`
大涛学长
  • 浏览: 114881 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

一个 Blink 小白的成长之路

阅读更多
写在前面
----

写过blink sql的同学应该都有体会,明明写的时候就很顺滑,小手一抖,洋洋洒洒三百行代码,一气呵成。结果跑的时候,吞吐量就是上不去。导致数据延迟高,消息严重积压,被业务方疯狂吐槽。这时候,老鸟就会告诉你,同学,该优化优化你的代码了,再丢过来一个链接,然后留下一脸懵逼的你。笔者就是这么过来的,希望本文能帮助到跟我有过同样困惑,现在还一筹莫展的同学。

背景故事
----

先说一下相关背景吧,笔者作为一个刚入职阿里的小白,还处在水土不服的阶段,就被临危受命,改造数据大屏。为什么说临危受命呢,首先是此时距双十一仅剩一个月,再者,去年的双十一,这个大屏刚过零点就出现问题,数据一动不动,几个小时后开始恢复,但仍然延迟严重。此前,笔者仅有的实时计算开发经验是storm,用的是stream API,对于blink这种sql式的API完全没接触过。接到这个需求的时候,脑子里是懵的,灵魂三问来了,我是谁?我即将经历什么?我会死得有多惨?不是“此时此刻,非我莫属”的价值观唤醒了我,是老大的一句话,在阿里,不是先让老板给你资源,你再证明你自己,而是你先证明你自己,再用结果赢得资源,一席话如醍醐灌顶。然后就开始了一段有趣的故事~

压测血案
----

要找性能问题出在哪儿,最好的方法就是压测。这里默认大家都对节点反压有一定的了解,不了解的请先移步[典型的节点反压案例及解法](https://help.aliyun.com/document_detail/139458.html?spm=a2c4g.11186623.6.617.65955550EeAhct)。

一开始是跟着大部队进行压测的,压测的结果是不通过!!!一起参加压测的有三十多个项目组,就我被点名。双十一演练的初夜,就这样伤心地流走了(╯°□°)╯︵ ┻━┻。西湖的水,全是我的泪啊。不过痛定思痛,我也是通过这次压测终于定位到了瓶颈在哪里。

瓶颈初现
----

**数据倾斜** 
在做单量统计的时候,很多时候都是按商家维度,行业维度在做aggregate,按商家维度,不可避免会出现热点问题。

**hbase写瓶颈** 
当时我在调大source分片数,并且也无脑调大了各个算子的资源之后,发现输出RPS还是上不去,sink节点也出现了消息积压。当时就判断,hbase有写瓶颈,这个我是无能为力了。后来的事实证明我错了,hbase的确有写瓶颈,但原因是我们写的姿势不对。至于该换什么姿势,请继续看下去。

神挡杀神
----

先来分析一下我们的数据结构(核心字段) 
`biz_date, order_code, seller_id, seller_layer, order_status, industry_id`

我们group by的典型场景有

`CREATE VIEW order_day_view AS
    SELECT
        industry_id,
        seller_layer,
        biz_date,
        count(distinct order_code) AS salesCount
    FROM
        order_view
    GROUP BY industry_id,seller_id,seller_layer,biz_date
;`

总结下来就是,按卖家维度,行业维度什么的,都非常容易出现数据倾斜。

数据倾斜其实有很多解法,这里我不展开讨论,只讲我们这个案例的解法。 
**倾斜的原因,无非就是group by的字段出现了热点,大量的消息都集中在了该字段少数几个取值上。通常的解法是,在消息中选择具备唯一性,或者预估会分布比较均匀的字段。如果这个字段是整型的,可以直接取模(模数一般是节点的并发数),如果是字符串,可以先进行哈希计算,再取模,得到一个分片地址(本文取名为bucket\_id)。在接下来的所有aggregate算子中,都要把他作为group by的key之一。**

在我们这个案例中,我们选择了order\_code这个具备唯一性的字段。首先在源头把分片地址算出来,加到消息里面,代码如下:

