`

分布式系统ID的生成方法之UUID、数据库、算法、Redis、Leaf方案

 
阅读更多

前言

 

一般单机或者单数据库的项目可能规模比较小,适应的场景也比较有限,平台的访问量和业务量都较小,业务ID的生成方式比较原始但是够用,它并没有给这样的系统带来问题和瓶颈,所以这种情况下我们并没有对此给予太多的关注。但是对于大厂的那种大规模复杂业务、分布式高并发的应用场景,显然这种ID的生成方式不会像小项目一样仅仅依靠简单的数据自增序列来完成,而且在分布式环境下这种方式已经无法满足业务的需求,不仅无法完成业务能力,业务ID生成的速度或者重复问题可能给系统带来严重的故障。所以这一次,我们看看大厂都是怎么分析和解决这种ID生成问题的,同时,我也将我之前使用过的方式拿出来对比,看看有什么问题,从中能够得到什么启发。

 

分布式ID的生成特性

 

在分析之前,我们先明确一下业务ID的生成特性,在此特性的基础上,我们能够对下面的这几种生成方式有更加深刻的认识和感悟。

 

全局唯一,这是基本要求,不能出现重复。

数字类型,趋势递增,后面的ID必须比前面的大,这是从MySQL存储引擎来考虑的,需要保证写入数据的性能。

长度短,能够提高查询效率,这也是从MySQL数据库规范出发的,尤其是ID作为主键时。

信息安全,如果ID连续生成,势必会泄露业务信息,甚至可能被猜出,所以需要无规则不规则。

高可用低延时,ID生成快,能够扛住高并发,延时足够低不至于成为业务瓶颈。

分布式ID的几种生成办法

 

下面介绍几种我积累的分布式ID生成办法,网络上都能够找得到,我通过学习积累并后期整理加上自己的感悟分享于此。虽然平时可能因为项目规模小而用不着,但是这种提出方案的思想还是很值得学习的,尤其是像美团的Leaf方案,我感觉特别的酷。

 

目录:

 

基于UUID

 

基于数据库主键自增

 

基于数据库多实例主键自增

 

基于类Snowflake算法

 

基于Redis生成办法

 

基于美团的Leaf方案(ID段、双Buffer、动态调整Step)

 

基于UUID

 

这是很容易想到的方案,毕竟UUID全球唯一的特性深入人心,但是,但凡熟悉MySQL数据库特性的人,应该不会用此来作为业务ID,它不可读而且过于长,在此不是好主意,除非你的系统足够小而且不讲究这些,那就另说了。下面我们简要总结下使用UUID作为业务ID的优缺点,以及这种方式适用的业务场景。

 

优点

 

代码实现足够简单易用。

本地生成没有性能问题。

因为具备全球唯一的特性,所以对于数据库迁移这种情况不存在问题。

缺点

 

每次生成的ID都是无序的,而且不是全数字,且无法保证趋势递增。

UUID生成的是字符串,字符串存储性能差,查询效率慢。

UUID长度过长,不适用于存储,耗费数据库性能。

ID无一定业务含义,可读性差。

适用场景

 

可以用来生成如token令牌一类的场景,足够没辨识度,而且无序可读,长度足够。

可以用于无纯数字要求、无序自增、无可读性要求的场景。

基于数据库主键自增

 

使用数据库主键自增的方式算是比较常用的了,以MySQL为例,在新建表时指定主键以auto_increment的方式自动增长生成,或者再指定个增长步长,这在小规模单机部署的业务系统里面足够使用了,使用简单而且具备一定业务性,但是在分布式高并发的系统里面,却是不适用的,分布式系统涉及到分库分表,跨机器甚至跨机房部署的环境下,数据库自增的方式满足不了业务需求,同时在高并发大量访问的情况之下,数据库的承受能力是有限的,我们简单的陈列一下这种方式的优缺点。

 

优点

 

实现简单,依靠数据库即可,成本小。

ID数字化,单调自增,满足数据库存储和查询性能。

具有一定的业务可读性。

缺点

 

强依赖DB,存在单点问题,如果数据库宕机,则业务不可用。

DB生成ID性能有限,单点数据库压力大,无法扛高并发场景。

适用场景

 

