应用RabbitMQ可靠性传输机制实现Redis缓存的实时更新
消息中间件集群崩溃,如何保证百万生产数据不丢失?
RabbitMQ暂时放在了自己的内存中,还没来得及投递给下游的仓储服务呢,此时RabbitMQ突然宕机了,会怎么样?
答案其实很简单,默认情况下,按照我们目前的代码和配置,这个数据就会丢失了。
持久化
队列持久化:
//queuechannel.queue_declare(queue='hello2',durable=True) channel.queueDeclare( "warehouse_schedule_delivery", true, false, false, null);
核心在于第二个参数,第二个参数是true。意思就是说,这个创建的queue是durable的,也就是支持持久化的。
这样,RabbitMQ会把这queue的相关信息持久化的存储到磁盘上去,即使RabbitMQ宕机后重启,也会恢复之前创建好的这个queue。
消息持久化:
现在你的queue的信息可以持久化了,RabbitMQ宕机重启后会自动恢复queue。但是,你的queue里的message数据呢?
queue里都是订单服务发送过去的订单消息数据,如果RabbitMQ还没来得及投递queue里的订单消息到仓储服务,结果RabbitMQ就宕机了。
那此时RabbitMQ重启之后,他可以恢复queue的信息,但是queue的message数据是没法恢复了。
所以就需要在你的订单服务发送消息到RabbitMQ的时候,【定义这条消息也是durable】,即持久化的。
#channel.basic_publish(exchange='',routing_key='hello2',body='Hello World!',properties=pika.BasicProperties(delivery_mode=2)) /* 参数: * 向server发布一条消息 * 参数1:exchange名字,若为空则使用默认的exchange * 参数2:routing key * 参数3:其他的属性 * 参数4:消息体 * 【RabbitMQ默认有一个exchange,叫default exchange,它用一个空字符串表示,它是direct exchange类型, * 任何发往这个exchange的消息都会被路由到routing key的名字对应的队列上,如果没有对应的队列,则消息会被丢弃】 */
channel.basicPublish("", "warehouse_schedule_delivery",MessageProperties.PERSISTENT_TEXT_PLAIN, message.getBytes());
通过上面的方式来发送消息,就可以让发送出去的消息是持久化的。
一旦标记了消息是持久化之后,就会让RabbitMQ把消息持久化写入到磁盘上去,此时如果RabbitMQ还没投递数据到仓储服务,结果就突然宕机了。那么再次重启的时候,就会把磁盘上持久化的消息给加载出来。
但是这里要注意一点,RabbitMQ的消息持久化,是不承诺100%的消息不丢失的。
因为有可能【RabbitMQ接收到了消息,但是还没来得及持久化到磁盘,他自己就宕机了】,【这个时候消息还是会丢失的】。
如果要完全100%保证写入RabbitMQ的数据必须落地磁盘,不会丢失,需要依靠其他的机制。
RabbitMQ消息确认机制
Message acknowledgment
消费者消息确认机制
为了保证消息从队列可靠地到达消费者,RabbitMQ提供了消费者消息确认机制(message acknowledgement)。采用消息确认机制之后,消费者就有足够的时间来处理消息,不用担心处理消息过程中消费者进程挂掉后消息丢失的问题,因为RabbitMQ会一直等待并持有消息,直到消费者确认了该消息。
当有Consumer需要大量的运算时,RabbitMQ Server需要一定的分发机制来balance每个Consumer的load。
【默认情况下,RabbitMQ会顺序的分发每个Message。当每个【收到ack后,会将该Message删除】,然后将下一个Message分发到下一个Consumer】。这种分发方式叫做round-robin。这种分发还有问题。