`SELECT
o.biz_date, o.order_code, o.seller_id, o.seller_layer, o.order_status, o.industry_id, o.bucket_id
FROM (select *,MOD(hash_code(order_code), 32) AS bucket_id from order_stream) o`

然后把这个bucket\_id层层传递下去,在每一个需要group by的地方都在后面带上bucket\_id,例如:

`CREATE VIEW order_day_view AS
    SELECT
        industry_id,
        seller_layer,
        biz_date,
        count(distinct order_code) AS salesCount,
        bucket_id
    FROM
        order_view
    GROUP BY industry_id,seller_id,seller_layer,biz_date,bucket_id
;`

事实上,我一开始想到的是用下面tips里的方法,结果就杵进垃圾堆里了,性能问题是解了,但是计算出来的数据都翻倍了,明显是错的。至于我是怎么发现这个问题,并分析其原因,再换了解法,又是另一段故事了。可以提前预告一下,是踩了blink撤回计算的坑,后面会再出一个专题来讲述这个故事哒~

这里还想再延伸一下,讲讲我的学习方法。如果读者中有跟我一样的小白,可能会奇怪,同样是小白,为何你这么秀,一上来就搞压测,还能准确地分析出性能的瓶颈在哪里。其实有两方面的原因,一方面是我有过storm的开发经验,对实时计算中会遇到的坑还是有一定的认识;另一方面,是我没说出来的多少个日日夜夜苦逼学习充电的故事。我的学习习惯是喜欢追根溯源,就找了很多介绍flink基本概念,发展历史,以及跟流式和批处理计算框架横向对比的各类博客。而且带着kpi去学习和什么包袱都没有去学习,心态和学习效率是不一样的。前者虽然效率更高,但是是以损害身心健康为代价的,因为学习过程中不可避免的会产生急躁情绪,然后就会不可避免的加班,熬夜,咖啡,再然后他们的好朋友,黑眼圈,豆豆,感冒就全来了。后者虽然轻松,但是什么包袱都没有,反而会产生懈怠,没有压力就没有动力,这是人的天性,拗不过的。这就是矛盾的点,所以在阿里,经常提到“既要也要还要”,其实宣扬的是一种学会平衡的价值观。至于怎么平衡,嘻嘻,天知地知我知。对,只能自己去领悟怎么平衡,别人教不会的。

概念有了一定的认知,下面就开始实践了。整个实践的过程,其实就是在不断的试错。我是一开始连反压的概念都不知道的,一直在无脑的调大CU,调大内存,调高并发数,调整每两个节点之间的并发数比例。寄希望于这样能解决问题,结果当然是无论我怎么调,吞吐量都是都风雨不动安如山。现在想想还是太年轻呀,如果这样简单的做法能解决问题,那那个前辈就绝对不会搞砸了,还轮的到我今天来解决。后来也是在无尽的绝望中想通了,不能再这么无脑了,我要找其他法子。想到的就是在代码层面动刀子,当然试错的基本路线没有动摇,前面也提到过,我一开始是想到的“加盐”,也是在试错。

学习方式决定了我做什么事,都不可能一次成功。甚至有很多情况,我明知道这样做是错的,但我就是想弄明白为什么行不通,而故意去踩这个坑。不过也正是因为试了很多错,踩了很多坑,才挖出了更多的有价值的知识点,扩大了知识的边界。

此时无声胜有声,送上几句名言,与诸君共勉 
塞翁失马,焉知非福。---淮南子·人间训 
一切过往,皆为序章。---阿里巴巴·行癫 
学习就像跑步一样,每一步都算数。---百阿·南秋

tips: 如果在消息本身中找不到分布均匀的字段,可以考虑给每一条消息加上一个时间戳,直接使用系统函数获取当前时间,然后再对时间戳进行哈希取模计算,得到分片地址。相当于强行在时间维度上对消息进行打散,这种做法也被形象的称为“加盐”。

佛挡杀佛
----

上一段看下来,似乎只解决了数据倾斜的问题。之前还提到有一个hbase写瓶颈问题,这个该如何解呢?

