`
m17189202672
  • 浏览: 15544 次
文章分类
社区版块
存档分类
最新评论

Springboot vue.js html 跨域 前后分离 集成代码生成器 shiro 权限Activiti6 工作流

阅读更多



 官网:www.fhadmin.org  

特别注意 Springboot 工作流  前后分离 + 跨域 版本 (权限控制到菜单和按钮)
后台框架:springboot2.1.2+ activiti6.0.0+ mybaits+maven+接口
前端页面:html +vue.js 形式 jquery ajax 异步跨域 json 格式数据交互 前后分离,前后台分开部署
(特别注意,前端用的vue.js,  就是html页面引入vue.js形式, 用tomcat部署运行,更适合后台开发者)
工作流模块----------------------------------------------------------------------------------------------------------
1.模型管理    :web在线流程设计器、预览流程xml、导出xml、部署流程
2.流程管理    :导入导出流程资源文件、查看流程图、根据流程实例反射出流程模型、激活挂起
3.运行中流程:查看流程信息、当前任务节点、当前流程图、作废暂停流程、指派待办人
4.历史的流程:查看流程信息、流程用时、流程状态、查看任务发起人信息
5.待办任务   :查看本人个人任务以及本角色下的任务、办理、驳回、作废、指派一下代理人
6.已办任务   :查看自己办理过的任务以及流程信息、流程图、流程状态(作废 驳回 正常完成)

注:当办理完当前任务时,下一任务待办人会即时通讯收到新任务消息提醒,当作废和完结任务时,
       任务发起人会收到站内信消息通知

1.代码生成器: [正反双向](单表、主表、明细表、树形表,快速开发利器)
freemaker模版技术 ,0个代码不用写,生成完整的一个模块,带页面、建表sql脚本、处理类、service等完整模块
2.多数据源:(支持同时连接无数个数据库,可以不同的模块连接不同数的据库)支持N个数据源
3.阿里数据库连接池druid,安全权限框架 shiro(菜单权限和按钮权限, 缓存框架 ehcache
4.代码编辑器,在线模版编辑,仿开发工具编辑器
5.调用摄像头拍照 自定义裁剪编辑头像,头像图片色度调节
6.websocket 及时站内信并声音提醒、实时在线管理、websocket及时刷新页面(完胜ajax技术)

 

即时通讯功能,支持好友,群组,发图片、文件,消息声音提醒,离线消息,保留聊天记录

-------------------------------------------------------------------------- 系统模块

 

 

1. 权限管理:点开二级菜单进入三级菜单显示 角色(基础权限)和按钮权限
角色(基础权限): 分角色组和角色,独立分配菜单权限和增删改查权限。(一个用户可以多个角色
按钮权限: 给角色分配按钮权限。
2. 按钮管理:自定义按钮管理,维护按钮shiro权限标识等
3. 菜单管理:N级别自定义菜单,选择菜单图标,菜单状态显示隐藏(递归处理
4. 数据字典:N级别,支持多级别分类。内设编号,排序等
5. 日志管理:记录用户登录退出和一些重要操作记录
6. 在线管理:websocket技术,实时检测在线用户列表,统计在线人数,可强制用户下线 同一用户只能在一个客户端登录
7. 系统用户:对各个基本的用户增删改查,导出到excel表格,批量删除
8. 代码生成:生成完整的模块代码,并保留生成记录模版,可复用 (超强悍开发利器
正向生成: 生成完整的模块,页面、处理类、mapper层、service层、myabaits的xml 建表的sql脚本等
反向生成: 任意连接其它数据库(mysql、oracle、sqlserver),根据表反射生成本系统的模块
9 模版管理:代码在线编辑器,管理模版,保存编辑记录,一键还原,代码生成器如虎添翼
10.性能监控:监控整个系统的性能,SQL监控,SQL防火墙,URL监控,SPRING监控,SESSION监控等
11.系统设置:修改系统名称,每页显示条数, 邮件服务配置,站内信配置
12. 站内信:收信箱和发信箱,websocket技术通讯技术做的及时收信提醒,可配置语音提示来信
--------------------------------通讯模块 单聊群聊发图片发文件 离线消息保留聊天记录
13. 好友管理:搜索、添加、删除、拉黑好友,查看好友资料
14. 好友分组:自定义好友分组
15. 我的群组:创建群组,搜索申请加入别人的群,踢出群成员,管理群聊天记录