每个Consumer可能需要一段时间才能处理完收到的数据。如果在这个过程中,Consumer出错了,异常退出了,而数据还没有处理完成,那么非常不幸,这段数据就丢失了。因为我们采用no-ack的方式进行确认,也就是说,【每次Consumer接到数据后,而不管是否处理完成,RabbitMQ Server会立即把这个Message标记为完成,然后从queue中删除了】。
如果一个Consumer异常退出了,它处理的数据能够被另外的Consumer处理,这样数据在这种情况下就不会丢失了。
为了保证数据不被丢失,RabbitMQ支持消息确认机制,即acknowledgments。【为了保证数据能被正确处理而不仅仅是被Consumer收到,那么我们不能采用no-ack】。而应该是在【处理完数据后发送ack】。(在处理数据后发送的ack,就是告诉RabbitMQ数据已经被接收,处理完成,RabbitMQ可以去安全的删除它了,【如果Consumer退出了但是没有发送ack,那么RabbitMQ就会把这个Message发送到下一个Consumer】。这样就保证了在Consumer异常退出的情况下数据也不会丢失)
在实际应用中,可能会发生消费者收到Queue中的消息,但没有处理完成就宕机(或出现其他意外)的情况,这种情况下就可能会导致消息丢失。为了避免这种情况发生,我们可以要求消费者在消费完消息后发送一个回执给RabbitMQ,RabbitMQ收到消息回执(Message acknowledgment)后才将该消息从Queue中移除;【如果RabbitMQ没有收到回执并检测到消费者的RabbitMQ连接断开,则RabbitMQ会将该消息发送给其他消费者(如果存在多个消费者)进行处理】。【这里不存在timeout概念】,【一个消费者处理消息时间再长也不会导致该消息被发送给其他消费者,除非它的RabbitMQ连接断开】。
这里会产生另外一个问题,如果我们的开发人员在处理完业务逻辑后,忘记发送回执给RabbitMQ,这将会导致严重的bug——Queue中堆积的消息会越来越多;消费者重启后会重复消费这些消息并重复执行业务逻辑。
RPC
MQ本身是基于异步的消息处理,前面的示例中所有的生产者(P)将消息发送到RabbitMQ后不会知道消费者(C)处理成功或者失败(甚至连有没有消费者来处理这条消息都不知道)。
但实际的应用场景中,我们很可能需要一些同步处理,需要同步等待服务端将我的消息处理完成后再进行下一步处理。这相当于RPC(Remote Procedure Call,远程过程调用)。在RabbitMQ中也支持RPC。
【RabbitMQ开启手动ack机制保证消费端数据不丢失的时候,prefetch机制对消费者的吞吐量以及内存消耗的影响。
通过分析,我们知道了prefetch过大容易导致内存溢出,prefetch过小又会导致消费吞吐量过低,所以在实际项目中需要慎重测试和设置。
】
------------------------------------------------------------------------------------------------------
生产者消息确认机制
当消息发送出去之后,我们如何知道消息有没有正确到达exchange呢?如果在这个过程中,消息丢失了,我们根本不知道发生了什么,也不知道是什么原因导致消息发送失败了
为解决这个问题,主要有如下两种方案:
【通过事务】机制实现
【通过生产者消息确认机制】(publisher confirm)实现
但是使用【事务机制实现会严重降低RabbitMQ的消息吞吐量】,我们采用一种轻量级的方案——生产者消息确认机制
什么是生产者消息确认机制?
简而言之,就是:生产者发送的消息一旦被投递到所有匹配的队列之后,就会发送一个确认消息给生产者,这就使得生产者知晓消息已经正确到达了目的地。
如果消息和队列是持久化存储的,那么确认消息会在消息写入磁盘之后发出。
再补充一个Mandatory参数:【当Mandatory参数设为true时,如果目的不可达,会发送消息给生产者,生产者通过一个回调函数来获取该信息。】
相关推荐
【AI】从头到脚详解如何创建部署Azure Web App的OpenAI项目源码