还是接着上面的思路继续走下去,当我们把bucket\_id一路传递下去,到了sink任务的时候,假设我们要按商家维度来统计单量,但是别忘了,我们统计的结果还按订单号来分片了的,所以为了得到最终的统计值,还需要把所有分片下的值再sum一下才行,这大概也是大多数人能想到的常规做法。而且我们现有的hbase rowKey设计,也是每个维度的统计数据对应一个rowKey的,为了兼容现有的设计,必须在写hbase之前sum一下。

**但是笔者当时突发奇想,偏偏要反其道而行之,我就不sum,对于rowKey,我也给它分个片,就是在原来rowKey的基础上,后面再追加一个bucket\_id。就相当于原来写到一个rowKey上的数据,现在把他们分散写到64个分片上了。** 
具体实现代码如下:

`INSERT INTO hbase_result_sink
    SELECT
        CONCAT(businessRowkey, '|', bucket_id) AS businessRowkey,
        cast(uopAcceptCount as DECIMAL)
    from hashBucket_view`

这样一来,API也必须改造了,读的时候采用scan模式,把所有分片都读出来,然后求和,相当于把sum的工作转移到API端了。 
这样做的好处在于,一方面可以转移一部分计算压力,另一方面,因为rowKey只有一个,而我们写rowKey的任务(即sink节点)并发数可能有多个,Java开发者应该都深有体会,多线程并发对一个变量进行累加的时候,是需要加锁和释放锁的,会有性能损耗,可以猜测,hbase的写瓶颈就在于此。后来的事实也证明,这种做法将输出RPS提升了不止一个两个档次。

赶考当天
----

人事已尽,接下来就是关二爷的事了( ̄∇ ̄)。双十一零点倒计时结束,大屏数字开始飙升起来,随之一起的,还有我的肾上腺素。再看看数据曲线,延迟正常,流量峰值达日常的10倍。其实结果完全是在预期之内的,因为从最后一次的压测表现来看,100W的输入峰值(日常的333倍),5W的输出峰值(日常的400倍),都能稳稳的扛下来。出于数(懒)据(癌)安(晚)全(期)的角度考虑,很多大屏和数据曲线的截图就不放出来了。

其实现在回过头再看,此时的内心是平静如水的。不是大获全胜后的傲娇,也不是退隐山林的怯懦。只是看待问题的心态变了。没有翻不过的山,没有迈不过的坎。遇事不急躁,走好当下的每一步就好,也不必思考是对是错,因为每一步都算数,最后总能到达终点。

浮生后记
----

笔者写文章习惯带一些有故事趣味性的章节在里面,因为我觉得纯讲技术,即使是技术人看起来也会相当乏味,再者纯讲技术的前提是作者具备真正透进骨髓去讲述的功底,笔者自认为还相差甚远,只能加点鱼目来混珠了。换个角度来看,纯技术性的文章,观赏性和权威性更强,每一句都是精华,这种咀嚼后的知识虽有营养饱满,但是不是那么容易消化,消化后能吸收多少,还有待确认。所以我力求展示我的咀嚼过程,更多是面向跟我一样的小白用户,如果觉得冗长,请各位读者姥爷见谅~

 

 

 

 

 

---

写在前面

写过blink sql的同学应该都有体会,明明写的时候就很顺滑,小手一抖,洋洋洒洒三百行代码,一气呵成。结果跑的时候,吞吐量就是上不去。导致数据延迟高,消息严重积压,被业务方疯狂吐槽。这时候,老鸟就会告诉你,同学,该优化优化你的代码了,再丢过来一个链接,然后留下一脸懵逼的你。笔者就是这么过来的,希望本文能帮助到跟我有过同样困惑,现在还一筹莫展的同学。

 