-------------------------------------------------------------------------
16. 数据库备份:可备份单表(sqlserver不支持)、整库,支持本地和远程备份(java界面编程技术,socket编程技术)
17. 备份定时器:quartz 强大的任务调度,多线程备份数据库,任务启动关闭异步操作
18. 数据库还原:历史备份记录,还原数据库 or 单表(sqlserver不支持),统计备份时间和文件大小
19. SQL编辑器:强大的SQL编辑器,支持编辑语句复杂查询语句,生成动态报表,可导出excel

菜单权限:分配给每个角色不同的菜单权限, 每个角色看到的菜单不同,N级别菜单
按钮权限:独立分配不同的角色不同的功能权限,增删改查权限分配具体到不同的菜单,自定义按钮管理
支持多用户分权限管理后台, 权限具体到不同的菜单不同的按钮一个用户可以多个角色
-------------------------------------------------------------------------- 技术点
1. 导入 导出 excel 文件 (应用在系统用户中)
2 生成 word文件 (应用在代码生成器生成的doc文档)
3. IO 流下载文件 (应用在代码生成器中生成后压缩成zip 文件下载)
4 代码 zip 压缩打包 (应用在代码生成器中生成后压缩成zip 文件)
5. MD5加密 SHA加密(登录密码用此加密)接口加密身份校验
6. 数据库连接池 阿里的 druid。Druid在监控、可扩展性、稳定性和性能方面都有明显的优势,支持并发
7.安全框架 shiro (登录授权)(session管理)(shiro 注解菜单权限拦截)(shiro 标签按钮权限)
8.freemaker模版引擎(代码生成器用)
9.ehcache 自定义缓存 ,选择缓存存放目录,处理并发,增加系统性能
10.tab标签页面功能,标签自由切换,不重复操作数据库(可全部关闭,关闭当前,关闭其它)
11.多数据源技术
12.调用摄像头拍照技术,图片裁剪技术 (用户头像编辑)
13.在线编辑器,仿开发工具 (代码生成器的模版编辑)
14. 单群发邮件,可以发html、纯文本格式
15.根据汉字 解析汉字的全拼(拼音)和首字母(导入excel到用户表,根据用户的汉字姓名生成拼音的用户名)
16.站内信语音提醒,js控制音频播放
17.java 读写 ini 配置文件
18.java websocket 即时通讯技术,点对点,好友、群组,发图片文件,离线消息,保留聊天记录
19.百度富文本编辑器,可上传图片、附件
20.java Quartz 任务调度 (应用在数据库定时备份模块中)

 

 

 

 

 




 

 

0
0
分享到:
评论
发表评论

文章已被作者锁定,不允许评论。

相关推荐

    java OA办公管理系统 Springboot vue.js 前后分离 跨域 工作流 集成代码生成器(csdn)——.pdf

    本文将详细讲解一个基于Java的OA办公管理系统,该系统采用Springboot框架,前端使用vue.js实现前后端分离,同时具备跨域处理、工作流管理和集成代码生成器等功能。此系统旨在提高开发效率,提供高效稳定的办公自动化...

    【NLP 66、实践 ⑰ 基于Agent + Prompt优化进行文章优化】

    【NLP 66、实践 ⑰ 基于Agent + Prompt优化进行文章优化】

    梦限大mewtype成员 藤都子RVC模型

    考虑微网新能源经济消纳的共享储能优化配置附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    tokenizers-0.30.0.jar中文文档.zip

    # 【tokenizers-***.jar***文档.zip】 中包含: ***文档:【tokenizers-***-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【tokenizers-***.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【tokenizers-***.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【tokenizers-***.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【tokenizers-***-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: tokenizers-***.jar***文档.zip,java,tokenizers-***.jar,ai.djl.huggingface,tokenizers,***,ai.djl.engine.rust,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,djl,huggingface,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【tokenizers-***.jar***文档.zip】,再解压其中的 【tokenizers-***-javadoc-API文档-中文(简体)版.zip】,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件; # Maven依赖: ``` <dependency> <groupId>ai.djl.huggingface</groupId> <artifactId>tokenizers</artifactId> <version>***</version> </dependency> ``` # Gradle依赖: ``` Gradle: implementation group: 'ai.djl.huggingface', name: 'tokenizers', version: '***' Gradle (Short): implementation 'ai.djl.huggingface:tokenizers:***' Gradle (Kotlin): implementation("ai.djl.huggingface:tokenizers:***") ``` # 含有的 Java package(包): ``` ai.djl.engine.rust ai.djl.engine.rust.zoo ai.djl.huggingface.tokenizers ai.djl.huggingface.tokenizers.jni ai.djl.huggingface.translator ai.djl.huggingface.zoo ``` # 含有的 Java class(类): ``` ai.djl.engine.rust.RsEngine ai.djl.engine.rust.RsEngineProvider ai.djl.engine.rust.RsModel ai.djl.engine.rust.RsNDArray ai.djl.engine.rust.RsNDArrayEx ai.djl.engine.rust.RsNDArrayIndexer ai.djl.engine.rust.RsNDManager ai.djl.engine.rust.RsSymbolBlock ai.djl.engine.rust.RustLibrary ai.djl.engine.rust.zoo.RsModelZoo ai.djl.engine.rust.zoo.RsZooProvider ai.djl.huggingface.tokenizers.Encoding ai.djl.huggingface.tokenizers.HuggingFaceTokenizer ai.djl.huggingface.tokenizers.HuggingFaceTokenizer.Builder ai.djl.hu