小规模的,数据访问量小的业务场景。

无高并发场景,插入记录可控的场景。

基于数据库多实例主键自增

 

上面我们大致讲解了数据库主键自增的方式,讨论的时单机部署的情况,如果要以此提高ID生成的效率,可以横向扩展机器,平衡单点数据库的压力,这种方案如何实现呢?那就是在auto_increment的基础之上,设置step增长步长,让DB之前生成的ID趋势递增且不重复。

 

 

 

 

 

从上图可以看出,水平扩展的数据库集群,有利于解决数据库单点压力的问题,同时为了ID生成特性,将自增步长按照机器数量来设置,但是,这里有个缺点就是不能再扩容了,如果再扩容,ID就没法儿生成了,步长都用光了,那如果你要解决新增机器带来的问题,你或许可以将第三台机器的ID起始生成位置设定离现在的ID比较远的位置,同时把新的步长设置进去,同时修改旧机器上ID生成的步长,但必须在ID还没有增长到新增机器设置的开始自增ID值,否则就要出现重复了。

 

优点

 

解决了ID生成的单点问题,同时平衡了负载。

缺点

 

一定确定好步长,将对后续的扩容带来困难,而且单个数据库本身的压力还是大,无法满足高并发。

适用场景

 

数据量不大,数据库不需要扩容的场景。

这种方案,除了难以适应大规模分布式和高并发的场景,普通的业务规模还是能够胜任的,所以这种方案还是值得积累。

 

基于类Snowflake算法

 

我们现在的项目都不大,使用的是IdWorker——国内开源的基于snowflake算法思想实现的一款分布式ID生成器,snowflake雪花算法是twitter公司内部分布式项目采用的ID生成算法,现在开源并流行了起来,下面是Snowflake算法的ID构成图。

 

 

 

 

 

这种方案巧妙地把64位分别划分成多段,分开表示时间戳差值、机器标识和随机序列,先以此生成一个64位地二进制正整数,然后再转换成十进制进行存储。

 

其中,1位标识符,不使用且标记为0;41位时间戳,用来存储时间戳的差值;10位机器码,可以标识1024个机器节点,如果机器分机房部署(IDC),这10位还可以拆分,比如5位表示机房ID,5位表示机器ID,这样就有32*32种组合,一般来说是足够了;最后的12位随即序列,用来记录毫秒内的计数,一个节点就能够生成4096个ID序号。所以综上所述,综合计算下来,理论上Snowflake算法方案的QPS大约为409.6w/s,性能足够强悍了,而且这种方式,能够确保集群中每个节点生成的ID都是不同的,且区间内递增。

 

优点

 

每秒能够生成百万个不同的ID,性能佳。

时间戳值在高位,中间是固定的机器码,自增的序列在地位,整个ID是趋势递增的。

能够根据业务场景数据库节点布置灵活挑战bit位划分,灵活度高。

缺点

 

强依赖于机器时钟,如果时钟回拨,会导致重复的ID生成,所以一般基于此的算法发现时钟回拨,都会抛异常处理,阻止ID生成,这可能导致服务不可用。

适用场景

 

雪花算法有很明显的缺点就是时钟依赖,如果确保机器不存在时钟回拨情况的话,那使用这种方式生成分布式ID是可行的,当然小规模系统完全是能够使用的。

基于Redis生成办法

 

Redis的INCR命令能够将key中存储的数字值增一,得益于此操作的原子特性,我们能够巧妙地使用此来做分布式ID地生成方案,还可以配合其他如时间戳值、机器标识等联合使用。

 

优点

 

有序递增,可读性强。

能够满足一定性能。

缺点

 

强依赖于Redis,可能存在单点问题。

占用宽带,而且需要考虑网络延时等问题带来地性能冲击。

适用场景

 

对性能要求不是太高,而且规模较小业务较轻的场景,而且Redis的运行情况有一定要求,注意网络问题和单点压力问题,如果是分布式情况,那考虑的问题就更多了,所以一帮情况下这种方式用的比较少。

Redis的方案其实可靠性有待考究,毕竟依赖于网络,延时故障或者宕机都可能导致服务不可用,这种风险是不得不考虑在系统设计内的。

 

回到顶部(go to top)

 

基于美团的Leaf方案

 

从上面的几种分布式ID方案可以看出,能够解决一定问题,但是都有明显缺陷,为此,美团在数据库的方案基础上做了一个优化,提出了一个叫做Leaf-segment的数据库方案。

 

原方案我们每次获取ID都需要去读取一次数据库,这在高并发和大数据量的情况下很容易造成数据库的压力,那能不能一次性获取一批ID呢,这样就无需频繁的造访数据库了。

 

Leaf-segment的方案就是采用每次获取一个ID区间段的方式来解决,区间段用完之后再去数据库获取新的号段,这样一来可以大大减轻数据库的压力,那怎么做呢?