---

背景故事

先说一下相关背景吧,笔者作为一个刚入职阿里的小白,还处在水土不服的阶段,就被临危受命,改造数据大屏。为什么说临危受命呢,首先是此时距双十一仅剩一个月,再者,去年的双十一,这个大屏刚过零点就出现问题,数据一动不动,几个小时后开始恢复,但仍然延迟严重。此前,笔者仅有的实时计算开发经验是storm,用的是stream API,对于blink这种sql式的API完全没接触过。接到这个需求的时候,脑子里是懵的,灵魂三问来了,我是谁?我即将经历什么?我会死得有多惨?不是“此时此刻,非我莫属”的价值观唤醒了我,是老大的一句话,在阿里,不是先让老板给你资源,你再证明你自己,而是你先证明你自己,再用结果赢得资源,一席话如醍醐灌顶。然后就开始了一段有趣的故事~

 

---

压测血案

要找性能问题出在哪儿,最好的方法就是压测。这里默认大家都对节点反压有一定的了解,不了解的请先移步[典型的节点反压案例及解法](https://help.aliyun.com/document_detail/139458.html?spm=a2c4g.11186623.6.617.65955550EeAhct)。

一开始是跟着大部队进行压测的,压测的结果是不通过!!!一起参加压测的有三十多个项目组,就我被点名。双十一演练的初夜,就这样伤心地流走了(╯°□°)╯︵ ┻━┻。西湖的水,全是我的泪啊。不过痛定思痛,我也是通过这次压测终于定位到了瓶颈在哪里。

 

---

瓶颈初现

数据倾斜 在做单量统计的时候,很多时候都是按商家维度,行业维度在做aggregate,按商家维度,不可避免会出现热点问题。

hbase写瓶颈 当时我在调大source分片数,并且也无脑调大了各个算子的资源之后,发现输出RPS还是上不去,sink节点也出现了消息积压。当时就判断,hbase有写瓶颈,这个我是无能为力了。后来的事实证明我错了,hbase的确有写瓶颈,但原因是我们写的姿势不对。至于该换什么姿势,请继续看下去。

 

---

神挡杀神

先来分析一下我们的数据结构(核心字段) biz\_date, order\_code, seller\_id, seller\_layer, order\_status, industry\_id

我们group by的典型场景有

 

 

CREATE VIEW order\_day\_view AS SELECT industry\_id, seller\_layer, biz\_date, count(distinct order\_code) AS salesCount FROM order\_view GROUP BY industry\_id,seller\_id,seller\_layer,biz\_date ;

总结下来就是,按卖家维度,行业维度什么的,都非常容易出现数据倾斜。

数据倾斜其实有很多解法,这里我不展开讨论,只讲我们这个案例的解法。 倾斜的原因,无非就是group by的字段出现了热点,大量的消息都集中在了该字段少数几个取值上。通常的解法是,在消息中选择具备唯一性,或者预估会分布比较均匀的字段。如果这个字段是整型的,可以直接取模(模数一般是节点的并发数),如果是字符串,可以先进行哈希计算,再取模,得到一个分片地址(本文取名为bucket\_id)。在接下来的所有aggregate算子中,都要把他作为group by的key之一。

在我们这个案例中,我们选择了order\_code这个具备唯一性的字段。首先在源头把分片地址算出来,加到消息里面,代码如下:

 

 

SELECT o.biz\_date, o.order\_code, o.seller\_id, o.seller\_layer, o.order\_status, o.industry\_id, o.bucket\_id FROM (select \*,MOD(hash\_code(order\_code), 32) AS bucket\_id from order\_stream) o

然后把这个bucket\_id层层传递下去,在每一个需要group by的地方都在后面带上bucket\_id,例如:

 

 

CREATE VIEW order\_day\_view AS SELECT industry\_id, seller\_layer, biz\_date, count(distinct order\_code) AS salesCount, bucket\_id FROM order\_view GROUP BY industry\_id,seller\_id,seller\_layer,biz\_date,bucket\_id ;