    人形机器人是当今世界科技领域最具潜力和前景的产业之一 随着科技的不断进步和人工智能技术的快速发展,人形机器人作为未来产业的新赛道和经济增长的新引擎,将深刻变革人类生产生活方式,重塑全球产业发展格局

    人形机器人产业的发展需要人工智能、高端制造、新材料等先进技术的协同创新和突破。

    【状态估计】用于非标量系统估计的最优卡尔曼滤波附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    开关电源的尖峰干扰及其抑制.zip

    开关电源的尖峰干扰及其抑制.zip

    房地产培训 -新进业务员压马路市调培训.ppt

    房地产培训 -新进业务员压马路市调培训.ppt

    MATLAB实现计及电转气协同的含碳捕集与垃圾焚烧虚拟电厂优化调度

    内容概要:本文探讨了基于MATLAB平台的虚拟电厂优化调度方法,特别关注电转气(P2G)协同、碳捕集技术和垃圾焚烧的应用。文中介绍了虚拟电厂的概念及其重要性,详细解释了碳捕集、需求响应和电转气协同调度的关键技术,并展示了如何使用MATLAB和CPLEX求解器进行优化调度的具体步骤。通过定义决策变量、构建目标函数和设定约束条件,最终实现了多目标优化,即经济性最优和碳排放最低。此外,还讨论了一些常见的代码实现技巧和潜在的问题解决方案。 适合人群:从事能源管理和优化调度研究的专业人士,尤其是那些熟悉MATLAB编程和优化算法的人士。 使用场景及目标:适用于希望深入了解虚拟电厂运作机制和技术实现的研究人员和工程师。主要目标是通过优化调度提高能源利用效率,减少碳排放,降低成本。 其他说明:文章提供了详细的代码片段和理论分析,有助于读者更好地理解和复现实验结果。同时,强调了在实际应用中需要注意的一些细节问题,如约束条件的平衡、求解器配置等。

    在网格化数据集上轻松执行 2D 高通、低通、带通或带阻滤波器研究附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    spring-ai-pinecone-store-1.0.0-M7.jar中文-英文对照文档.zip

    # 【spring-ai-pinecone-store-1.0.0-M7.jar中文-英文对照文档.zip】 中包含: 中文-英文对照文档:【spring-ai-pinecone-store-1.0.0-M7-javadoc-API文档-中文(简体)-英语-对照版.zip】 jar包下载地址:【spring-ai-pinecone-store-1.0.0-M7.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【spring-ai-pinecone-store-1.0.0-M7.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【spring-ai-pinecone-store-1.0.0-M7.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【spring-ai-pinecone-store-1.0.0-M7-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: spring-ai-pinecone-store-1.0.0-M7.jar中文-英文对照文档.zip,java,spring-ai-pinecone-store-1.0.0-M7.jar,org.springframework.ai,spring-ai-pinecone-store,1.0.0-M7,org.springframework.ai.vectorstore.pinecone,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,springframework,spring,ai,pinecone,store,中文-英文对照API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【spring-ai-pinecone