 

很简单,我们设计一张表如下:

 

 

 

 

 

其中biz_tag用来区分业务,max_id表示该biz_tag目前所被分配的ID号段的最大值,step表示每次分配的号段长度,后面的desc和update_time分别表示业务描述和上一次更新号段的时间。原来每次获取ID都要访问数据库,现在只需要把Step设置的足够合理如1000,那么现在可以在1000个ID用完之后再去访问数据库了,看起来真的很酷。

 

我们现在可以这样设计整个获取分布式ID的流程了:

 

用户服务在注册一个用户时,需要一个用户ID;会请求生成ID服务(是独立的应用)的接口

生成ID的服务会去查询数据库,找到user_tag的id,现在的max_id为0,step=1000

生成ID的服务把max_id和step返回给用户服务,并且把max_id更新为max_id = max_id + step,即更新为1000

用户服务获得max_id=0,step=1000;

这个用户服务可以用[max_id + 1,max_id+step]区间的ID,即为[1,1000]

用户服务把这个区间保存到jvm中

用户服务需要用到ID的时候,在区间[1,1000]中依次获取id,可采用AtomicLong中的getAndIncrement方法。

如果把区间的值用完了,再去请求生产ID的服务的接口,获取到max_id为1000,即可以用[max_id + 1,max_id+step]区间的ID,即为[1001,2000]

显而易见,这种方式很好的解决了数据库自增的问题,而且可以自定义max_id的起点,可以自定义步长,非常灵活易于扩容,于此同时,这种方式也很好的解决了数据库压力问题,而且ID号段是存储在JVM中的,性能获得极大的保障,可用性也过得去,即时数据库宕机了,因为JVM缓存的号段,系统也能够因此撑住一段时间。

 

优点

 

扩张灵活,性能强能够撑起大部分业务场景。

ID号码是趋势递增的,满足数据库存储和查询性能要求。

可用性高,即使ID生成服务器不可用,也能够使得业务在短时间内可用,为排查问题争取时间。

可以自定义max_id的大小,方便业务迁移,方便机器横向扩张。

缺点

 

ID号码不够随机,完整的顺序递增可能带来安全问题。

DB宕机可能导致整个系统不可用,仍然存在这种风险,因为号段只能撑一段时间。

可能存在分布式环境各节点同一时间争抢分配ID号段的情况,这可能导致并发问题而出现ID重复生成。

上面的缺点同样需要引起足够的重视,美团技术团队同样想出了一个妙招——双Buffer。

 

正如上所述,既然可能存在多个节点同时请求ID区间的情况,那么避免这种情况就好了,Leaf-segment对此做了优化,将获取一个号段的方式优化成获取两个号段,在一个号段用完之后不用立马去更新号段,还有一个缓存号段备用,这样能够有效解决这种冲突问题,而且采用双buffer的方式,在当前号段消耗了10%的时候就去检查下一个号段有没有准备好,如果没有准备好就去更新下一个号段,当当前号段用完了就切换到下一个已经缓存好的号段去使用,同时在下一个号段消耗到10%的时候,又去检测下一个号段有没有准备好,如此往复。

 

下面简要梳理下流程:

 

当前获取ID在buffer1中,每次获取ID在buffer1中获取

当buffer1中的Id已经使用到了100,也就是达到区间的10%

达到了10%,先判断buffer2中有没有去获取过,如果没有就立即发起请求获取ID线程,此线程把获取到的ID,设置到buffer2中。

如果buffer1用完了,会自动切换到buffer2

buffer2用到10%了,也会启动线程再次获取,设置到buffer1中

依次往返

双buffer的方案考虑的很完善,有单独的线程去观察下一个buffer何时去更新,两个buffer之间的切换使用也解决了临时去数据库更新号段可能引起的并发问题。这样的方式能够增加JVM中业务ID的可用性,而且建议segment的长度为业务高峰期QPS的100倍(经验值,具体可根据自己业务来设定),这样即使DB宕机了,业务ID的生成也能够维持相当长的时间,而且可以有效的兼容偶尔的网络抖动等问题。