事实上,我一开始想到的是用下面tips里的方法,结果就杵进垃圾堆里了,性能问题是解了,但是计算出来的数据都翻倍了,明显是错的。至于我是怎么发现这个问题,并分析其原因,再换了解法,又是另一段故事了。可以提前预告一下,是踩了blink撤回计算的坑,后面会再出一个专题来讲述这个故事哒~

这里还想再延伸一下,讲讲我的学习方法。如果读者中有跟我一样的小白,可能会奇怪,同样是小白,为何你这么秀,一上来就搞压测,还能准确地分析出性能的瓶颈在哪里。其实有两方面的原因,一方面是我有过storm的开发经验,对实时计算中会遇到的坑还是有一定的认识;另一方面,是我没说出来的多少个日日夜夜苦逼学习充电的故事。我的学习习惯是喜欢追根溯源,就找了很多介绍flink基本概念,发展历史,以及跟流式和批处理计算框架横向对比的各类博客。而且带着kpi去学习和什么包袱都没有去学习,心态和学习效率是不一样的。前者虽然效率更高,但是是以损害身心健康为代价的,因为学习过程中不可避免的会产生急躁情绪,然后就会不可避免的加班,熬夜,咖啡,再然后他们的好朋友,黑眼圈,豆豆,感冒就全来了。后者虽然轻松,但是什么包袱都没有,反而会产生懈怠,没有压力就没有动力,这是人的天性,拗不过的。这就是矛盾的点,所以在阿里,经常提到“既要也要还要”,其实宣扬的是一种学会平衡的价值观。至于怎么平衡,嘻嘻,天知地知我知。对,只能自己去领悟怎么平衡,别人教不会的。

概念有了一定的认知,下面就开始实践了。整个实践的过程,其实就是在不断的试错。我是一开始连反压的概念都不知道的,一直在无脑的调大CU,调大内存,调高并发数,调整每两个节点之间的并发数比例。寄希望于这样能解决问题,结果当然是无论我怎么调,吞吐量都是都风雨不动安如山。现在想想还是太年轻呀,如果这样简单的做法能解决问题,那那个前辈就绝对不会搞砸了,还轮的到我今天来解决。后来也是在无尽的绝望中想通了,不能再这么无脑了,我要找其他法子。想到的就是在代码层面动刀子,当然试错的基本路线没有动摇,前面也提到过,我一开始是想到的“加盐”,也是在试错。

学习方式决定了我做什么事,都不可能一次成功。甚至有很多情况,我明知道这样做是错的,但我就是想弄明白为什么行不通,而故意去踩这个坑。不过也正是因为试了很多错,踩了很多坑,才挖出了更多的有价值的知识点,扩大了知识的边界。

此时无声胜有声,送上几句名言,与诸君共勉 塞翁失马,焉知非福。---淮南子·人间训 一切过往,皆为序章。---阿里巴巴·行癫 学习就像跑步一样,每一步都算数。---百阿·南秋

tips: 如果在消息本身中找不到分布均匀的字段,可以考虑给每一条消息加上一个时间戳,直接使用系统函数获取当前时间,然后再对时间戳进行哈希取模计算,得到分片地址。相当于强行在时间维度上对消息进行打散,这种做法也被形象的称为“加盐”。

 

---

佛挡杀佛

上一段看下来,似乎只解决了数据倾斜的问题。之前还提到有一个hbase写瓶颈问题,这个该如何解呢?