人脸识别项目实战
人工智能-人脸识别代码,采用cnn的架构识别代码
汽车配件制造业企业信息化整体解决方案
短期风速预测模型,IDBO-BiTCN-BiGRU-Multihead-Attention IDBO是,网上复现 评价指标:R方、MAE、MAPE、RMSE 附带测试数据集运行(风速数据) 提示:在MATLAB2024a上测试正常 ,短期风速预测模型; IDBO-BiTCN-BiGRU-Multihead-Attention; 评价指标: R方、MAE、MAPE、RMSE; 复现; 测试数据集; MATLAB 2024a,短期风速预测模型:IDBO-BiTCN-BiGRU-Attention集成模型
手势识别项目实战
在智慧园区建设的浪潮中,一个集高效、安全、便捷于一体的综合解决方案正逐步成为现代园区管理的标配。这一方案旨在解决传统园区面临的智能化水平低、信息孤岛、管理手段落后等痛点,通过信息化平台与智能硬件的深度融合,为园区带来前所未有的变革。 首先,智慧园区综合解决方案以提升园区整体智能化水平为核心,打破了信息孤岛现象。通过构建统一的智能运营中心(IOC),采用1+N模式,即一个智能运营中心集成多个应用系统,实现了园区内各系统的互联互通与数据共享。IOC运营中心如同园区的“智慧大脑”,利用大数据可视化技术,将园区安防、机电设备运行、车辆通行、人员流动、能源能耗等关键信息实时呈现在拼接巨屏上,管理者可直观掌握园区运行状态,实现科学决策。这种“万物互联”的能力不仅消除了系统间的壁垒,还大幅提升了管理效率,让园区管理更加精细化、智能化。 更令人兴奋的是,该方案融入了诸多前沿科技,让智慧园区充满了未来感。例如,利用AI视频分析技术,智慧园区实现了对人脸、车辆、行为的智能识别与追踪,不仅极大提升了安防水平,还能为园区提供精准的人流分析、车辆管理等增值服务。同时,无人机巡查、巡逻机器人等智能设备的加入,让园区安全无死角,管理更轻松。特别是巡逻机器人,不仅能进行360度地面全天候巡检,还能自主绕障、充电,甚至具备火灾预警、空气质量检测等环境感知能力,成为了园区管理的得力助手。此外,通过构建高精度数字孪生系统,将园区现实场景与数字世界完美融合,管理者可借助VR/AR技术进行远程巡检、设备维护等操作,仿佛置身于一个虚拟与现实交织的智慧世界。 最值得关注的是,智慧园区综合解决方案还带来了显著的经济与社会效益。通过优化园区管理流程,实现降本增效。例如,智能库存管理、及时响应采购需求等举措,大幅减少了库存积压与浪费;而设备自动化与远程监控则降低了维修与人力成本。同时,借助大数据分析技术,园区可精准把握产业趋势,优化招商策略,提高入驻企业满意度与营收水平。此外,智慧园区的低碳节能设计,通过能源分析与精细化管理,实现了能耗的显著降低,为园区可持续发展奠定了坚实基础。总之,这一综合解决方案不仅让园区管理变得更加智慧、高效,更为入驻企业与员工带来了更加舒适、便捷的工作与生活环境,是未来园区建设的必然趋势。
相亲交友系统源码 V10.5支持婚恋相亲、媒婆返利、红娘系统、商城系统等等 这款交友系统功能太多了,适合婚恋相亲,还有媒婆婚庆等等支持 PC和 H5还有小程序,可封装红年、APP,里面带安装教程
本资源《单片机也能玩双核之你想不到的C技巧系列——嵌入式实战》涵盖 双核单片机开发、C语言高级技巧、嵌入式系统优化 等核心内容,结合 实战案例与视频教程,帮助开发者深入理解并掌握高效编程技巧。 适用人群: 适合 嵌入式开发工程师、单片机开发者、电子信息相关专业学生,以及希望提升 C语言编程能力 和 嵌入式项目经验 的技术人员。 能学到什么: 双核单片机开发思路,提高并行处理能力。 C语言高级技巧,提升代码优化与执行效率。 嵌入式系统调试方法,掌握实际项目中的调试策略。 实战案例解析,学习如何在实际工程中应用双核技术。 阅读建议: 建议 先学习基础知识,再结合 示例代码与视频教程 进行实操,重点关注 代码优化、调试技巧与双核应用模式,通过实战演练提高嵌入式开发能力。
人脸识别项目源码实战
人脸识别项目源码实战
c语言学习