 

优点

 

基本的数据库问题都解决了,而且行之有效。

基于JVM存储双buffer的号段,减少了数据库查询,减少了网络依赖,效率更高。

缺点

 

segment号段长度是固定的,业务量大时可能会频繁更新号段,因为原本分配的号段会一下子用完。

如果号段长度设置的过长,但凡缓存中有号段没有消耗完,其他节点重新获取的号段与之前相比可能跨度会很大。

针对上面的缺点,美团有重新提出动态调整号段长度的方案。

 

动态调整Step

 

一般情况下,如果你的业务不会有明显的波峰波谷,可以不用太在意调整Step,因为平稳的业务量长期运行下来都基本上固定在一个步长之间,但是如果是像美团这样有明显的活动期,那么Step是要具备足够的弹性来适应业务量不同时间段内的暴增或者暴跌。

 

假设服务QPS为Q,号段长度为L,号段更新周期为T,那么Q * T = L。最开始L长度是固定的,导致随着Q的增长,T会越来越小。但是本方案本质的需求是希望T是固定的。那么如果L可以和Q正相关的话,T就可以趋近一个定值了。所以本方案每次更新号段的时候,会根据上一次更新号段的周期T和号段长度step,来决定下一次的号段长度nextStep,下面是一个简单的算法,意在说明动态更新的意思:

 

T < 15min,nextStep = step * 215min < T < 30min,nextStep = stepT > 30min,nextStep = step / 2

至此,满足了号段消耗稳定趋于某个时间区间的需求。当然,面对瞬时流量几十、几百倍的暴增,该种方案仍不能满足可以容忍数据库在一段时间不可用、系统仍能稳定运行的需求。因为本质上来讲,此方案虽然在DB层做了些容错方案,但是ID号段下发的方式,最终还是需要强依赖DB,最后,还是需要在数据库高可用上下足工夫。

————————————————

 

原文链接:https://blog.csdn.net/weixin_45132238/article/details/104099981

 

 

分享到:
评论

相关推荐

    java 分布式 代码生成器 唯一ID

    在Java分布式环境中,生成唯一的ID(唯一标识符)是一个至关重要的任务,特别是在高并发和大数据量的场景下。...通过学习和理解这些代码,我们可以更好地掌握在Java环境中如何设计和实现一个高效的分布式ID生成系统。

    分布式ID生成器的解决方案总结.docx

    分布式ID生成器是大型互联网系统中不可或缺的一部分,其主要任务是为系统中的各种实体生成全局唯一的标识符(ID)。在复杂分布式环境下,选择合适的ID生成策略对于系统的性能、可用性和可扩展性至关重要。以下是几种...

    分布式id公开课.pptx

    分布式ID是现代大规模分布式系统中不可或缺的一个组成部分,它主要用于为分布式环境中的每个实体生成全局唯一且具有特定属性的标识符。以下将详细讲解分布式ID的相关知识点: 1. **UUID(Universally Unique ...

    Leaf:微服务下的分布式ID生成服务,原始代码基于美团的叶子,做了一些优化

    在美团早期,有的业务直接通过DB自增的方式生成ID,有的业务通过redis缓存来生成ID,也有业务的直接用UUID这种方式来生成ID。以上的方式各自有各自的问题,因此我们决定实现一套分布式ID生成服务来满足需求。具体的...