还是接着上面的思路继续走下去,当我们把bucket\_id一路传递下去,到了sink任务的时候,假设我们要按商家维度来统计单量,但是别忘了,我们统计的结果还按订单号来分片了的,所以为了得到最终的统计值,还需要把所有分片下的值再sum一下才行,这大概也是大多数人能想到的常规做法。而且我们现有的hbase rowKey设计,也是每个维度的统计数据对应一个rowKey的,为了兼容现有的设计,必须在写hbase之前sum一下。

但是笔者当时突发奇想,偏偏要反其道而行之,我就不sum,对于rowKey,我也给它分个片,就是在原来rowKey的基础上,后面再追加一个bucket\_id。就相当于原来写到一个rowKey上的数据,现在把他们分散写到64个分片上了。 具体实现代码如下:

 

 

INSERT INTO hbase\_result\_sink SELECT CONCAT(businessRowkey, '|', bucket\_id) AS businessRowkey, cast(uopAcceptCount as DECIMAL) from hashBucket\_view

这样一来,API也必须改造了,读的时候采用scan模式,把所有分片都读出来,然后求和,相当于把sum的工作转移到API端了。 这样做的好处在于,一方面可以转移一部分计算压力,另一方面,因为rowKey只有一个,而我们写rowKey的任务(即sink节点)并发数可能有多个,Java开发者应该都深有体会,多线程并发对一个变量进行累加的时候,是需要加锁和释放锁的,会有性能损耗,可以猜测,hbase的写瓶颈就在于此。后来的事实也证明,这种做法将输出RPS提升了不止一个两个档次。

 

---

赶考当天

人事已尽,接下来就是关二爷的事了( ̄∇ ̄)。双十一零点倒计时结束,大屏数字开始飙升起来,随之一起的,还有我的肾上腺素。再看看数据曲线,延迟正常,流量峰值达日常的10倍。其实结果完全是在预期之内的,因为从最后一次的压测表现来看,100W的输入峰值(日常的333倍),5W的输出峰值(日常的400倍),都能稳稳的扛下来。出于数(懒)据(癌)安(晚)全(期)的角度考虑,很多大屏和数据曲线的截图就不放出来了。

其实现在回过头再看,此时的内心是平静如水的。不是大获全胜后的傲娇,也不是退隐山林的怯懦。只是看待问题的心态变了。没有翻不过的山,没有迈不过的坎。遇事不急躁,走好当下的每一步就好,也不必思考是对是错,因为每一步都算数,最后总能到达终点。

 

---

浮生后记

笔者写文章习惯带一些有故事趣味性的章节在里面,因为我觉得纯讲技术,即使是技术人看起来也会相当乏味,再者纯讲技术的前提是作者具备真正透进骨髓去讲述的功底,笔者自认为还相差甚远,只能加点鱼目来混珠了。换个角度来看,纯技术性的文章,观赏性和权威性更强,每一句都是精华,这种咀嚼后的知识虽有营养饱满,但是不是那么容易消化,消化后能吸收多少,还有待确认。所以我力求展示我的咀嚼过程,更多是面向跟我一样的小白用户,如果觉得冗长,请各位读者姥爷见谅~

 

[原文链接](https://link.zhihu.com/?target=https%3A//yq.aliyun.com/articles/739645%3Futm_content%3Dg_1000094672)

本文为阿里云内容,未经允许不得转载。
分享到:
评论

相关推荐

    blink_esp32编程_Blink实验_blink_blink程序_

    2. **创建项目**:创建一个新的ESP-IDF项目,使用`idf.py`命令初始化工程,并在`main`目录下编写`main.c`或`main.cpp`源文件。这个文件将包含实际的LED闪烁代码。 3. **配置LED端口**:在`menuconfig`配置菜单中,...

    2.BlinkLED_blink_BlinkLED_powerful965_

    在电子工程和嵌入式系统领域,"Blink LED"是一个经典的入门实验,它涉及到微控制器编程和硬件接口。这个项目名为"2.BlinkLED_blink_BlinkLED_powerful965_",从标题和描述我们可以推断,这是一个关于如何使用特定的...

    flink-blink.zip

    《深入解析阿里巴巴Blink源码》 在大数据处理领域,Apache Flink以其高效、实时的流处理能力,...总的来说,这份源码包是学习和研究Flink及Blink技术的重要参考资料,值得每一个对大数据处理感兴趣的程序员深入研究。

    Blink 0.2.1.zip

    Blink不仅仅是一个Web框架,也是一个Web服务器,可以脱离php-fpm、Apache独立运行,其底层基于Swoole的httpserver,性能有保障。Blink为构建Web应用程序提供简洁优雅的API,高可扩展性,允许开发者非常灵活自如的...

