化和决策可视化。这些解决方案的应用,不仅提高了施工效率和工程质量,还降低了安全风险,为建筑行业的可持续发展提供了有力支持。 值得一提的是,智慧工地的应用系统还围绕着工地“人、机、材、环”四个重要因素,提供了各类信息化应用系统。这些系统通过配置同步用户的组织结构、智能权限,结合各类子系统应用,实现了信息的有效触达、问题的及时跟进和工地的有序管理。此外,智慧工地还结合了虚拟现实(VR)和建筑信息模型(BIM)等先进技术,为施工人员提供了更为直观、生动的培训和管理工具。这些创新技术的应用,不仅提升了施工人员的技能水平和安全意识,还为建筑行业的数字化转型和智能化升级注入了新的活力。总的来说,智慧工地解决方案以其创新性、实用性和高效性,正在逐步改变建筑施工行业的传统管理模式,引领着建筑行业向更加智能化、高效化和可持续化的方向发展。

    履带车底盘sw16全套技术资料100%好用.zip

    履带车底盘sw16全套技术资料100%好用.zip

Global site tag (gtag.js) - Google Analytics