    查看进程信息,方便排查问题

    查看进程信息,方便排查问题

    IDA Pro分析STM32F1xx插件

    IDA Pro分析STM32F1xx插件

    基于SSH的线上医疗报销系统.zip-毕设&课设&实训&大作业&竞赛&项目

    项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用

    matlab的小型的微电网仿真模型文件

    小型的微电网仿真模型,简单模拟了光伏,家庭负载变化的使用情况

    MATLAB代码实现:分布式电源接入对配电网运行影响深度分析与评估,MATLAB代码分析:分布式电源接入对配电网运行影响评估,MATLAB代码:分布式电源接入对配电网影响分析 关键词:分布式电源 配电

    MATLAB代码实现:分布式电源接入对配电网运行影响深度分析与评估,MATLAB代码分析:分布式电源接入对配电网运行影响评估,MATLAB代码:分布式电源接入对配电网影响分析 关键词:分布式电源 配电网 评估 参考文档:《自写文档,联系我看》参考选址定容模型部分; 仿真平台:MATLAB 主要内容:代码主要做的是分布式电源接入场景下对配电网运行影响的分析,其中,可以自己设置分布式电源接入配电网的位置,接入配电网的有功功率以及无功功率的大小,通过牛顿拉夫逊法求解分布式电源接入后的电网潮流,从而评价分布式电源接入前后的电压、线路潮流等参数是否发生变化,评估配电网的运行方式。 代码非常精品,是研究含分布式电源接入的电网潮流计算的必备程序 ,分布式电源; 配电网; 接入影响分析; 潮流计算; 牛顿拉夫逊法; 电压评估; 必备程序。,基于MATLAB的分布式电源对配电网影响评估系统

    基于Unity-Bolt开发的游戏demo.zip

    项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用

    重庆市农村信用合作社 农商行数字银行系统建设方案.ppt

    重庆市农村信用合作社 农商行数字银行系统建设方案.ppt

    光伏并网逆变器设计方案与高效实现:结合matlab电路仿真、DSP代码及环流抑制策略,光伏并网逆变器设计方案:结合matlab电路文件与DSP程序代码,实现高效并联环流抑制策略,光伏并网逆变器设计方案

    光伏并网逆变器设计方案与高效实现:结合matlab电路仿真、DSP代码及环流抑制策略,光伏并网逆变器设计方案:结合matlab电路文件与DSP程序代码,实现高效并联环流抑制策略,光伏并网逆变器设计方案,附有相关的matlab电路文件,以及DSP的程序代码,方案、仿真文件、代码三者结合使用效果好,事半功倍。 备注:赠送逆变器并联环流matlab文件,基于矢量控制的环流抑制策略和下垂控制的环流抑制 ,光伏并网逆变器设计方案; MATLAB电路文件; DSP程序代码; 方案、仿真文件、代码结合使用; 并联环流抑制策略; 下垂控制的环流抑制,光伏并网逆变器优化设计:方案、仿真与DSP程序代码三合一,并赠送并联环流抑制策略Matlab文件

    Matlab实现WOA-GRU鲸鱼算法优化门控循环单元的数据多输入分类预测(含模型描述及示例代码)

    内容概要:本文介绍了通过 Matlab 实现鲸鱼优化算法(WOA)与门控循环单元(GRU)结合的多输入分类预测模型。文章首先概述了时间序列预测的传统方法局限性以及引入 WOA 的优势。然后,重点阐述了项目背景、目标、挑战及其独特之处。通过详细介绍数据预处理、模型构建、训练和评估步骤,最终展示了模型的效果预测图及应用实例。特别强调利用 WOA 改善 GRU 的参数设置,提高了多输入时间序列预测的准确性与鲁棒性。 适合人群:对时间序列分析有兴趣的研究者,从事金融、能源、制造业等行业数据分析的专业人士,具备一定的机器学习基础知识和技术经验。 使用场景及目标:本项目旨在开发一个高度准确和稳定的多变量时间序列预测工具,能够用于金融市场预测、能源需求规划、生产调度优化等领域,为企业和个人提供科学决策依据。 其他说明:项目提供的源代码和详细的开发指南有助于学习者快速掌握相关技能,并可根据实际需求调整模型参数以适应不同的业务情境。

    基于vue+elment-ui+node.js的后台管理系统 .zip(毕设&课设&实训&大作业&竞赛&项目)

    项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用

    Python 实现基于BiLSTM-AdaBoost双向长短期记忆网络结合AdaBoost多输入分类预测(含模型描述及示例代码)