    基于MATLAB混合整数规划的微网电池储能容量优化配置

    内容概要:本文详细介绍了如何使用MATLAB及其优化工具箱,通过混合整数规划(MILP)方法对微网电池储能系统的容量进行优化配置。主要内容包括定义目标函数(如最小化运行成本),设置约束条件(如充放电功率限制、能量平衡约束),并引入决策变量(如电池容量、充放电功率和状态)。文中提供了具体的MATLAB代码示例,演示了如何将实际问题转化为数学模型并求解。此外,还讨论了一些实用技巧,如避免充放电互斥冲突、考虑电池寿命损耗等。 适用人群:从事微电网设计与运维的技术人员,尤其是那些希望通过优化算法提高系统性能和经济效益的专业人士。 使用场景及目标:适用于需要确定最佳电池储能容量的微电网项目,旨在降低总体运行成本,提高系统的稳定性和可靠性。具体应用场景包括工业园区、商业建筑或其他分布式能源系统。 其他说明:文章强调了模型的实际应用价值,并指出通过精确控制充放电策略可以显著减少不必要的容量闲置,从而节省大量资金。同时提醒读者注意模型的时间粒度选择、电池退化成本等因素的影响。

    langchain4j-ollama-1.0.0-beta1.jar中文文档.zip

    # 压缩文件中包含: 中文文档 jar包下载地址 Maven依赖 Gradle依赖 源代码下载地址 # 本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件;

    光伏离网并网逆变器设计:基于TMS320F28335的数字控制与SPWM技术详解

    内容概要:本文详细介绍了基于TMS320F28335的光伏离网并网逆变器设计方案,涵盖了从硬件架构到软件控制的各个方面。首先,文章阐述了TMS320F28335作为高性能DSP的优势及其初始化配置方法。其次,探讨了逆变器的数字控制策略,如双闭环控制(电压外环和电流内环)的具体实现方式。然后,深入讲解了SPWM(正弦脉宽调制)技术,包括SPWM波的生成方法和相关代码示例。此外,还讨论了硬件保护逻辑、过流检测、死区时间配置等实际应用中的注意事项。最后,提供了调试经验和学习资源建议。 适合人群:从事光伏逆变器设计、嵌入式系统开发的技术人员,尤其是有一定DSP编程基础的研发人员。 使用场景及目标:适用于需要深入了解光伏逆变器设计原理和技术实现的研究人员和工程师。主要目标是掌握基于TMS320F28335的逆变器控制系统设计,包括数字控制策略和SPWM技术的应用。 其他说明:文中提供的代码示例和实践经验有助于读者更好地理解和应用于实际项目中。建议读者结合TI官方提供的学习资料进行进一步学习和实践。

    【医疗影像分析】深度学习技术在医疗影像分析中的应用优势及未来发展方向:自动特征学习、高精度高效处理、多模态数据融合、个性化治疗与预测、实时远程支持

    内容概要:深度学习在医疗影像分析中展现出显著的优势,主要体现在自动特征学习、高准确性和效率、多模态数据融合与综合分析、个性化治疗与预测、减少主观性、处理复杂和高维数据、实时分析与远程医疗支持、数据挖掘与科研突破以及可扩展性与持续优化九个方面。通过卷积神经网络(CNN)、U-Net等模型,深度学习能够自动从影像中提取多层次特征,无需手动干预,在分类、分割任务中表现出色,处理速度远超人工。此外,它还能够整合多源数据,提供全面的诊断依据,实现个性化治疗建议,减少误诊和漏诊,支持实时分析和远程医疗,挖掘病理模式并加速研究,同时具有可扩展性和持续优化的能力。; 适合人群:医疗行业从业者、科研人员、计算机视觉和深度学习领域的研究人员。; 使用场景及目标:①用于医疗影像的自动特征提取和分类,如乳腺癌筛查、皮肤癌诊断等;②整合多模态数据,如CT、MRI等,提高诊断准确性;③提供个性化治疗建议,优化治疗方案;④支持实时分析和远程医疗,尤其适用于偏远地区的急诊场景;⑤挖掘病理模式,加速疾病机制的研究。; 其他说明:深度学习正逐渐成为医疗影像分析的核心诊断伙伴,未来发展方向包括增强可解释性、保护数据隐私和轻量化部署,旨在进一步提升医疗效率和患者护理质量。