红外光伏缺陷目标检测模型,YOLOv8模型 基于红外光伏缺陷目标检测数据集训练,做了必要的数据增强处理,以达到缺陷类别间的平衡 可检测大面积热斑,单一热斑,二极管短路和异常低温四类缺陷 测试集指标如图所示 ,核心关键词:红外光伏缺陷目标检测模型; YOLOv8模型; 数据增强处理; 缺陷类别平衡; 大面积热斑; 单一热斑; 二极管短路; 异常低温。,基于YOLOv8的红外光伏缺陷检测模型
基于PLC的自动浇花控制系统 西门子1200PLC博途仿真,提供HMI画面,接线图,IO分配表,演示视频,简单讲解视频 博图15.1及以上版本均可使用 ,核心关键词: PLC自动浇花控制系统; 西门子1200PLC博途仿真; HMI画面; 接线图; IO分配表; 演示视频; 简单讲解视频; 博图15.1及以上版本。,基于PLC的自动浇花系统:西门子1200PLC博途仿真实践教程
在智慧园区建设的浪潮中,一个集高效、安全、便捷于一体的综合解决方案正逐步成为现代园区管理的标配。这一方案旨在解决传统园区面临的智能化水平低、信息孤岛、管理手段落后等痛点,通过信息化平台与智能硬件的深度融合,为园区带来前所未有的变革。 首先,智慧园区综合解决方案以提升园区整体智能化水平为核心,打破了信息孤岛现象。通过构建统一的智能运营中心(IOC),采用1+N模式,即一个智能运营中心集成多个应用系统,实现了园区内各系统的互联互通与数据共享。IOC运营中心如同园区的“智慧大脑”,利用大数据可视化技术,将园区安防、机电设备运行、车辆通行、人员流动、能源能耗等关键信息实时呈现在拼接巨屏上,管理者可直观掌握园区运行状态,实现科学决策。这种“万物互联”的能力不仅消除了系统间的壁垒,还大幅提升了管理效率,让园区管理更加精细化、智能化。 更令人兴奋的是,该方案融入了诸多前沿科技,让智慧园区充满了未来感。例如,利用AI视频分析技术,智慧园区实现了对人脸、车辆、行为的智能识别与追踪,不仅极大提升了安防水平,还能为园区提供精准的人流分析、车辆管理等增值服务。同时,无人机巡查、巡逻机器人等智能设备的加入,让园区安全无死角,管理更轻松。特别是巡逻机器人,不仅能进行360度地面全天候巡检,还能自主绕障、充电,甚至具备火灾预警、空气质量检测等环境感知能力,成为了园区管理的得力助手。此外,通过构建高精度数字孪生系统,将园区现实场景与数字世界完美融合,管理者可借助VR/AR技术进行远程巡检、设备维护等操作,仿佛置身于一个虚拟与现实交织的智慧世界。 最值得关注的是,智慧园区综合解决方案还带来了显著的经济与社会效益。通过优化园区管理流程,实现降本增效。例如,智能库存管理、及时响应采购需求等举措,大幅减少了库存积压与浪费;而设备自动化与远程监控则降低了维修与人力成本。同时,借助大数据分析技术,园区可精准把握产业趋势,优化招商策略,提高入驻企业满意度与营收水平。此外,智慧园区的低碳节能设计,通过能源分析与精细化管理,实现了能耗的显著降低,为园区可持续发展奠定了坚实基础。总之,这一综合解决方案不仅让园区管理变得更加智慧、高效,更为入驻企业与员工带来了更加舒适、便捷的工作与生活环境,是未来园区建设的必然趋势。
大型集团用户画像系统化标准化数字化用户主数据管理项目规划方案
基于STM32的水质 浊度检测仪设计与实现(详细设计说明书+ 10008-基于STM32的水质 浊度检测仪设计与实现(详细设计说明书+原理图PCB工程+源码工程+实物照片) 本次设计是设计一款水质检测设备,实现温度检查、水质检测的功能,将检测到的数据显示到显示器中,并实时记录系统的参数 本次系统需要对温度检测,使用的传感器为DS18B20,通过单总线的方式来完成系统温度检测 使用水质检测模块检查水的质量 通过传感器检测到的数据计算后的值实时刷新到显示器中,主要的功能包括以下几点: ①可以对温度实时检测; ②可以对水质实际值实时检测; ③水质浑浊预警 主要特点: 1.以STM32单片机为核心,配合水质模块; 2.主要完成系统的 功能控制、状态显示、信息检测以及报警硬件组建所单片机和传感器等元器件的选择; 3.完成系统控制的软件设计编程; 4.实现对水质检测、温度检查、预警的功能 内容包含: 1、原理图工程 2、PCB工程 3、源码工程 4、实物照片 5、详细介绍说明书-22531字 6、实物照片 7、浊度传感器资料
人脸识别项目实战
华中科技大学计算机科学研究生复试上机测试题.zip
YOLOv8部署到web上(Django+html)