    内容概要:本文介绍了Python中基于双向长短期记忆网络(BiLSTM)与AdaBoost相结合的多输入分类预测模型的设计与实现。BiLSTM擅长捕捉时间序列的双向依赖关系,而AdaBoost则通过集成弱学习器来提高分类精度和稳定性。文章详述了该项目的背景、目标、挑战、特色和应用场景,并提供了详细的模型构建流程、超参数优化以及视觉展示的方法和技术要点。此外,还附有完整的效果预测图表程序和具体示例代码,使读者可以快速上手构建属于自己的高效稳定的时间序列预测系统。 适合人群:对深度学习特别是时序数据分析感兴趣的开发者或者科研工作者;正在探索高级机器学习技术和寻求解决方案的企业分析师。 使用场景及目标:适用于希望提升时间序列或多输入数据类别判定准确度的业务情境,比如金融市场的走势预估、医学图像分析中的病变区域判读或是物联网环境监测下设备状态预警等任务。目的是为了创建更加智能且可靠的预测工具,在实际应用中带来更精准可靠的结果。 其他说明:文中提供的所有Python代码片段和方法都可以直接运用于实践中,并可根据特定的问题进行相应调整和扩展,进一步改进现有系统的效能并拓展新的功能特性。

    maven-script-interpreter-javadoc-1.0-7.el7.x64-86.rpm.tar.gz

    1、文件内容:maven-script-interpreter-javadoc-1.0-7.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/maven-script-interpreter-javadoc-1.0-7.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊

    在云服务器上搭建MQTT服务器(超详细,一步到位)

    在云服务器上搭建MQTT服务器(超详细,一步到位)

    复现改进的L-SHADE差分进化算法求解最优化问题详解:附MATLAB源码与测试函数集,复现改进的L-SHADE差分进化算法求解最优化问题详解:MATLAB源码与测试集全攻略,复现改进的L-SHADE

    复现改进的L-SHADE差分进化算法求解最优化问题详解:附MATLAB源码与测试函数集,复现改进的L-SHADE差分进化算法求解最优化问题详解:MATLAB源码与测试集全攻略,复现改进的L-SHADE差分进化算法求最优化问题 对配套文献所提出的改进的L-SHADE差分进化算法求解最优化问题的的复现,提供完整MATLAB源代码和测试函数集,到手可运行,运行效果如图2所示。 代码所用测试函数集与文献相同:对CEC2014最优化测试函数集中的全部30个函数进行了测试验证,运行结果与文献一致。 ,复现; 改进的L-SHADE差分进化算法; 最优化问题求解; MATLAB源代码; 测试函数集; CEC2014最优化测试函数集,复现改进L-SHADE算法:最优化问题的MATLAB求解与验证

    天津大学:深度解读DeepSeek原理与效应.pdf

    天津大学:深度解读DeepSeek原理与效应.pdf 1.大语言模型发展路线图 2.DeepSeek V2-V3/R1技术原理 3DeepSeek效应 4.未来展望

    光伏混合储能微电网能量管理系统模型:基于MPPT控制的光伏发电与一阶低通滤波算法的混合储能系统优化管理,光伏混合储能微电网能量优化管理与稳定运行系统,光伏-混合储能微电网能量管理系统模型

    光伏混合储能微电网能量管理系统模型:基于MPPT控制的光伏发电与一阶低通滤波算法的混合储能系统优化管理,光伏混合储能微电网能量优化管理与稳定运行系统,光伏-混合储能微电网能量管理系统模型 系统主要由光伏发电模块、mppt控制模块、混合储能系统模块、直流负载模块、soc限值管理控制模块、hess能量管理控制模块。 光伏发电系统采用mppt最大跟踪控制,实现光伏功率的稳定输出;混合储能系统由蓄电池和超级电容组合构成,并采用一阶低通滤波算法实现两种储能介质间的功率分配,其中蓄电池响应目标功率中的低频部分,超级电容响应目标功率中的高频部分,最终实现对目标功率的跟踪响应;SOC限值管理控制,根据储能介质的不同特性,优化混合储能功率分配,进一步优化蓄电池充放电过程,再根据超级电容容量特点,设计其荷电状态区分管理策略,避免过充过放,维持系统稳定运行;最后,综合混合储能和系统功率平衡,针对光伏储能微电网的不同工况进行仿真实验,验证控制策略的有效性。 本模型完整无错,附带对应复现文献paper,容易理解,可塑性高 ,光伏; 混合储能系统; 能量管理; MPPT控制; 直流负载;

Global site tag (gtag.js) - Google Analytics