    阿里云Blink DataStream开发

    阿里云Blink DataStream开发,集成datahub,通过blink 获取datahub相关数据,将数据进行转化成对象,由于实时数据是binlog日志,所以对数据进行过滤,数据输出时需要将对象转化成json对象提供给下游,所以集成了...

    Blink计算引擎概述.pdf

    Blink计算引擎可以应用于搜索文档的创建和更新、开发效率、全量增量一套代码、高层次API、一致性、至少一次、恰好一次、低延迟、亚秒级、成本等方面。 Table API Blink的Table API是基于Flink的API,并且与Flink ...

    BLINK-LED.rar_blink_lpc2138 blink led

    【标题】"BLINK-LED.rar_blink_lpc2138 blink led" 指的是一个使用Keil开发环境,针对LPC2138微控制器实现LED闪烁功能的项目压缩包。LPC2138是NXP公司生产的一款基于ARM7TDMI内核的微控制器,广泛应用于嵌入式系统...

    blink_justgck_STM32F103_blink_

    标题“blink_justgck_STM32F103_blink_”指的是一个与STM32F103微控制器相关的项目,该项目的核心功能是实现LED灯的闪烁,也就是我们常说的“blink”程序。这通常是嵌入式系统开发中的基础教程,用于验证硬件平台的...

    blink下载地址.txt

    Flink Forward China会上,AI 前线对阿里巴巴计算平台事业部研究员蒋晓伟(花名量仔)进行了独家专访,他与我们分享了关于下一代实时流计算引擎的看法,并针对 Blink 的重要新特性、开源后 Blink 与 Flink 之间的...

    flink-table-planner-blink-2.11-1.12.7-API文档-中文版.zip

    赠送jar包:flink-table-planner-blink_2.11-1.12.7.jar; 赠送原API文档:flink-table-planner-blink_2.11-1.12.7-javadoc.jar; 赠送源代码:flink-table-planner-blink_2.11-1.12.7-sources.jar; 赠送Maven依赖...

    blink for ESP8266

    blink for ESP8266

    Blink_6713.rar

    标题"Blink_6713.rar"提示我们这是一个与数字信号处理(DSP)和现场可编程门阵列(FPGA)相关的项目,其中可能包含了如何使用TI的DSP6713芯片与Cyclone II系列的FPGA进行通信的具体实现。"Blink"通常在电子工程领域...

    blink oilpan项目设计文档

    《blink oilpan项目设计文档》深入探讨了C++中实现垃圾回收(Garbage Collection, GC)的创新技术,这是在通常被认为不支持自动内存管理的C++环境中的一大突破。Blink是Google Chrome浏览器的核心渲染引擎,它大量...

    LED_Blink_writerisx_microsemi_LED_blink_smartFusion2_

    标题中的“LED_Blink_writerisx_microsemi_LED_blink_smartFusion2_”指的是一个针对Microsemi SmartFusion2 FPGA的LED闪烁程序开发项目。在这个项目中,开发人员使用了writerISX工具来编写和配置FPGA,实现LED灯的...

    Blink182

    标题"Blink182"可能是指一个特定的字体系列或者一种设计风格,这通常是由设计师或团队创造的独特字体。然而,由于提供的信息有限,我们无法确定"Blink182"是否是一个已知的字体家族,或者它可能是某个项目或设计挑战...

    Blink Managing Server Clusters on Intermittent Power

    为了展示 Blink 在具体应用中的效果,研究人员设计了一个基于 memcached 的 Blink 版本——BlinkCache。通过对 BlinkCache 的设计和实现,展示了 Blink 对于实际应用中的性能影响。 #### 3.2 实验结果 实验结果...

Global site tag (gtag.js) - Google Analytics