    深度学习机器学习子领域关键技术解析:神经网络基础、常见架构及应用场景综述

    内容概要:深度学习是机器学习的一个子领域,通过构建多层次的“深度神经网络”来模拟人脑结构,从而学习和提取数据的复杂特征。文章介绍了深度学习的核心概念,包括神经元、多层感知机、深度神经网络(DNN)、卷积神经网络(CNN)、循环神经网络(RNN)和Transformer等常见网络结构。同时,详细讲解了激活函数、损失函数与优化器的作用。此外,还探讨了深度学习的关键突破,如大数据与算力的支持、正则化技术和迁移学习的应用。文中列举了深度学习在计算机视觉、自然语言处理、语音与音频以及强化学习等领域的应用场景,并指出了其面临的挑战,如数据依赖、计算成本和可解释性问题。最后提供了使用PyTorch和TensorFlow/Keras框架的经典代码示例,涵盖图像分类、文本生成和迁移学习等内容。; 适合人群:对机器学习有一定了解,希望深入学习深度学习理论和技术的研究人员、工程师及学生。; 使用场景及目标:①理解深度学习的基本原理和核心概念;②掌握常见深度学习框架的使用方法,如PyTorch和TensorFlow;③能够根据具体应用场景选择合适的网络结构和算法进行实践。; 其他说明:本文不仅提供了理论知识,还附带了详细的代码示例,便于读者动手实践。建议读者结合理论与实践,逐步深入理解深度学习的各个方面。

    深度学习答辩PPT案例展示

    适用于理工专业的毕业生,毕业答辩时可供参考,叙述详细准确,可以作为自己答辩PPT的参考

    tokenizers-0.22.1.jar中文-英文对照文档.zip

    # 【tokenizers-***.jar***文档.zip】 中包含: ***文档:【tokenizers-***-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【tokenizers-***.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【tokenizers-***.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【tokenizers-***.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【tokenizers-***-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: tokenizers-***.jar***文档.zip,java,tokenizers-***.jar,ai.djl.huggingface,tokenizers,***,ai.djl.engine.rust,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,djl,huggingface,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【tokenizers-***.jar***文档.zip】,再解压其中的 【tokenizers-***-javadoc-API文档-中文(简体)版.zip】,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件; # Maven依赖: ``` <dependency> <groupId>ai.djl.huggingface</groupId> <artifactId>tokenizers</artifactId> <version>***</version> </dependency> ``` # Gradle依赖: ``` Gradle: implementation group: 'ai.djl.huggingface', name: 'tokenizers', version: '***' Gradle (Short): implementation 'ai.djl.huggingface:tokenizers:***' Gradle (Kotlin): implementation("ai.djl.huggingface:tokenizers:***") ``` # 含有的 Java package(包): ``` ai.djl.engine.rust ai.djl.engine.rust.zoo ai.djl.huggingface.tokenizers ai.djl.huggingface.tokenizers.jni ai.djl.huggingface.translator ai.djl.huggingface.zoo ``` # 含有的 Java class(类): ``` ai.djl.engine.rust.RsEngine ai.djl.engine.rust.RsEngineProvider ai.djl.engine.rust.RsModel ai.djl.engine.rust.RsNDArray ai.djl.engine.rust.RsNDArrayEx ai.djl.engine.rust.RsNDArrayIndexer ai.djl.engine.rust.RsNDManager ai.djl.engine.rust.RsSymbolBlock ai.djl.engine.rust.RustLibrary ai.djl.engine.rust.zoo.RsModelZoo ai.djl.engine.rust.zoo.RsZooProvider ai.djl.huggingface.tokenizers.Encoding ai.djl.huggingface.tokenizers.HuggingFaceTokenizer ai.djl.huggingface.tokenizers.HuggingFaceTokenizer.Builder ai.djl.hu

    能源领域:基于MATLAB的阶梯式碳交易与供需灵活双响应综合能源系统优化调度

    内容概要:本文详细介绍了考虑阶梯式碳交易与供需灵活双响应的综合能源系统优化调度方法。在供给侧,引入了有机朗肯循环(ORC)实现热电联产机组的灵活响应;在需求侧,提出电、热、气负荷之间的可替代性,以提高能源利用效率。构建了以最小化碳排放成本、购能成本、弃风成本和需求响应成本为目标的优化调度模型,并采用MATLAB和CPLEX进行了模型构建和求解。文中提供了具体的代码示例,展示了如何处理热电耦合、负荷替代和阶梯式碳交易等问题。 适合人群:从事能源系统优化、电力系统调度、碳交易等相关领域的研究人员和技术人员。 使用场景及目标:适用于需要优化能源系统调度、降低成本并减少碳排放的实际应用场景。目标是帮助读者理解和掌握如何通过先进的技术和算法实现更加灵活和高效的能源调度。 其他说明:文章提供了完整的代码实现和服务支持,包括12种典型场景的数据集和预设模型,方便读者快速上手实践。

Global site tag (gtag.js) - Google Analytics